
Flow Networks
CSCI 532

Test 1 Logistics

1. During class on Thursday 9/18.
2. You can bring your book and any notes you would

like, but no electronic devices.
3. You may assume anything proven in class or on

homework.
4. Three questions (12 points):

1) Prove something related to MSTs (5 points).
2) Identify recursive optimal substructure function

for graph problem (5 points).
3) Prove/disprove flow network property (2 points).

Flow Network

Flow Network:
• Directed-edge graph, 𝐺 = (𝑉, 𝐸).
• Finite positive edge capacity, 𝑐!.
• Single source, 𝑠, without input edges.
• Single sink, 𝑡, without output edges.

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ" such that:
• 0 ≤ 𝑓 𝑒 ≤ 𝑐! , ∀𝑒 ∈ 𝐸. (capacity constraint)
• ∑!#input(%) 𝑓(𝑒) = ∑!∈output(%) 𝑓(𝑒) , ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}.

(conservation of flow constraint)
• Value of flow = 𝑣𝑎𝑙(𝑓) = ∑!#output(() 𝑓(𝑒) = ∑!#input()) 𝑓(𝑒)

Maximum Flow Problem:
Given a flow network, find the
maximum possible value of flow.

s

a

t

c e

d

b
3

4

3
10

1
1
2

5

1
2

5

s

a

t

c e

d

b
2

4

1
1

1
2

5

2

5

Total flow = 7

Ford-Fulkerson

20

1020

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

s t

a

b

20

𝐺!:

c

10

20

10 20
20

10
10

10

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

2. If edge capacities are integer-valued, the algorithm will terminate.

3. If an iteration starts with a valid flow, it ends with a valid flow.

4. The first iteration starts with a valid flow.

Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

Ford-Fulkerson

Bottleneck ∈ ℕ Flow ∈ ℕResidual
Capacities

∈ ℕ
Flow = 0

&
Capacities ∈ ℕ

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

Ford-Fulkerson

s t

a

b 20

1030

10
𝐺:

c
20

30 10
Note: This does not hold for general edge
capacities (i.e., irrational edge capacities
can lead to non-terminating scenarios).

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

Ford-Fulkerson

20

1020

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

s t

a

b

20

𝐺!:

c

10

20

10 20
20

10
10

10

If an iteration starts with a valid flow,
it ends with a valid flow.

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

We only need to consider nodes/edges
on the path. Other nodes/edges aren’t
modified.

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

for each edge (u, v) in P
if (u, v) is a back edge

f((v, u)) -= bottleneck
else

f((u, v)) += bottleneck

We only need to consider nodes/edges
on the path. Other nodes/edges aren’t
modified.

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

for each edge (u, v) in P
if (u, v) is a back edge

f((v, u)) -= bottleneck
else

f((u, v)) += bottleneck

Can’t overflow capacities on back
edges, because…

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

for each edge (u, v) in P
if (u, v) is a back edge

f((v, u)) -= bottleneck
else

f((u, v)) += bottleneck

Can’t overflow capacities on back
edges, because we are removing flow
from them. So, if they were valid, less
flow doesn’t change that.

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

for each edge (u, v) in P
if (u, v) is a back edge

f((v, u)) -= bottleneck
else

f((u, v)) += bottleneck

Can’t overflow capacities on forward
edges since…

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

for each edge (u, v) in P
if (u, v) is a back edge

f((v, u)) -= bottleneck
else

f((u, v)) += bottleneck

Can’t overflow capacities on forward
edges since bottleneck = 𝐦𝐢𝐧

𝒆
(𝒄𝒆 − 𝒇𝒆)

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

for each edge (u, v) in P
if (u, v) is a back edge

f((v, u)) -= bottleneck
else

f((u, v)) += bottleneck

Can’t overflow capacities on forward
edges since bottleneck = 𝐦𝐢𝐧

𝒆
(𝒄𝒆 − 𝒇𝒆)

Thus, 𝒇𝒆5 = 𝒇𝒆 + bottleneck

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

for each edge (u, v) in P
if (u, v) is a back edge

f((v, u)) -= bottleneck
else

f((u, v)) += bottleneck

Can’t overflow capacities on forward
edges since bottleneck = 𝐦𝐢𝐧

𝒆
(𝒄𝒆 − 𝒇𝒆)

Thus, 𝒇𝒆5 = 𝒇𝒆 + bottleneck
≤ 𝒇𝒆 + 𝒄𝒆 − 𝒇𝒆 = 𝒄𝒆

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

Considering a node on the path. Suppose the edge in is a
forward edge and the edge out is a forward edge. 𝑣

𝑒6

𝑒7

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

Considering a node on the path. Suppose the edge in is a
forward edge and the edge out is a forward edge.

Then, 𝒇𝒊𝒏5 =
𝑣
𝑒6

𝑒7

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

Considering a node on the path. Suppose the edge in is a
forward edge and the edge out is a forward edge.

Then, 𝒇𝒊𝒏5 = 𝒇𝒊𝒏 + bottleneck
𝑣
𝑒6

𝑒7

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

Considering a node on the path. Suppose the edge in is a
forward edge and the edge out is a forward edge.

Then, 𝒇𝒊𝒏5 = 𝒇𝒊𝒏 + bottleneck = 𝒇𝒐𝒖𝒕 + bottleneck
𝑣
𝑒6

𝑒7

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

Considering a node on the path. Suppose the edge in is a
forward edge and the edge out is a forward edge.

Then, 𝒇𝒊𝒏5 = 𝒇𝒊𝒏 + bottleneck = 𝒇𝒐𝒖𝒕 + bottleneck = 𝒇𝒐𝒖𝒕5
𝑣
𝑒6

𝑒7

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

Considering a node on the path. Suppose the edge in is a
forward edge and the edge out is a back edge. 𝑣

𝑒6′ 𝑒6

𝑒7

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

Considering a node on the path. Suppose the edge in is a
forward edge and the edge out is a back edge.

Then, 𝒇𝒊𝒏5 =
𝑣

𝑒6′ 𝑒6

𝑒7

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

Considering a node on the path. Suppose the edge in is a
forward edge and the edge out is a back edge.

Then, 𝒇𝒊𝒏5 = 𝒇𝒊𝒏 + bottleneck
𝑣

𝑒6′ 𝑒6

𝑒7

Flow on back edge
removes from
forward edge.

Ford-Fulkerson

20

1020

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

s t

a

b

20

𝐺!:

c

10

20

10 20
20

10
10

10

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

Considering a node on the path. Suppose the edge in is a
forward edge and the edge out is a back edge.

Then, 𝒇𝒊𝒏5 = 𝒇𝒊𝒏 + bottleneck
𝑣

𝑒6′ 𝑒6

𝑒7

Flow on back edge
removes from
forward edge.

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

Considering a node on the path. Suppose the edge in is a
forward edge and the edge out is a back edge.

Then, 𝒇𝒊𝒏5 = 𝒇𝒊𝒏 + bottleneck – bottleneck
𝑣

𝑒6′ 𝑒6

𝑒7

Flow on back edge
removes from
forward edge.

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

Considering a node on the path. Suppose the edge in is a
forward edge and the edge out is a back edge.

Then, 𝒇𝒊𝒏5 = 𝒇𝒊𝒏 + bottleneck – bottleneck = 𝒇𝒊𝒏 = 𝒇𝒐𝒖𝒕 = 𝒇𝒐𝒖𝒕5
𝑣

𝑒6′ 𝑒6

𝑒7

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

Considering a node on the path. Suppose the edge in is a back
edge and the edge out is a forward edge.

Considering a node on the path. Suppose the edge in is a back
edge and the edge out is a back edge.

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.
Each iteration sends flow along a residual 𝑠 − 𝑡 path without violating
capacities or conservation of flow. So, the resulting flow is valid.

Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.
Each iteration sends flow along a residual 𝑠 − 𝑡 path without violating
capacities or conservation of flow. So, the resulting flow is valid.

4. The first iteration starts with a valid flow.

Ford-Fulkerson

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

0

00

0 00

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b 20

1030

10
𝐺!:

c
20

30 10

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.
Each iteration sends flow along a residual 𝑠 − 𝑡 path without violating
capacities or conservation of flow. So, the resulting flow is valid.

4. The first iteration starts with a valid flow.
0 flow on all edges meets capacity and conservation of flow constraints.

Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.
Each iteration sends flow along a residual 𝑠 − 𝑡 path without violating
capacities or conservation of flow. So, the resulting flow is valid.

4. The first iteration starts with a valid flow.
0 flow on all edges meets capacity and conservation of flow constraints.

Ford-Fulkerson
What can be concluded from all this?

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.
Each iteration sends flow along a residual 𝑠 − 𝑡 path without violating
capacities or conservation of flow. So, the resulting flow is valid.

4. The first iteration starts with a valid flow.
0 flow on all edges meets capacity and conservation of flow constraints.

Ford-Fulkerson
What can be concluded from all this?

1. Ford-Fulkerson returns a valid flow.

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.
Each iteration sends flow along a residual 𝑠 − 𝑡 path without violating
capacities or conservation of flow. So, the resulting flow is valid.

4. The first iteration starts with a valid flow.
0 flow on all edges meets capacity and conservation of flow constraints.

Ford-Fulkerson
What can be concluded from all this?

1. Ford-Fulkerson returns a valid flow.
2. The running time is in 𝜴(|Max Flow|).

Ford-Fulkerson – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Assuming integer edge capacities:
While loop runs at most ??? times.

Ford-Fulkerson – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Assuming integer edge capacities:
While loop runs at most |𝑓=>?| times.

Ford-Fulkerson – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Assuming integer edge capacities:
While loop runs at most |𝑓=>?| times.
Find 𝑠 − 𝑡 path ???

Ford-Fulkerson – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Assuming integer edge capacities:
While loop runs at most |𝑓=>?| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)

Ford-Fulkerson – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Assuming integer edge capacities:
While loop runs at most |𝑓=>?| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)
augment(f, P) ???

Ford-Fulkerson – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Assuming integer edge capacities:
While loop runs at most |𝑓=>?| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)
augment(f, P) just traverses edges: 𝑂(|𝑉|)

Ford-Fulkerson – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Assuming integer edge capacities:
While loop runs at most |𝑓=>?| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)
augment(f, P) just traverses edges: 𝑂(|𝑉|)
Update 𝐺@ ???

Ford-Fulkerson – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Assuming integer edge capacities:
While loop runs at most |𝑓=>?| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)
augment(f, P) just traverses edges: 𝑂(|𝑉|)
Update 𝐺@ (for each 𝑒 ∈ P, make 𝑒 and 𝑒’ ∈ 𝐺@): 𝑂(|𝐸|)

Ford-Fulkerson – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Assuming integer edge capacities:
While loop runs at most |𝑓=>?| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)
augment(f, P) just traverses edges: 𝑂(|𝑉|)
Update 𝐺@ (for each 𝑒 ∈ P, make 𝑒 and 𝑒’ ∈ 𝐺@): 𝑂(|𝐸|)

Total = 𝑂(𝑓=>? 2 (𝐸 + |𝑉|)) = 𝑂(|𝐸| K |𝑓=>?|)

Ford-Fulkerson – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Assuming integer edge capacities:
While loop runs at most |𝑓=>?| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)
augment(f, P) just traverses edges: 𝑂(|𝑉|)
Update 𝐺@ (for each 𝑒 ∈ P, make 𝑒 and 𝑒’ ∈ 𝐺@): 𝑂(|𝐸|)

Total = 𝑂(𝑓=>? 2 (𝐸 + |𝑉|)) = 𝑂(|𝐸| K |𝑓=>?|)

s t

a

1

c

1,0
00,
000

1,000,000

1,0
00,
000

1,000,000

Ford-Fulkerson

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Edmonds-Karp

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = shortest s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Shortest = smallest
number of edges.

Edmonds-Karp – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = shortest s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Edmonds-Karp – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = shortest s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Claim 1: The distance of the shortest path from 𝑠 to any 𝑣 in the residual
graph is non-decreasing over the iterations of the algorithm.

Edmonds-Karp – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = shortest s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Claim 1: The distance of the shortest path from 𝑠 to any 𝑣 in the residual
graph is non-decreasing over the iterations of the algorithm.

Intuition: Paths change in the residual graph as we remove edges by filling
them up or adding (back) edges by using forward edges for the first time.

Edmonds-Karp – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = shortest s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Claim 1: The distance of the shortest path from 𝑠 to any 𝑣 in the residual
graph is non-decreasing over the iterations of the algorithm.

Intuition: Adding flow to a residual graph can only make paths longer by
removing (saturated) edges or adding back edges, which to be able to use,
first requires reaching its head (at least as far as before) plus one extra hop.

Edmonds-Karp – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = shortest s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Claim 1: The distance of the shortest path from 𝑠 to any 𝑣 in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most 𝑂(|𝑉|) times.

Edmonds-Karp – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = shortest s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Claim 1: The distance of the shortest path from 𝑠 to any 𝑣 in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most 𝑂(|𝑉|) times.

Intuition: An edge cannot be a bottleneck again without the shortest
distance increasing, which can happen at most |𝑉| − 1 times.

Edmonds-Karp – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = shortest s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Claim 1: The distance of the shortest path from 𝑠 to any 𝑣 in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most 𝑂(|𝑉|) times.

Thus, each iteration needs a bottleneck + at most |𝐸| ∗ 𝑂(|𝑉|) bottlenecks

Edmonds-Karp – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = shortest s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Claim 1: The distance of the shortest path from 𝑠 to any 𝑣 in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most 𝑂(|𝑉|) times.

Thus, each iteration needs a bottleneck + at most |𝐸| ∗ 𝑂(|𝑉|) bottlenecks
⇒ at most 𝑂(|𝐸||𝑉|) iterations ⇒

Edmonds-Karp – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = shortest s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Claim 1: The distance of the shortest path from 𝑠 to any 𝑣 in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most 𝑂(|𝑉|) times.

Thus, each iteration needs a bottleneck + at most |𝐸| ∗ 𝑂(|𝑉|) bottlenecks
⇒ at most 𝑂(|𝐸||𝑉|) iterations ⇒𝑂(|𝐸|6|𝑉|) time total.

Edmonds-Karp – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = shortest s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Claim 1: The distance of the shortest path from 𝑠 to any 𝑣 in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most 𝑂(|𝑉|) times.

Thus, each iteration needs a bottleneck + at most |𝐸| ∗ 𝑂(|𝑉|) bottlenecks
⇒ at most 𝑂(|𝐸||𝑉|) iterations ⇒𝑂(|𝐸|6|𝑉|) time total.

Running Time:
𝑂 |𝐸| + |𝑓!"#| [Ford-Fulkerson, 1956]
𝑂 𝑉 𝐸 $ [Edmonds-Karp, 1972]

Edmonds-Karp – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = shortest s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Claim 1: The distance of the shortest path from 𝑠 to any 𝑣 in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most 𝑂(|𝑉|) times.

Thus, each iteration needs a bottleneck + at most |𝐸| ∗ 𝑂(|𝑉|) bottlenecks
⇒ at most 𝑂(|𝐸||𝑉|) iterations ⇒𝑂(|𝐸|6|𝑉|) time total.

Running Time:
𝑂 |𝐸| + |𝑓!"#| [Ford-Fulkerson, 1956]
𝑂 𝑉 𝐸 $ [Edmonds-Karp, 1972]
𝑂 𝑉 |𝐸| [Orlin, 2013]

Edmonds-Karp – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = shortest s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Claim 1: The distance of the shortest path from 𝑠 to any 𝑣 in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most 𝑂(|𝑉|) times.

Thus, each iteration needs a bottleneck + at most |𝐸| ∗ 𝑂(|𝑉|) bottlenecks
⇒ at most 𝑂(|𝐸||𝑉|) iterations ⇒𝑂(|𝐸|6|𝑉|) time total.

Running Time:
𝑂 |𝐸| + |𝑓!"#| [Ford-Fulkerson, 1956]
𝑂 𝑉 𝐸 $ [Edmonds-Karp, 1972]
𝑂 𝑉 |𝐸| [Orlin, 2013]
𝑂 𝐸 %&'(%) [Chen et al., 2022]

Edmonds-Karp – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = shortest s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Claim 1: The distance of the shortest path from 𝑠 to any 𝑣 in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most 𝑂(|𝑉|) times.

Thus, each iteration needs a bottleneck + at most |𝐸| ∗ 𝑂(|𝑉|) bottlenecks
⇒ at most 𝑂(|𝐸||𝑉|) iterations ⇒𝑂(|𝐸|6|𝑉|) time total.

Running Time:
𝑂 |𝐸| + |𝑓!"#| [Ford-Fulkerson, 1956]
𝑂 𝑉 𝐸 $ [Edmonds-Karp, 1972]
𝑂 𝑉 |𝐸| [Orlin, 2013]
𝑂 𝐸 %&'(%) [Chen et al., 2022]

∈ 𝑶(Max Flow)

