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Suppose we have a directed graph that represent an oil pipeline 
network. Edge weight represent pipe capacity. How much oil can we 
transfer from source 𝑠 to sink 𝑡?
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Suppose we have a directed graph that represent an oil pipeline 
network. Edge weight represent pipe capacity. How much oil can we 
transfer from source 𝑠 to sink 𝑡?
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Flow Network:

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ! such that:
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Flow Network:
• Directed-edge graph, 𝐺 = (𝑉, 𝐸).
• Finite positive edge capacity, 𝑐".
• Single source, 𝑠, without input edges.
• Single sink, 𝑡, without output edges.

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ! such that:

We’ll also sometimes 
use the assumption 
that the capacities are 
positive integer values.
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Flow Network:
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• ∑"#input(%) 𝑓(𝑒) = ∑"∈output(%) 𝑓(𝑒) , ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}. 

(conservation of flow constraint: “Everything that goes into a 
node has to come out, except for 𝑠 and 𝑡”)
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(conservation of flow constraint: “Everything that goes into a 
node has to come out, except for 𝑠 and 𝑡”)

• Value of flow = 𝑣𝑎𝑙(𝑓) = ∑"#output(() 𝑓(𝑒) = ∑"#input()) 𝑓(𝑒)

Maximum Flow Problem:
Given a flow network, find the 
maximum possible value of flow. 
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Somehow, we are going to have to put flow 
on edges. Should we select edges or paths?
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As much as possible.

bottleneck(P) = minimum capacity on any edge in path 𝑃.
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bottleneck(P) = minimum capacity on any edge in path 𝑃.
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1. Select a path 𝑃.
2. Push bottleneck(𝑃) flow on 𝑃.
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• Guaranteed to meet conservation of flow constraints.
• Guaranteed to meet capacity constraints.
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1. Select a path 𝑃.
2. Push bottleneck(𝑃) flow on 𝑃.
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2. Push bottleneck(𝑃) flow on 𝑃.
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We need some way to reroute flow.
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Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.
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Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
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Ford-Fulkerson
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Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f
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Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Need to show:
1. Validity.
2. Running time.
3. Finds max flow.
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Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

2. If edge capacities are integer-valued, the algorithm will terminate.

3. If an iteration starts with a valid flow, it ends with a valid flow.

4. The first iteration starts with a valid flow.

Ford-Fulkerson
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Note: This does not hold for general edge capacities 
(i.e., irrational edge capacities can lead to non-terminating scenarios).
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