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How do we know the resulting set 
of edges is optimal?

Suppose the set of edges found 𝑆
is smaller than the optimal set 𝑆′. 
Since 𝑆′ edges are independent, 
none share a node, so 1 unit of 
flow can be put on each path: 
𝑠 → 𝑒 ∈ 𝑆′ → 𝑡. This gives a flow 
(capacity?, conservation of flow?) 
larger than the max flow (since 
𝑆 < |𝑆!|), which is a 

contradiction. Thus, the size of 𝑆
is optimal.
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