
Flow Networks
CSCI 532

Motivation

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

Suppose we have a directed graph that represent an oil pipeline
network. Edge weight represent pipe capacity. How much oil can we
transfer from source 𝑠 to sink 𝑡?

Motivation

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

Suppose we have a directed graph that represent an oil pipeline
network. Edge weight represent pipe capacity. How much oil can we
transfer from source 𝑠 to sink 𝑡?

s

a

t

c e

d

b

2

4

1
1

1

2

5

2

5

Total flow = 7

Flow Network

Flow Network:

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ! such that:

Flow Network

Flow Network:
• Directed-edge graph, 𝐺 = (𝑉, 𝐸).
• Finite positive edge capacity, 𝑐".
• Single source, 𝑠, without input edges.
• Single sink, 𝑡, without output edges.

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ! such that:

We’ll also sometimes
use the assumption
that the capacities are
positive integer values.

Flow Network

Flow Network:
• Directed-edge graph, 𝐺 = (𝑉, 𝐸).
• Finite positive edge capacity, 𝑐".
• Single source, 𝑠, without input edges.
• Single sink, 𝑡, without output edges.

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ! such that:
• 0 ≤ 𝑓 𝑒 ≤ 𝑐" , ∀𝑒 ∈ 𝐸. (capacity constraint)

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

Flow Network

Flow Network:
• Directed-edge graph, 𝐺 = (𝑉, 𝐸).
• Finite positive edge capacity, 𝑐".
• Single source, 𝑠, without input edges.
• Single sink, 𝑡, without output edges.

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ! such that:
• 0 ≤ 𝑓 𝑒 ≤ 𝑐" , ∀𝑒 ∈ 𝐸. (capacity constraint)
• ∑"#input(%) 𝑓(𝑒) = ∑"∈output(%) 𝑓(𝑒) , ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}.

(conservation of flow constraint: “Everything that goes into a
node has to come out, except for 𝑠 and 𝑡”)

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

Flow Network

Flow Network:
• Directed-edge graph, 𝐺 = (𝑉, 𝐸).
• Finite positive edge capacity, 𝑐".
• Single source, 𝑠, without input edges.
• Single sink, 𝑡, without output edges.

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ! such that:
• 0 ≤ 𝑓 𝑒 ≤ 𝑐" , ∀𝑒 ∈ 𝐸. (capacity constraint)
• ∑"#input(%) 𝑓(𝑒) = ∑"∈output(%) 𝑓(𝑒) , ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}.

(conservation of flow constraint: “Everything that goes into a
node has to come out, except for 𝑠 and 𝑡”)

• Value of flow = 𝑣𝑎𝑙(𝑓) = ∑"#output(() 𝑓(𝑒) = ∑"#input()) 𝑓(𝑒)

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

Flow Network

Flow Network:
• Directed-edge graph, 𝐺 = (𝑉, 𝐸).
• Finite positive edge capacity, 𝑐".
• Single source, 𝑠, without input edges.
• Single sink, 𝑡, without output edges.

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ! such that:
• 0 ≤ 𝑓 𝑒 ≤ 𝑐" , ∀𝑒 ∈ 𝐸. (capacity constraint)
• ∑"#input(%) 𝑓(𝑒) = ∑"∈output(%) 𝑓(𝑒) , ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}.

(conservation of flow constraint: “Everything that goes into a
node has to come out, except for 𝑠 and 𝑡”)

• Value of flow = 𝑣𝑎𝑙(𝑓) = ∑"#output(() 𝑓(𝑒) = ∑"#input()) 𝑓(𝑒)

Maximum Flow Problem:
Given a flow network, find the
maximum possible value of flow.

Max Flow Algorithm

s t

a

b 20

1030

10
𝐺:

c
20

30 10

Max Flow?

Max Flow Algorithm

s t

a

b 20

10

𝑓!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

Max Flow Algorithm

s t

a

b 0

0

𝑓:

c
0

0 00

0

Ideas?

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b 20

10

(!"#:

c
20

20 1010

10

Max Flow Algorithm

s t

a

b 0

0

𝑓:

c
0

0 00

0

Ideas?

Somehow, we are going to have to put flow
on edges. Should we select edges or paths?

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b 20

10

(!"#:

c
20

20 1010

10

Max Flow Algorithm

s t

a

b 0

0

𝑓:

c
0

0 00

0

Ideas?

1. Select a path 𝑃.

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

Max Flow Algorithm

s t

a

b 0

0

𝑓:

c
0

0 00

0

Ideas?

1. Select a path 𝑃.

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

How much flow should we push?

Max Flow Algorithm

s t

a

b 0

0

𝑓:

c
0

0 00

0

Ideas?

1. Select a path 𝑃.

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

How much flow should we push?
As much as possible.

bottleneck(P) = minimum capacity on any edge in path 𝑃.

Max Flow Algorithm

s t

a

b 20

20

𝑓:

c
20

0 00

0

Ideas?

1. Select a path 𝑃.

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

How much flow should we push?
As much as possible.

bottleneck(P) = minimum capacity on any edge in path 𝑃.

Max Flow Algorithm

s t

a

b 20

20

𝑓:

c
20

0 00

0

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

Ideas?

1. Select a path 𝑃.
2. Push bottleneck(𝑃) flow on 𝑃.

Max Flow Algorithm

s t

a

b 20

20

𝑓:

c
20

0 00

0

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

So far:
• Guaranteed to meet conservation of flow constraints.
• Guaranteed to meet capacity constraints.

Ideas?

1. Select a path 𝑃.
2. Push bottleneck(𝑃) flow on 𝑃.

Max Flow Algorithm

s t

a

b 20

20

𝑓:

c
20

0 00

0

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b 0

1010

10
𝐺$:

c
0

30 10

Residual
Capacity

Ideas?

1. Select a path 𝑃.
2. Push bottleneck(𝑃) flow on 𝑃.

Max Flow Algorithm

s t

a

b 20

20

𝑓:

c
20

10 100

0

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b 0

1010

10
𝐺$:

c
0

30 10

Ideas?

1. Select a path 𝑃.
2. Push bottleneck(𝑃) flow on 𝑃.

Max Flow Algorithm

s t

a

b 20

20

𝑓:

c
20

10 100

0

Ideas?

1. Select a path 𝑃.
2. Push bottleneck(𝑃) flow on 𝑃.

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b 0

1010

10
𝐺$:

c
0

20 0

Max Flow Algorithm

We need some way to reroute flow.

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b 0

1010

10
𝐺$:

c
0

20 0

s t

a

b 20

20

𝑓:

c
20

10 100

0

Max Flow Algorithm

We need some way to reroute flow.

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b 0

1010

10
𝐺$:

c
0

20 0

s t

a

b 20

20

𝑓:

c
20

10 100

0

Increase
flow

Max Flow Algorithm

We need some way to reroute flow.

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b 0

1010

10
𝐺$:

c
0

20 0

s t

a

b 20

20

𝑓:

c
20

10 100

0

Increase
flow

Open
edge

Max Flow Algorithm

We need some way to reroute flow.

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b 0

1010

10
𝐺$:

c
0

20 0

s t

a

b 20

20

𝑓:

c
20

10 100

0

Increase
flow

Open
edge

Same flow
(replace flow
from c with
flow from a)

Max Flow Algorithm

We need some way to reroute flow.

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b 0

1010

10
𝐺$:

c
0

20 0

s t

a

b 20

20

𝑓:

c
20

10 100

0

Increase
flow

Open
edge

Same flow
(replace flow
from c with
flow from a)

Decrease
flow

Max Flow Algorithm

We need some way to reroute flow.

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b 0

1010

10
𝐺$:

c
0

20 0

s t

a

b 20

20

𝑓:

c
20

10 100

0

Increase
flow

Open
edge

Same flow
(replace flow
from c with
flow from a)

Decrease
flow

Open edge
(using flow from c that

was not sent to b)

Max Flow Algorithm

We need some way to reroute flow.

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b 20

20

𝑓:

c
20

10 100

0

Increase
flow

Open
edge

Same flow
(replace flow
from c with
flow from a)

Decrease
flow

Open edge
(using flow from c that

was not sent to b)

s t

a

b 0

1010

10
𝐺$:

c
0

20 0

10
10

1010

Max Flow Algorithm

We need some way to reroute flow.

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b 20

20

𝑓:

c
20

10 100

0

Increase
flow

Open
edge

Same flow
(replace flow
from c with
flow from a)

Decrease
flow

Open edge
(using flow from c that

was not sent to b)

s t

a

b 0

1010

10
𝐺$:

c
0

20 0

10
10

1010

This edge does not physically exist but exists virtually as a
mechanism to reroute flow that has already been pushed.

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

0

00

0 00

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b 20

1030

10
𝐺$:

c
20

30 10

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

0

00

0 00

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b 20

1030

10
𝐺$:

c
20

30 10

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

2020

0 00

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b 20

1030

10
𝐺$:

c
20

30 10

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

2020

0 00

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b 0

1010

10
𝐺$:

c
0

30 10

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

2020

0 00

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b 0

1010

10
𝐺$:

c
0

30 10

20

20 20

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

2020

0 00

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b 0

1010

10
𝐺$:

c
0

30 10

20

20 20

Remove edges with 0
capacity in residual graph.
Can’t use them anyway.

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

2020

0 00

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b

1010

10
𝐺$:

c

30 10

20

20 20

Remove edges with 0
capacity in residual graph.
Can’t use them anyway.

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

2020

0 00

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b

1010

10
𝐺$:

c

30 10

20

20 20

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

2020

10 100

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b

1010

10
𝐺$:

c

30 10

20

20 20

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

2020

10 100

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b

1010

10
𝐺$:

c

20

20

20 20
10

10

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

2020

10 100

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b

1010

10
𝐺$:

c

20

20

20 20
10

10

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

2020

10 100

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b

1010

10
𝐺$:

c

20

20

20 20
10

10

Pushing flow on a path:

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

2020

20 100

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b

1010

10
𝐺$:

c

20

20

20 20
10

10

Pushing flow on a path:
1.If edge is a normal

edge, increase flow.

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

2020

20 1010

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b

1010

10
𝐺$:

c

20

20

20 20
10

10

Pushing flow on a path:
1.If edge is a normal

edge, increase flow.

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

1020

20 1010

0

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b

1010

10
𝐺$:

c

20

20

20 20
10

10

Pushing flow on a path:
1.If edge is a normal

edge, increase flow.
2.If edge is a back

edge, decrease flow.

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

1020

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b

1010

10
𝐺$:

c

20

20

20 20
10

10

Pushing flow on a path:
1.If edge is a normal

edge, increase flow.
2.If edge is a back

edge, decrease flow.

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

1020

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b

20

𝐺$:

c

10

20

10 20
20

10
10

10

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

1020

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b

20

𝐺$:

c

10

20

10 20
20

10
10

10

Max Flow Algorithm

Algorithm Overview

1. Start with 0 flow and initial residual graph.
2. Select an 𝑠 − 𝑡 path 𝑃 in residual graph.
3. Push bottleneck(𝑃) flow on 𝑃.
4. Update residual graph.
5. Repeat until no 𝑠 − 𝑡 paths exist in residual graph.

20

1020

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

s t

a

b 20

10

(!"#:

c
20

20 1010

10

s t

a

b

20

𝐺$:

c

10

20

10 20
20

10
10

10

Ford-Fulkerson

20

1020

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

s t

a

b

20

𝐺$:

c

10

20

10 20
20

10
10

10

Ford-Fulkerson

20

1020

20 1010

10

s t

a

b 20

1030

10
𝐺:

c
20

30 10

s t

a

b

𝑓:

c

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path in Gf
f’= augment(f, P)
f = f’
Gf = Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P

if (u, v) is a back edge
f((v, u)) -= b

else
f((u, v)) += b

return f

Need to show:
1. Validity.
2. Running time.
3. Finds max flow.

s t

a

b

20

𝐺$:

c

10

20

10 20
20

10
10

10

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

2. If edge capacities are integer-valued, the algorithm will terminate.

3. If an iteration starts with a valid flow, it ends with a valid flow.

4. The first iteration starts with a valid flow.

Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

Ford-Fulkerson

Bottleneck ∈ ℕ Flow ∈ ℕResidual
Capacities

∈ ℕ
Flow = 0

&
Capacities ∈ ℕ

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.

Ford-Fulkerson

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1.

Ford-Fulkerson

Bottleneck ∈ ℕ

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

Ford-Fulkerson

s t

a

b 20

1030

10
𝐺:

c
20

30 10

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

Ford-Fulkerson

Note: This does not hold for general edge capacities
(i.e., irrational edge capacities can lead to non-terminating scenarios).

Claims:
1. If edge capacities are integer-valued, flows found by algorithm will be too.

Bottleneck values will always be integers, so resulting flows are too.

2. If edge capacities are integer-valued, the algorithm will terminate.
With integer capacities, each iteration increases flow by ≥ 1. Since the
max flow is bounded (e.g., by total capacity into 𝑡), the algorithm
needs ≤ |Max Flow| iterations.

3. If an iteration starts with a valid flow, it ends with a valid flow.

Ford-Fulkerson

