Flow Networks
CSCI 532

Motivation

Suppose we have a directed graph that represent an oil pipeline
network. Edge weight represent pipe capacity. How much oil can we
transfer from source s to sink t?

Motivation

Suppose we have a directed graph that represent an oil pipeline
network. Edge weight represent pipe capacity. How much oil can we
transfer from source s to sink t?

Total flow =7

Flow Network

Flow Network:

An s — t flow is a function f: E — R™ such that:

Flow Network

Flow Network:
* Directed-edge graph, ¢ = (V, E).
* Finite positive edge capacity, c,.
* Single source, s, without input edges.
e Single sink, t, without output edges.

An s — t flow is a function f: E — R™ such that:

We’ll also sometimes
use the assumption
that the capacities are
positive integer values.

Flow Network

Flow Network:

An s — t flow is a function f: E — R™ such that:

Directed-edge graph, G = (V, E).
Finite positive edge capacity, c,.
Single source, s, without input edges.
Single sink, t, without output edges.

0 <f(e) <c, Ve € E. (capacity constraint)

Flow Network

Flow Network:
* Directed-edge graph, ¢ = (V, E).
* Finite positive edge capacity, c,.
* Single source, s, without input edges.
* Single sink, t, without output edges.

An s — t flow is a function f: E — R™ such that:
« 0<f(e) <c, Ve € E. (capacity constraint)

Zeeinput(v)f(e) = Lecoutputw) f(€), Vv €V \ {s, t}.

(conservation of flow constraint: “Everything that goes into a
node has to come out, except for s and t”)

Flow Network

Flow Network:
* Directed-edge graph, ¢ = (V, E).
* Finite positive edge capacity, c,.
* Single source, s, without input edges.
* Single sink, t, without output edges.

An s — t flow is a function f: E — R™ such that:
« 0<f(e) <c, Ve € E. (capacity constraint)

) Zeeinput(v)f(e) = Zeeoutput(v)f(e) , Vv eV \ {s,t}.

(conservation of flow constraint: “Everything that goes into a
node has to come out, except for s and t”)

* Value of flow = val(f) = Zeeoutput(s) f(e)= Zeeinput(t) f(e)

Flow Network

Maximum Flow Problem:

Flow Ne.twork: Given a flow network, find the
* Directed-edge graph, G = (V,E). | maximum possible value of flow.

* Finite positive edge capacity, c,.
* Single source, s, without input edges.
* Single sink, t, without output edges.

An s — t flow is a function f: E — R™ such that:
« 0<f(e) <c, Ve € E. (capacity constraint)

) Zeeinput(v)f(e) = Zeeoutput(v)f(e) , Vv eV \ {s,t}.

(conservation of flow constraint: “Everything that goes into a
node has to come out, except for s and t”)

* Value of flow = val(f) = Zeeoutput(s) f(e)= Zeeinput(t) f(e)

Max Flow Algorithm

Max Flow?

Max Flow Algorithm

Max Flow Algorithm

|deas?

Max Flow Algorithm

|deas?

Somehow, we are going to have to put flow
on edges. Should we select edges or paths?

Max Flow Algorithm

|deas?

1. Select a path P.

Max Flow Algorithm

|deas?

1. Select a path P.

How much flow should we push?

Max Flow Algorithm

|deas?

1. Select a path P. fopr: @

How much flow should we push?
As much as possible.

bottleneck (P) = minimum capacity on any edge in path P. 20

Max Flow Algorithm

|deas?

1. Select a path P. fopr: @

How much flow should we push?
As much as possible.

bottleneck (P) = minimum capacity on any edge in path P. 20

Max Flow Algorithm

|deas?

1. Select a path P.
2. Push bottleneck(P) flow on P.

Max Flow Algorithm

|deas?

1. Select a path P.
2. Push bottleneck(P) flow on P.

So far:
 Guaranteed to meet conservation of flow constraints.
* Guaranteed to meet capacity constraints.

Residual

Max Flow Algorithm

|deas?

1. Select a path P.
2. Push bottleneck(P) flow on P.

Max Flow Algorithm

|deas?

1. Select a path P.
2. Push bottleneck(P) flow on P.

Max Flow Algorithm

|deas?

1. Select a path P.
2. Push bottleneck(P) flow on P.

Max Flow Algorithm

We need some way to reroute flow.

Max Flow Algorithm

Increase

flow
® ®

©

We need some way to reroute flow.

Max Flow Algorithm

Increase Open
flow
f: © edge
@/\v 3
® ©
©

We need some way to reroute flow.

Max Flow Algorithm

Increase Open

f|OW edge
We need some way to reroute flow.

Same flow

@ (replace flow
from c with
flow from a)

Max Flow Algorithm

Increase Open
flow

Same flow

(replace flow

Decrease from c with
flow flow from a)

We need some way to reroute flow.

Max Flow Algorithm

Increase Open

flow dee
@ “E
‘O/

Same flow
0 (replace flow 10
Decrease from c with
flow flow from a)

We need some way to reroute flow. gpen edge

(using flow from c that
was not sent to b)

Max Flow Algorithm

Increase Open

row\ © / edge

Same flow
0 (replace flow
Decrease from c with

flow flow from a)

We need some way to reroute flow. gpen edge

(using flow from c that
was not sent to b)

Max Flow Algorithm

Increase Open

row\ © / edge

Same flow

0 (replace flow
Decrease from c with
flow flow from a)

We need some way to reroute flow. gpen edge

(using flow from c that
was not sent to b)

This edge does not physically exist but exists virtually as a
mechanism to reroute flow that has already been pushed.

Max Flow Algorithm

Algorithm Overview

Start with O flow and initial residual graph.

Select an s — t path P in residual graph.

Push bottleneck(P) flow on P.

Update residual graph.

Repeat until no s — t paths exist in residual graph.

Lk whe

Max Flow Algorithm

Algorithm Overview

Start with O flow and initial residual graph.

Select an s — t path P in residual graph.

Push bottleneck(P) flow on P.

Update residual graph.

Repeat until no s — t paths exist in residual graph.

] ' L

Max Flow Algorithm

Algorithm Overview

Start with O flow and initial residual graph.

Select an s — t path P in residual graph.

Push bottleneck(P) flow on P.

Update residual graph.

Repeat until no s — t paths exist in residual graph.

L RN =

Max Flow Algorithm

Algorithm Overview

Start with O flow and initial residual graph.

Select an s — t path P in residual graph.

Push bottleneck(P) flow on P.

Update residual graph.

Repeat until no s — t paths exist in residual graph.

al Eadadi e

Max Flow Algorithm

Algorithm Overview

Start with O flow and initial residual graph.

Select an s — t path P in residual graph.

Push bottleneck(P) flow on P.

Update residual graph.

Repeat until no s — t paths exist in residual graph.

al Eadadi e

Max Flow Algorithm

Algorithm Overview
Remove edges with 0

capacity in residual graph.
Can’t use them anyway.

Start with O flow and initial residual graph.
Select an s — t path P in residual graph.
Push bottleneck(P) flow on P.

Update residual graph.

Repeat until no s — t paths exist in residual graph.

al Eadadi e

Max Flow Algorithm

Algorithm Overview
Remove edges with 0

capacity in residual graph.
Can’t use them anyway.

Start with O flow and initial residual graph.
Select an s — t path P in residual graph.
Push bottleneck(P) flow on P.

Update residual graph.

Repeat until no s — t paths exist in residual graph.

al Eadadi e

Max Flow Algorithm

Algorithm Overview

Start with O flow and initial residual graph.

Select an s — t path P in residual graph.

Push bottleneck(P) flow on P.

Update residual graph.

Repeat until no s — t paths exist in residual graph.

] ' L

Max Flow Algorithm

Algorithm Overview

Start with O flow and initial residual graph.

Select an s — t path P in residual graph.

Push bottleneck(P) flow on P.

Update residual graph.

Repeat until no s — t paths exist in residual graph.

L RN =

Max Flow Algorithm

Algorithm Overview

Start with O flow and initial residual graph.

Select an s — t path P in residual graph.

Push bottleneck(P) flow on P.

Update residual graph.

Repeat until no s — t paths exist in residual graph.

al Eadadi e

Max Flow Algorithm

Algorithm Overview

Start with O flow and initial residual graph.

Select an s — t path P in residual graph.

Push bottleneck(P) flow on P.

Update residual graph.

Repeat until no s — t paths exist in residual graph.

] ' L

Max Flow Algorithm

Algorithm Overview

Start with O flow and initial residual graph.
Select an s — t path P in residual graph.
Push bottleneck(P) flow on P.

Update residual graph.

L RN =

Pushing flow on a path:

Repeat until no s — t paths exist in residual graph.

Max Flow Algorithm

2071 20,
410
Algorithm Overview Pushing flow on a path:

1.If edge is a normal

Start with O flow and initial residual graph. .
edge, increase flow.

Select an s — t path P in residual graph.
Push bottleneck(P) flow on P.
Update residual graph.

L RN =

Repeat until no s — t paths exist in residual graph.

Max Flow Algorithm

2071 20,
410
Algorithm Overview Pushing flow on a path:

1.If edge is a normal

Start with O flow and initial residual graph. .
edge, increase flow.

Select an s — t path P in residual graph.
Push bottleneck(P) flow on P.
Update residual graph.

L RN =

Repeat until no s — t paths exist in residual graph.

Max Flow Algorithm

2071 20,
410
Algorithm Overview Pushing flow on a path:

1.If edge is a normal
edge, increase flow.

2.1f edge is a back
edge, decrease flow.

Start with O flow and initial residual graph.
Select an s — t path P in residual graph.
Push bottleneck(P) flow on P.

Update residual graph.

L RN =

Repeat until no s — t paths exist in residual graph.

Max Flow Algorithm

2071 20,
410
Algorithm Overview Pushing flow on a path:

1.If edge is a normal
edge, increase flow.

2.1f edge is a back
edge, decrease flow.

Start with O flow and initial residual graph.
Select an s — t path P in residual graph.
Push bottleneck(P) flow on P.

Update residual graph.

L RN =

Repeat until no s — t paths exist in residual graph.

Max Flow Algorithm

Algorithm Overview

al Eadadi e

Start with O flow and initial residual graph.
Select an s — t path P in residual graph.
Push bottleneck(P) flow on P.

Update residual graph.

Repeat until no s — t paths exist in residual graph.

10

10

Max Flow Algorithm

Algorithm Overview

Lk wh e

Start with O flow and initial residual graph.
Select an s — t path P in residual graph.
Push bottleneck(P) flow on P.

Update residual graph.

Repeat until no s — t paths exist in residual graph.

10

10

Max Flow Algorithm

Algorithm Overview

Start with O flow and initial residual graph.
Select an s — t path P in residual graph.
Push bottleneck(P) flow on P.

Update residual graph.

Repeat until no s — t paths exist in residual graph.

Lk wh e

Ford-Fulkerson

10
10
Max-F1ow(G) augment(f, P)
f(e) = 0 for all e 1n G b = bottleneck(P,f)
while s-t path 1n Gf exists for each edge (u, v) in P
P = simple s-t path in Gt if (u, v) is a back edge
f’= augment(f, P) fCCv, W) -=b
f = f’ else
Gf = Gf’ 'F((U, V)) += b

return f return f

Ford-Fulkerson

Max-Flow(G)
f(e) = 0 for all
while s-t path 1n

P =simple s-t
f’= augment (T,
f=f

Gs = Gg

return f

10

10

augment(f, P)
“———Eott1eneck(P,f)

ach edge (u, v) 1n P
" (u, v) is a back edge

fCQv, u)) -=0b
Se

Need to show:
1. Validity.
2. Running time.
3. Finds max flow.

f((u, v)) += Db

return f

Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

2. If edge capacities are integer-valued, the algorithm will terminate.

3. If an iteration starts with a valid flow, it ends with a valid flow.

4. The first iteration starts with a valid flow.

Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Ford-Fulkerson

Claims:

1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

Flow =0
&
Capacities € N

Residu.a.l c N
Capacities

Bottleneck € N Flow € N

Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.

Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1.

Bottleneck € N

Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

Note: This does not hold for general edge capacities
(i.e., irrational edge capacities can lead to non-terminating scenarios).

Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.
Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by = 1. Since the
max flow is bounded (e.g., by total capacity into t), the algorithm
needs < | Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

