Flow Networks
CSCI 532



Test 1 Logistics

1. During class on Thursday 9/18.

2. You can bring your book and any notes you would
like, but no electronic devices.

3. You may assume anything proven in class or on
homework.

4. Three questions (12 points):
1) Prove something related to MSTs (5 points).

2) ldentify recursive optimal substructure function
for graph problem (5 points).
3) Prove/disprove flow network property (2 points).



Flow Network

Flow Network:
* Directed-edge graph, ¢ = (V, E).
* Finite positive edge capacity, c,.
* Single source, s, without input edges.
* Single sink, t, without output edges.

An s — t flow is a function f: E — R™ such that:
« 0<f(e) <c, Ve € E. (capacity constraint)

) Zeeinput(v)f(e) = Zeeoutput(v)f(e)»vv eV\{st} *

(conservation of flow constraint)

Maximum Flow Problem:

Given a flow network, find the
maximum possible value of flow.

Total flow =7
* Value of flow =val(f) = Zeeoutput(s)f(e) = Zeeinput(t) f(e)




Ford-Fulkerson

10
10
Max-F1ow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = simple s-t path in Gt if (u, v) is a back edge
f’= augment(f, P) fCCv, W) -=b
f = f’ else
Gf = Gf’ 'F((U, V)) += b

return f return f



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

2. If edge capacities are integer-valued, the algorithm will terminate.

3. If an iteration starts with a valid flow, it ends with a valid flow.

4. The first iteration starts with a valid flow.



Ford-Fulkerson

Claims:

1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

Flow =0
&
Capacities € N

Residu.a.l c N
Capacities

Bottleneck € N Flow € N




Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

Note: This does not hold for general edge
capacities (i.e., irrational edge capacities
can lead to non-terminating scenarios).




Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.



If an iteration starts with a valid flow,
it ends with a valid flow.

Ford-Fulkerson

10
10
Max-F1ow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = simple s-t path in Gt if (u, v) is a back edge
f’= augment(f, P) fCCv, W) -=b
f = f’ else
Gf = Gf’ f((U, V)) += b

return f return f



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.
We only need to consider nodes/edges

on the path. Other nodes/edges aren’t
modified.



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

for h ed : in P
We only need to consider nodes/edges 1_1:ea(cu ev)gei S(ua bva)Ck1 edge

on the path. Other nodes/edges aren’t f((v, u)) -= bottleneck

modified. else
f((u, v)) += bottleneck



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

for each edge (u, v) in P
edges, because if (u, v) is a back edge
’ ; f((v, u)) -= bottleneck
else
f((u, v)) += bottleneck

Can’t overflow capacities on back



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Can’t overflow capacities on back for each edge (u, v) in P
if (u, v) is a back edge

edges, because we are removing flow fC(v, u)) -= bottleneck
from them. So, if they were valid, less else ’

flow doesn’t change that. f((u, v)) += bottleneck



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

for each edge (u, v) in P
edges since if (u, v) is a back edge
- f((v, u)) -= bottleneck
else
f(Cu, v)) += bottleneck

Can’t overflow capacities on forward



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Can’t overflow capacities on forward for'_ each edge (u, v) in P
if (u, v) is a back edge

edges since bottleneck = mein(ce — fe) f((v, W) -= bottleneck

else
f((u, v)) += bottleneck



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Can’t overflow capacities on forward for'_ each edge (u, v) in P
if (u, v) is a back edge

edges since bottleneck = mein(ce — fe) f((v, W) -= bottleneck

Thus, f, = f. + bottleneck else
f((u, v)) += bottleneck



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Can’t overflow capacities on forward for'_ each edge (u, v) in P
if (u, v) is a back edge

edges since bottleneck = mein(ce — fe) f((v, W) -= bottleneck

Thus, f, = f. + bottleneck else
<f.+c.—f.=c, f((u, v)) += bottleneck



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Considering a node on the path. Suppose the edge inis a \ e,

forward edge and the edge out is a forward edge.
€1



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Considering a node on the path. Suppose the edge in is a e,
forward edge and the edge out is a forward edge. \

Then, f;, = €1



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Considering a node on the path. Suppose the edge in is a e,
forward edge and the edge out is a forward edge. \

Then, f;, = fi, + bottleneck “1



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Considering a node on the path. Suppose the edge in is a e
: 2
forward edge and the edge out is a forward edge. \

Then, f;, = fi, + bottleneck = f,,; + bottleneck “1



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Considering a node on the path. Suppose the edge in is a e
: 2
forward edge and the edge out is a forward edge. \

Then, f;, = fin + bottleneck = f,,; + bottleneck = f,; °1



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Considering a node on the path. Suppose the edge in is a '
forward edge and the edge out is a back edge.



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Considering a node on the path. Suppose the edge in is a '
forward edge and the edge out is a back edge.

Then, f;, =



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

Flow on back edge .

, . . . . : f
3. If an iteration starts with a valid flow, it ends with a Y ;z:;?a‘ﬁse;:?_s

Considering a node on the path. Suppose the edge in is a '
forward edge and the edge out is a back edge.

Then, f;, = fin + bottleneck



Ford-Fulkerson

10
10
Max-F1ow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = simple s-t path in Gt if (u, v) is a back edge
f’= augment(f, P) fCCv, W) -=b>
f = f’ else
Gf = Gf’ 'F((U, V)) += b

return f return f



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

Flow on back edge .

, . . . . : f
3. If an iteration starts with a valid flow, it ends with a Y ;z:;?a‘ﬁse;:?_s

Considering a node on the path. Suppose the edge in is a '
forward edge and the edge out is a back edge.

Then, f;, = fin + bottleneck



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

Flow on back edge .

, . . . . : f
3. If an iteration starts with a valid flow, it ends with a Y ;z:;?a‘ﬁse;:?_m

Considering a node on the path. Suppose the edge in is a '
forward edge and the edge out is a back edge.

Then, f;, = fi, + bottleneck — bottleneck



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Considering a node on the path. Suppose the edge in is a '
forward edge and the edge out is a back edge.

Then, f.. = f;, + bottleneck — bottleneck = f;,, = four = fout



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Considering a node on the path. Suppose the edge in is a back
edge and the edge out is a forward edge.

Considering a node on the path. Suppose the edge in is a back
edge and the edge out is a back edge.



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.
Each iteration sends flow along a residual s — t path without violating
capacities or conservation of flow. So, the resulting flow is valid.



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.
Each iteration sends flow along a residual s — t path without violating
capacities or conservation of flow. So, the resulting flow is valid.

4. The first iteration starts with a valid flow.



Max Flow Algorithm

Algorithm Overview

Start with O flow and initial residual graph.

Select an s — t path P in residual graph.

Push bottleneck(P) flow on P.

Update residual graph.

Repeat until no s — t paths exist in residual graph.

Lk whe



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.
Each iteration sends flow along a residual s — t path without violating
capacities or conservation of flow. So, the resulting flow is valid.

4. The first iteration starts with a valid flow.
O flow on all edges meets capacity and conservation of flow constraints.



What can be concluded from all this?
Ford-Fulkerson

Claims:

1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.
Each iteration sends flow along a residual s — t path without violating
capacities or conservation of flow. So, the resulting flow is valid.

4. The first iteration starts with a valid flow.
O flow on all edges meets capacity and conservation of flow constraints.



What can be concluded from all this?

Ford-Fulkerson 1. Ford-Fulkerson returns a valid flow.

Claims:

1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.
Each iteration sends flow along a residual s — t path without violating
capacities or conservation of flow. So, the resulting flow is valid.

4. The first iteration starts with a valid flow.
O flow on all edges meets capacity and conservation of flow constraints.



Ik What can be concluded from all this?
Ford-Fulkerson 1. Ford-Fulkerson returns a valid flow.
Claims: 2. The running time is in 2(| Max Flow|).

1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.
Each iteration sends flow along a residual s — t path without violating
capacities or conservation of flow. So, the resulting flow is valid.

4. The first iteration starts with a valid flow.
O flow on all edges meets capacity and conservation of flow constraints.



Ford-Fulkerson — Running Time

Assuming integer edge capacities:
While loop runs at most ??? times.

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = simple s-t path in Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
Gf = Gf’ 'F((U, V)) += Db

return f return f



Ford-Fulkerson — Running Time

Assuming integer edge capacities:
While loop runs at most |f,pr| times.

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = simple s-t path in Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
Gf = Gf’ 'F((U, V)) += Db

return f return f



Ford-Fulkerson — Running Time

Assuming integer edge capacities:

While loop runs at most |f,pr| times.
Find s — t path ???

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = simple s-t path in Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
Gf = Gf’ 'F((U, V)) += Db

return f return f



Ford-Fulkerson — Running Time

Assuming integer edge capacities:

While loop runs at most |f,pr| times.
Find s — t path (BFS/DFS): O(|E| + |V|)

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = simple s-t path in Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
Gf = Gf’ 'F((U, V)) += Db

return f return f



Ford-Fulkerson — Running Time

Assuming integer edge capacities:
While loop runs at most |f,pr| times.
Find s — t path (BFS/DFS): O(|E| + |V|)
augment(f, P) ???

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = simple s-t path in Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
Gf = Gf’ 'F((U, V)) += Db

return f return f



Ford-Fulkerson — Running Time

Assuming integer edge capacities:
While loop runs at most |f,pr| times.
Find s — t path (BFS/DFS): O(|E| + |V|)
augment(f, P) justtraverses edges: O(|V])

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = simple s-t path in Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
Gf = Gf’ 'F((U, V)) += Db

return f return f



Ford-Fulkerson — Running Time

Assuming integer edge capacities:
While loop runs at most |f,pr| times.
Find s — t path (BFS/DFS): O(|E| + |V|)
augment(f, P) justtraverses edges: O(|V])
Update G; ???

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = simple s-t path in Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
Gf = Gf’ 'F((U, V)) += Db

return f return f



Ford-Fulkerson — Running Time

Assuming integer edge capacities:
While loop runs at most |f,pr| times.
Find s — t path (BFS/DFS): O(|E| + |V|)
augment(f, P) justtraverses edges: O(|V])
Update G (for each e € P, make e and e’ € G¢): O(|E]|)

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = simple s-t path in Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
Gf = Gf’ 'F((U, V)) += Db

return f return f



Ford-Fulkerson — Running Time

Assuming integer edge capacities:
While loop runs at most |f,pr| times.
Find s — t path (BFS/DFS): O(|E| + |V|)
augment(f, P) justtraverses edges: O(|V])
Update G (for each e € P, make e and e’ € G¢): O(|E]|)

Total = O(lfopr| 2 (IEl + [V])) = O(IE| - |fopr )

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = simple s-t path in Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
Gf = Gf’ 'F((U, V)) += Db

return f return f



Ford-Fulkerson — Running Time

Assuming integer edge capacities:
While loop runs at most |f,pr| times.
Find s — t path (BFS/DFS): O(|E| + |V|)
augment(f, P) justtraverses edges: O(|V])
Update G (for each e € P, make e and e’ € G¢): O(|E]|)

Total = O(lfopr| 2 (IEl + [V])) = O(IE| - |fopr )

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = simple s-t path in Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
Gf = Gf’ 'F((U, V)) += Db

return f return f



Ford-Fulkerson

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-—if_natheis Q] for each edge (u, v) in P
' ' if (u, v) is a back edge
fCCv, w)) -=b
else

f((u, v)) += Db
return f return f



Edmonds-Karp

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-—if_natheis ~AVA for each edge (u, v) in P
' if (u, v) is a back edge
- f((v, u)) -=0>b
Ef _ fo, Shortest = smallest el sfe( (W, V)) += b

return f humber of edges. return f



Edmonds-Karp — Running Time

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = shortest s-t path 1n Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
Gf = Gf’ 'F((U, V)) += Db

return f return f



Edmonds-Karp — Running Time

Claim 1: The distance of the shortest path from s to any v in the residual
graph is non-decreasing over the iterations of the algorithm.

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = shortest s-t path 1n Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
Gf = Gf’ 'F((U, V)) += Db

return f return f



Edmonds-Karp — Running Time

Claim 1: The distance of the shortest path from s to any v in the residual
graph is non-decreasing over the iterations of the algorithm.

Intuition: Paths change in the residual graph as we remove edges by filling
them up or adding (back) edges by using forward edges for the first time.

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = shortest s-t path 1n Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
G = Gg f(Cu, v)) += Db

return f return f



Edmonds-Karp — Running Time

Claim 1: The distance of the shortest path from s to any v in the residual
graph is non-decreasing over the iterations of the algorithm.

Intuition: Adding flow to a residual graph can only make paths longer by
removing (saturated) edges or adding back edges, which to be able to use,
first requires reaching its head (at least as far as before) plus one extra hop.

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = shortest s-t path 1n Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
G = Gg f(Cu, v)) += Db

return f return f



Edmonds-Karp — Running Time

Claim 1: The distance of the shortest path from s to any v in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most O(|V|) times.

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = shortest s-t path 1n Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
Gf = Gf’ 'F((U, V)) += Db

return f return f



Edmonds-Karp — Running Time

Claim 1: The distance of the shortest path from s to any v in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most O(|V|) times.

Intuition: An edge cannot be a bottleneck again without the shortest
distance increasing, which can happen at most |V| — 1 times.

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = shortest s-t path 1n Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
G = Gg f(Cu, v)) += Db

return f return f



Edmonds-Karp — Running Time

Claim 1: The distance of the shortest path from s to any v in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most O(|V|) times.
Thus, each iteration needs a bottleneck + at most |E| * O(|V|) bottlenecks

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = shortest s-t path 1n Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
G = Gg f(Cu, v)) += Db

return f return f



Edmonds-Karp — Running Time

Claim 1: The distance of the shortest path from s to any v in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most O(|V|) times.

Thus, each iteration needs a bottleneck + at most |E| * O(|V|) bottlenecks
= at most O(|E||V|) iterations =

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = shortest s-t path 1n Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
G = Gg f(Cu, v)) += Db

return f return f



Edmonds-Karp — Running Time

Claim 1: The distance of the shortest path from s to any v in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most O(|V|) times.

Thus, each iteration needs a bottleneck + at most |E| * O(|V|) bottlenecks
= at most O(|E||V]) iterations = O(|E|?|V|) time total.

Max-Flow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = shortest s-t path 1n Gt if (u, v) is a back edge
f’= augment(f, P) f((v, u)) -=0>b
f=1" else
G = Gg f(Cu, v)) += Db

return f return f



Edmonds-Karp — Running Time

Claim 1: The distance of the shortest path from s to any v in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most O(|V|) times.

Th| Running Time:
O(|E]| - |fopr|) [Ford-Fulkerson, 1956]
va  O(|JVI||E|?) [Edmonds-Karp, 1972]

f’= augment(f, P) fCCv, W) -=b
f = f’ else
G = Gg f(Cu, v)) += Db

return f return f



Edmonds-Karp — Running Time

Claim 1: The distance of the shortest path from s to any v in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most O(|V|) times.

Th| Running Time:

O(|E]| - |fopr|) [Ford-Fulkerson, 1956]
va  O(|JVI||E|?) [Edmonds-Karp, 1972]
O(|V]|E|) [Orlin, 2013]

f’= augment(f, P) fCCv, W) -=b
f = f’ else
G = Gg f(Cu, v)) += Db

return f return f



Edmonds-Karp — Running Time

Claim 1: The distance of the shortest path from s to any v in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most O(|V|) times.

Th| Running Time:

O(|E]| - |fopr|) [Ford-Fulkerson, 1956]
va  O(|JVI||E|?) [Edmonds-Karp, 1972]
O(|V]|E|) [Orlin, 2013]

O(|E|**°()) [Chen et al., 2022]

f’= augment(f, P) fCCv, W) -=b
f = f’ else
G = Gg f(Cu, v)) += Db

return f return f



Edmonds-Karp — Running Time

Claim 1: The distance of the shortest path from s to any v in the residual
graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most O(|V|) times.

Th| Running Time:

O(|E| - | fopr|) [Ford-Fulkerson, 1956]
va  O(|JVI||E|?) [Edmonds-Karp, 1972]
O(|V]|E|) [Orlin, 2013]

O(|E|**°()) [Chen et al., 2022] y

> € O(Max Flow)

f’= augment(f, P) f((v, u)) -=0>b
f=f else
G = Gg f(Cu, v)) += Db

return f return f



