
Flow Networks
CSCI 532



Test 1 Logistics

1. During class on Thursday 9/18.
2. You can bring your book and any notes you would 

like, but no electronic devices.
3. You may assume anything proven in class or on 

homework.
4. Three questions (12 points):

1) Prove something related to MSTs (5 points).
2) Identify recursive optimal substructure function 

for graph problem (5 points).
3) Prove/disprove flow network property (2 points).



Flow Network

Flow Network:
• Directed-edge graph, 𝐺 = (𝑉, 𝐸).
• Finite positive edge capacity, 𝑐!.
• Single source, 𝑠, without input edges.
• Single sink, 𝑡, without output edges.

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ" such that:
• 0 ≤ 𝑓 𝑒 ≤ 𝑐! , ∀𝑒 ∈ 𝐸. (capacity constraint)
• ∑!#input(%) 𝑓(𝑒) = ∑!∈output(%) 𝑓(𝑒) , ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}. 

(conservation of flow constraint)
• Value of flow = 𝑣𝑎𝑙(𝑓) = ∑!#output(() 𝑓(𝑒) = ∑!#input()) 𝑓(𝑒)

Maximum Flow Problem:
Given a flow network, find the 
maximum possible value of flow. 
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Total flow = 7
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Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f
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Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

2. If edge capacities are integer-valued, the algorithm will terminate.

3. If an iteration starts with a valid flow, it ends with a valid flow.

4. The first iteration starts with a valid flow.
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Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.
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Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the 
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm 
needs ≤ |Max Flow| iterations. 
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Note: This does not hold for general edge 
capacities (i.e., irrational edge capacities 
can lead to non-terminating scenarios).



Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the 
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm 
needs ≤ |Max Flow| iterations. 

3. If an iteration starts with a valid flow, it ends with a valid flow.
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If an iteration starts with a valid flow, 
it ends with a valid flow.



Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the 
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm 
needs ≤ |Max Flow| iterations. 

3. If an iteration starts with a valid flow, it ends with a valid flow.
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We only need to consider nodes/edges 
on the path. Other nodes/edges aren’t 
modified.
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for each edge (u, v) in P
if (u, v) is a back edge

f((v, u)) -= bottleneck
else

f((u, v)) += bottleneck

We only need to consider nodes/edges 
on the path. Other nodes/edges aren’t 
modified.



Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.
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for each edge (u, v) in P
if (u, v) is a back edge

f((v, u)) -= bottleneck
else

f((u, v)) += bottleneck

Can’t overflow capacities on back 
edges, because…



Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the 
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm 
needs ≤ |Max Flow| iterations. 
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for each edge (u, v) in P
if (u, v) is a back edge

f((v, u)) -= bottleneck
else

f((u, v)) += bottleneck

Can’t overflow capacities on back 
edges, because we are removing flow 
from them. So, if they were valid, less 
flow doesn’t change that.



Claims:
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Claims:
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Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the 
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm 
needs ≤ |Max Flow| iterations. 

3. If an iteration starts with a valid flow, it ends with a valid flow.
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for each edge (u, v) in P
if (u, v) is a back edge

f((v, u)) -= bottleneck
else
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Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the 
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm 
needs ≤ |Max Flow| iterations. 

3. If an iteration starts with a valid flow, it ends with a valid flow.
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Claims:
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Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the 
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm 
needs ≤ |Max Flow| iterations. 

3. If an iteration starts with a valid flow, it ends with a valid flow.
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Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
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Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the 
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm 
needs ≤ |Max Flow| iterations. 

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

Considering a node on the path. Suppose the edge in is a back 
edge and the edge out is a forward edge.

Considering a node on the path. Suppose the edge in is a back 
edge and the edge out is a back edge.



Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the 
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm 
needs ≤ |Max Flow| iterations. 
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Each iteration sends flow along a residual 𝑠 − 𝑡 path without violating 
capacities or conservation of flow. So, the resulting flow is valid.

Ford-Fulkerson



Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.
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Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.
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Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the 
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm 
needs ≤ |Max Flow| iterations. 

3. If an iteration starts with a valid flow, it ends with a valid flow.
Each iteration sends flow along a residual 𝑠 − 𝑡 path without violating 
capacities or conservation of flow. So, the resulting flow is valid.

4. The first iteration starts with a valid flow.
0 flow on all edges meets capacity and conservation of flow constraints.
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Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the 
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm 
needs ≤ |Max Flow| iterations. 

3. If an iteration starts with a valid flow, it ends with a valid flow.
Each iteration sends flow along a residual 𝑠 − 𝑡 path without violating 
capacities or conservation of flow. So, the resulting flow is valid.

4. The first iteration starts with a valid flow.
0 flow on all edges meets capacity and conservation of flow constraints.

Ford-Fulkerson
What can be concluded from all this?

1. Ford-Fulkerson returns a valid flow.
2. The running time is in 𝜴(|Max Flow|).



Ford-Fulkerson – Running Time

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Assuming integer edge capacities:
While loop runs at most ??? times.
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Ford-Fulkerson 

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f



Edmonds-Karp

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = shortest s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Shortest = smallest 
number of edges.



Edmonds-Karp – Running Time
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if (u, v) is a back edge
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else
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return f
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b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Claim 1: The distance of the shortest path from 𝑠 to any 𝑣 in the residual 
graph is non-decreasing over the iterations of the algorithm.
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Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists
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f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Claim 1: The distance of the shortest path from 𝑠 to any 𝑣 in the residual 
graph is non-decreasing over the iterations of the algorithm.

Intuition: Paths change in the residual graph as we remove edges by filling 
them up or adding (back) edges by using forward edges for the first time.
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for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Claim 1: The distance of the shortest path from 𝑠 to any 𝑣 in the residual 
graph is non-decreasing over the iterations of the algorithm.

Intuition: Adding flow to a residual graph can only make paths longer by 
removing (saturated) edges or adding back edges, which to be able to use, 
first requires reaching its head (at least as far as before) plus one extra hop.
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Claim 2: Each edge can be the bottleneck for a path at most 𝑂(|𝑉|) times.
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Claim 2: Each edge can be the bottleneck for a path at most 𝑂(|𝑉|) times.

Intuition: An edge cannot be a bottleneck again without the shortest 
distance increasing, which can happen at most |𝑉| − 1 times.
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graph is non-decreasing over the iterations of the algorithm.

Claim 2: Each edge can be the bottleneck for a path at most 𝑂(|𝑉|) times.

Thus, each iteration needs a bottleneck + at most |𝐸| ∗ 𝑂(|𝑉|) bottlenecks
⇒ at most 𝑂(|𝐸||𝑉|) iterations ⇒𝑂(|𝐸|6|𝑉|) time total.

Running Time:
𝑂 |𝐸| + |𝑓!"#| [Ford-Fulkerson, 1956]
𝑂 𝑉 𝐸 $ [Edmonds-Karp, 1972]
𝑂 𝑉 |𝐸| [Orlin, 2013]
𝑂 𝐸 %&'(%) [Chen et al., 2022]

∈ 𝑶(Max Flow)


