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We’ll also sometimes
use the assumption
that the capacities are
positive integer values.
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Maximum Flow Problem:

Flow Ne.twork: Given a flow network, find the
* Directed-edge graph, G = (V,E). | maximum possible value of flow.
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Somehow, we are going to have to put flow
on edges. Should we select edges or paths?
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|deas?

1. Select a path P.
2. Push bottleneck(P) flow on P.

So far:
 Guaranteed to meet conservation of flow constraints.
* Guaranteed to meet capacity constraints.
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Increase Open

row\ © / edge

Same flow

0 (replace flow
Decrease from c with
flow flow from a)

We need some way to reroute flow.  gpen edge

(using flow from c that
was not sent to b)

This edge does not physically exist but exists virtually as a
mechanism to reroute flow that has already been pushed.
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Pushing flow on a path:

Repeat until no s — t paths exist in residual graph.
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Ford-Fulkerson

10
10
Max-F1ow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = simple s-t path in Gt if (u, v) is a back edge
f’= augment(f, P) fCCv, W) -=b
f = f’ else
Gf = Gf’ 'F((U, V)) += b

return f return f



Ford-Fulkerson

Max-Flow(G)
f(e) = 0 for all
while s-t path 1n

P =simple s-t
f’= augment (T,
f=f

Gs = Gg

return f

10

10

augment(f, P)
“———Eott1eneck(P,f)

ach edge (u, v) 1n P
" (u, v) is a back edge

fCQv, u)) -=0b
Se

Need to show:
1. Validity.
2. Running time.
3. Finds max flow.

f((u, v)) += Db

return f



Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

2. If edge capacities are integer-valued, the algorithm will terminate.

3. If an iteration starts with a valid flow, it ends with a valid flow.

4. The first iteration starts with a valid flow.
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Claims:

1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

Flow =0
&
Capacities € N

Residu.a.l c N
Capacities

Bottleneck € N Flow € N
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Note: This does not hold for general edge capacities
(i.e., irrational edge capacities can lead to non-terminating scenarios).
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