

Longest Path

CSCI 532

Dynamic Programming

Trick-or-treat planning.

Dynamic Programming

Trick-or-treating at the red house, blue house, and green house are the fewest stops you need to fill your 25-pound capacity sack.

Dynamic Programming

Trick-or-treating at the red house, blue house, and green house are the fewest stops you need to fill your 25-pound capacity sack. The blue house gives you 5 pounds of candy. What can you conclude?

Dynamic Programming

Trick-or-treating at the red house, blue house, and green house are the fewest stops you need to fill your 25-pound capacity sack. The blue house gives you 5 pounds of candy. What can you conclude?

The red house and the green house are the fewest stops you need to get 20+ pounds of candy.

Dynamic Programming

Trick-or-treating at the red house, blue house, and green house are the fewest stops you need to fill your 25-pound capacity sack. The blue house gives you 5 pounds of candy. What can you conclude?

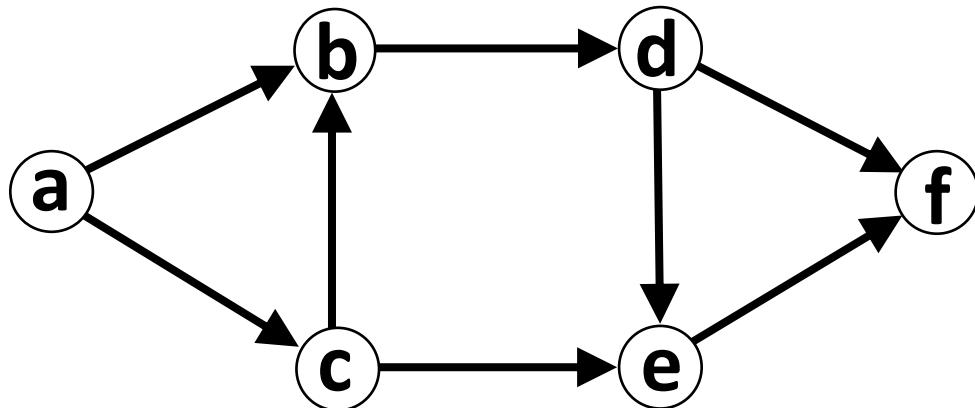
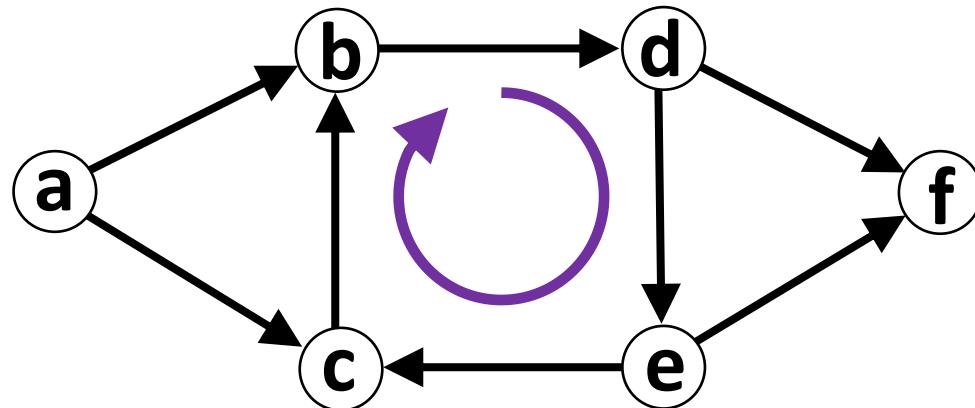
The red house and the green house are the fewest stops you need to get 20+ pounds of candy.

A problem exhibits optimal substructure if removing part of an optimal solution results in an optimal solution to a smaller problem.

Central tenant of Dynamic Programming: Leverage optimal sub-structure.

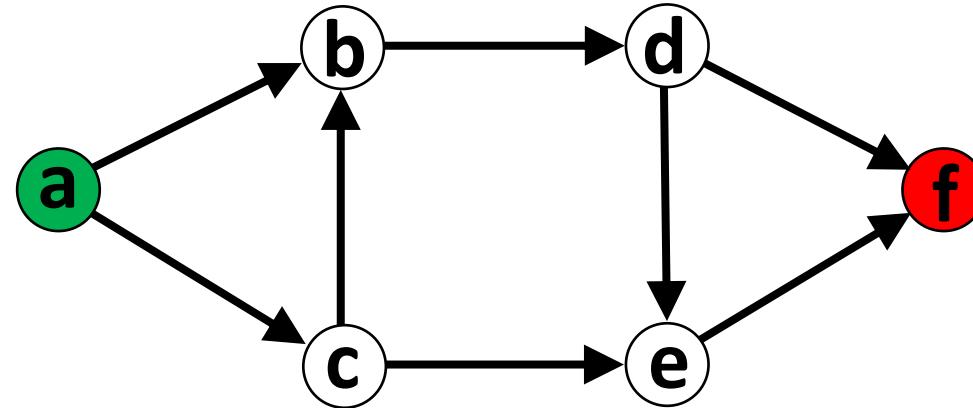
Directed Acyclic Graph (DAG)

Directed Acyclic Graph (DAG) = Directed graph with no cycles.



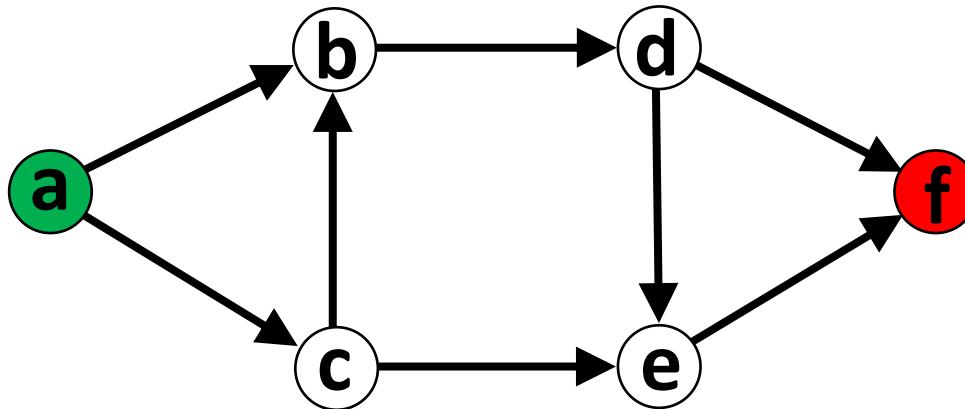
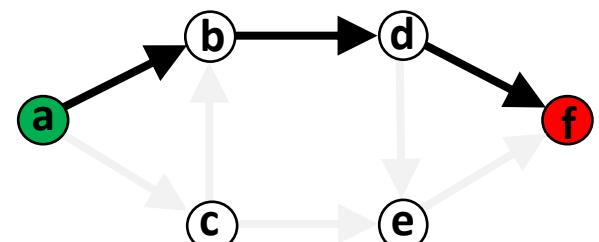
Longest Path in a DAG

Given a DAG, find the longest path between any two vertices in the graph.

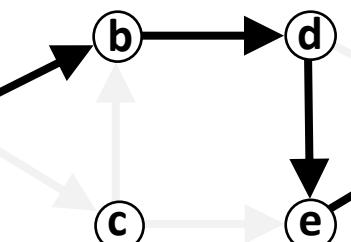


Longest Path in a DAG

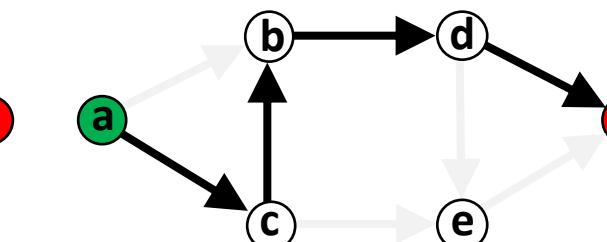
Given a DAG, find the longest path between any two vertices in the graph.



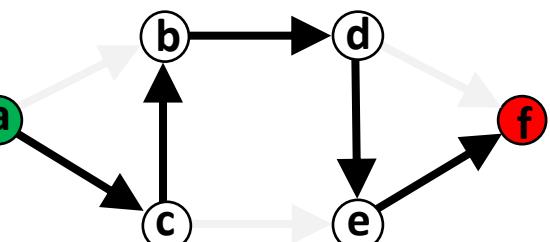
length = 3



length = 4



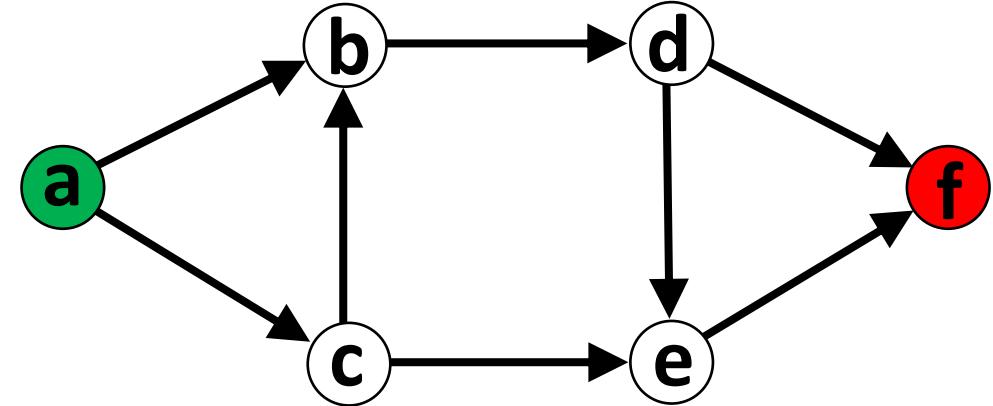
length = 4



length = 5

Find the Longest Path in a DAG

Task	Description	Duration
a	Select location	2 days
b	Get permits	4 days
c	Select date/time	1 day
d	Hire vendors	2 days
e	Make flyers	1 day
f	Market event	1 day

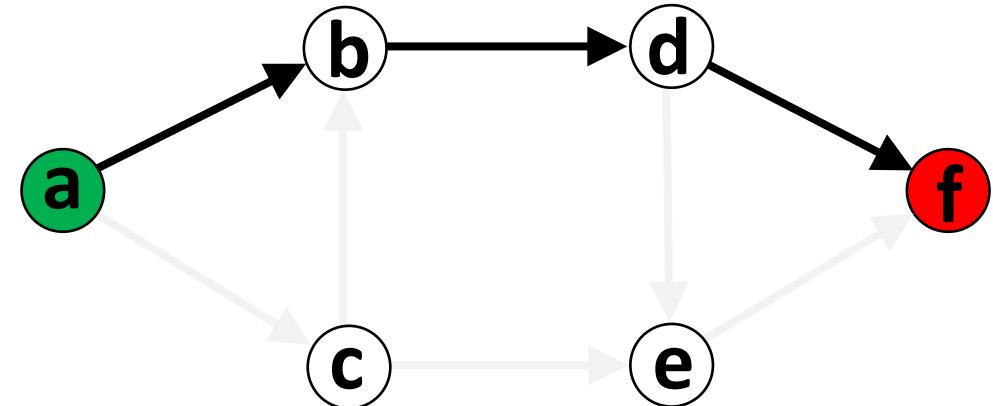


Critical Path: Sequence of dependent tasks that determines the minimum time to complete project.

Find the Longest Path in a DAG

Task	Description	Duration
a	Select location	2 days
b	Get permits	4 days
c	Select date/time	1 day
d	Hire vendors	2 days
e	Make flyers	1 day
f	Market event	1 day

Length = $2 + 4 + 2 + 1 = 9$ days

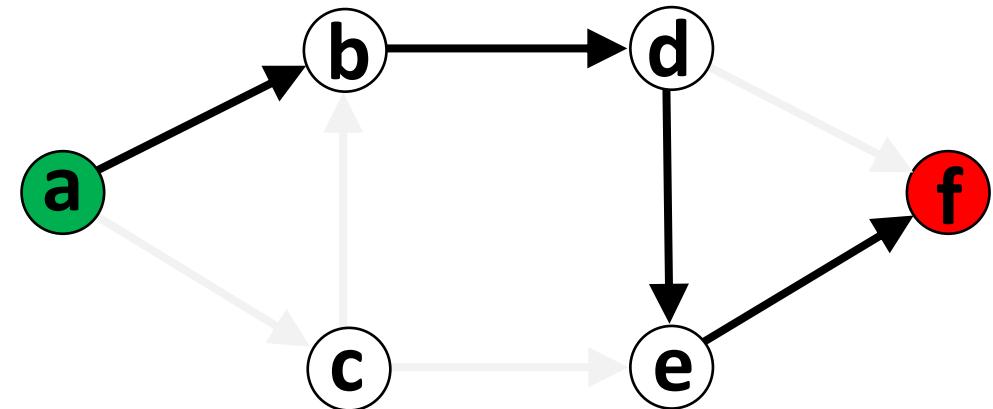


Critical Path: Sequence of dependent tasks that determines the minimum time to complete project.

Find the Longest Path in a DAG

Task	Description	Duration
a	Select location	2 days
b	Get permits	4 days
c	Select date/time	1 day
d	Hire vendors	2 days
e	Make flyers	1 day
f	Market event	1 day

$$\text{Length} = 2 + 4 + 2 + 1 + 1 = 10 \text{ days}$$

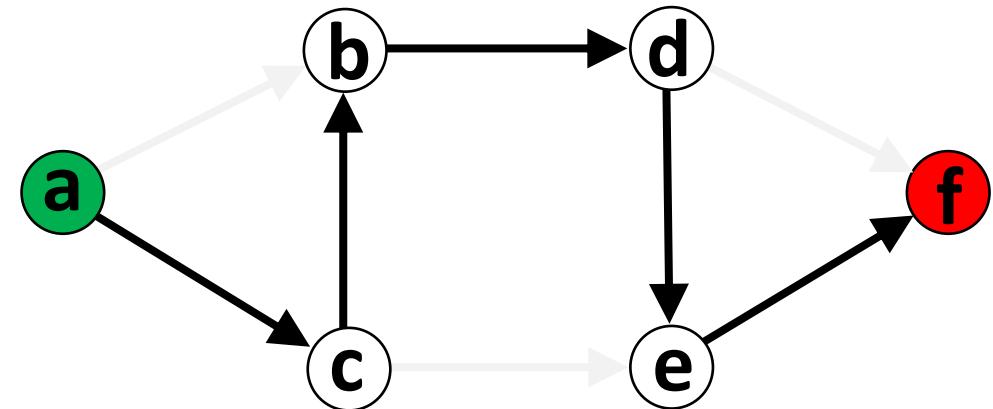


Critical Path: Sequence of dependent tasks that determines the minimum time to complete project.

Find the Longest Path in a DAG

Task	Description	Duration
a	Select location	2 days
b	Get permits	4 days
c	Select date/time	1 day
d	Hire vendors	2 days
e	Make flyers	1 day
f	Market event	1 day

$$\text{Length} = 2 + 1 + 4 + 2 + 1 + 1 = 11 \text{ days}$$

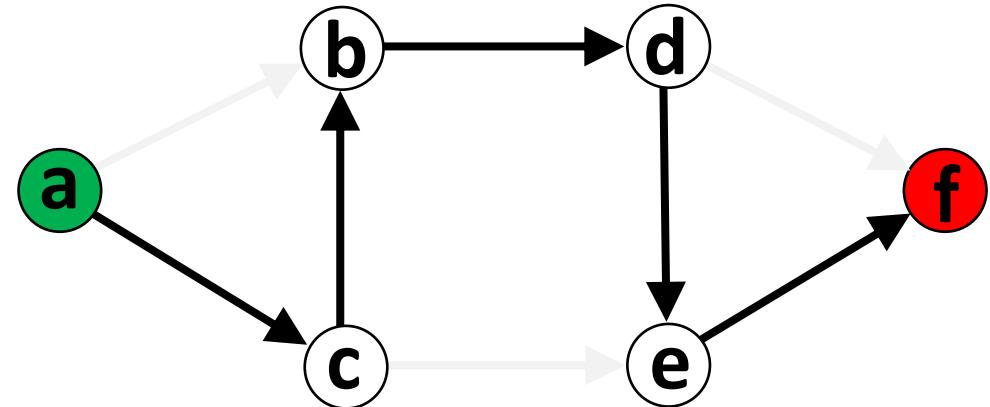


Critical Path: Sequence of dependent tasks that determines the minimum time to complete project.

Find the Longest Path in a DAG

Task	Description	Duration
a	Select location	2 days
b	Get permits	4 days
c	Select date/time	1 day
d	Hire vendors	2 days
e	Make flyers	1 day
f	Market event	1 day

$$\text{Length} = 2 + 1 + 4 + 2 + 1 + 1 = 11 \text{ days}$$

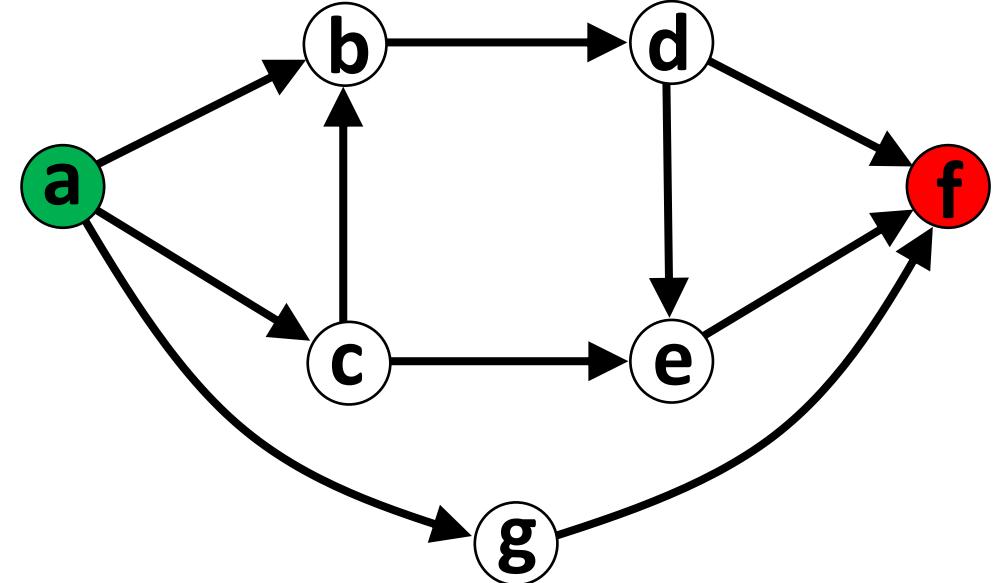


Critical Path: Sequence of dependent tasks that determines the minimum time to complete project.

If any task on critical path is delayed, project is delayed.

Find the Longest Path in a DAG

Task	Description	Duration
a	Select location	2 days
b	Get permits	4 days
c	Select date/time	1 day
d	Hire vendors	2 days
e	Make flyers	1 day
f	Market event	1 day
g	Photograph venue	1 day



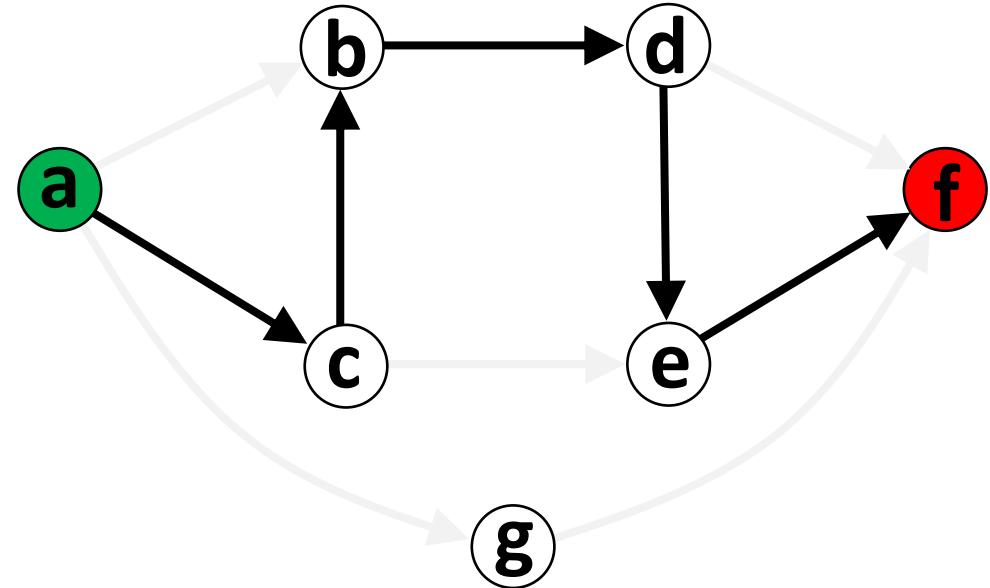
Critical Path: Sequence of dependent tasks that determines the minimum time to complete project.

If any task on critical path is delayed, project is delayed.

Find the Longest Path in a DAG

Task	Description	Duration
a	Select location	2 days
b	Get permits	4 days
c	Select date/time	1 day
d	Hire vendors	2 days
e	Make flyers	1 day
f	Market event	1 day
g	Photograph venue	1 day

$$\text{Length} = 2 + 1 + 4 + 2 + 1 + 1 = 11 \text{ days}$$



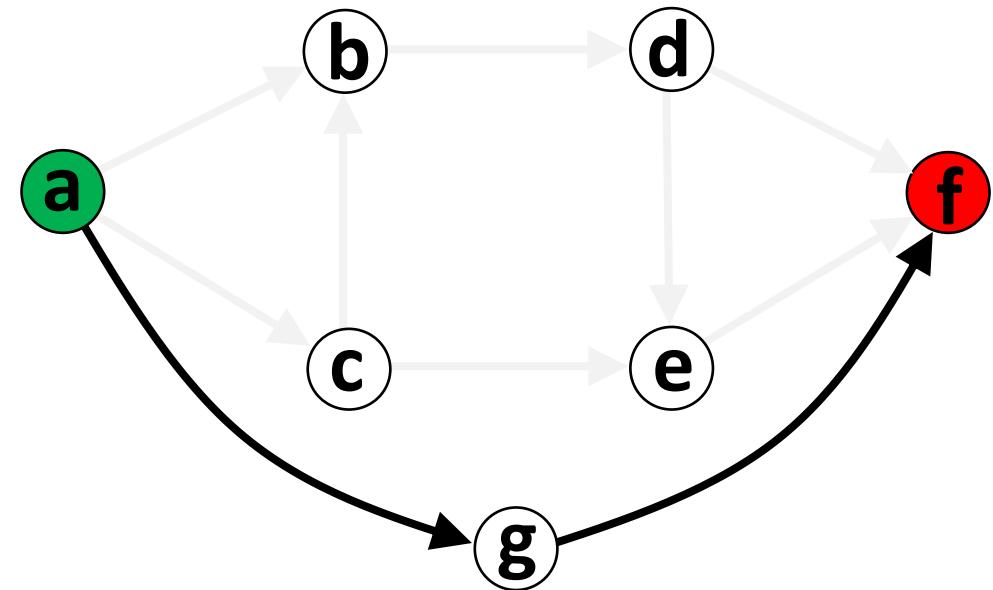
Critical Path: Sequence of dependent tasks that determines the minimum time to complete project.

If any task on critical path is delayed, project is delayed.

Find the Longest Path in a DAG

Task	Description	Duration
a	Select location	2 days
b	Get permits	4 days
c	Select date/time	1 day
d	Hire vendors	2 days
e	Make flyers	1 day
f	Market event	1 day
g	Photograph venue	10 days

Length = $2 + 10 + 1 = 13$ days



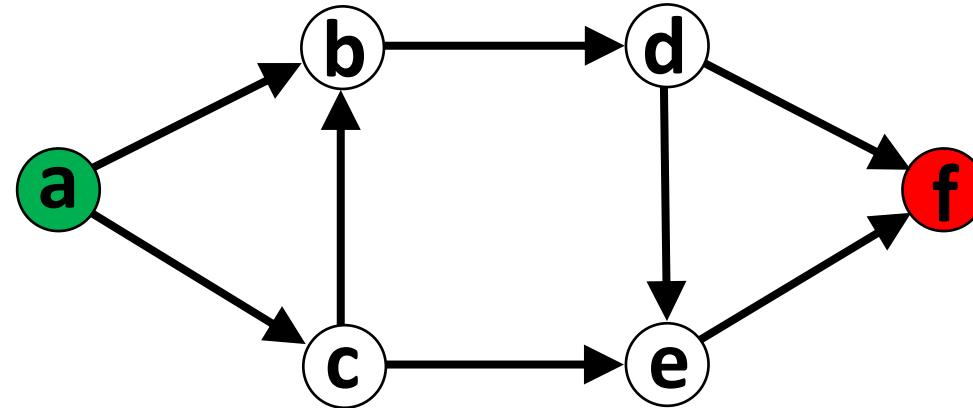
Critical Path: Sequence of dependent tasks that determines the minimum time to complete project.

If any task on critical path is delayed, project is delayed.

Find the Longest Path in a DAG

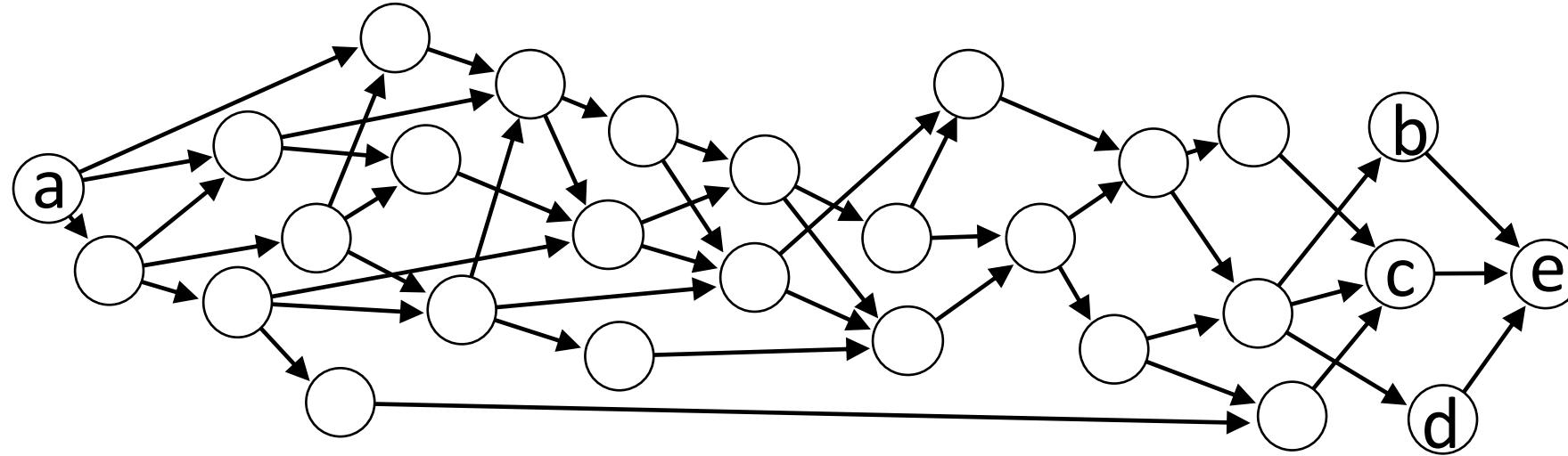
Number of edges.
No vertex weights.

Given a DAG, find the longest path between any two vertices in the graph.



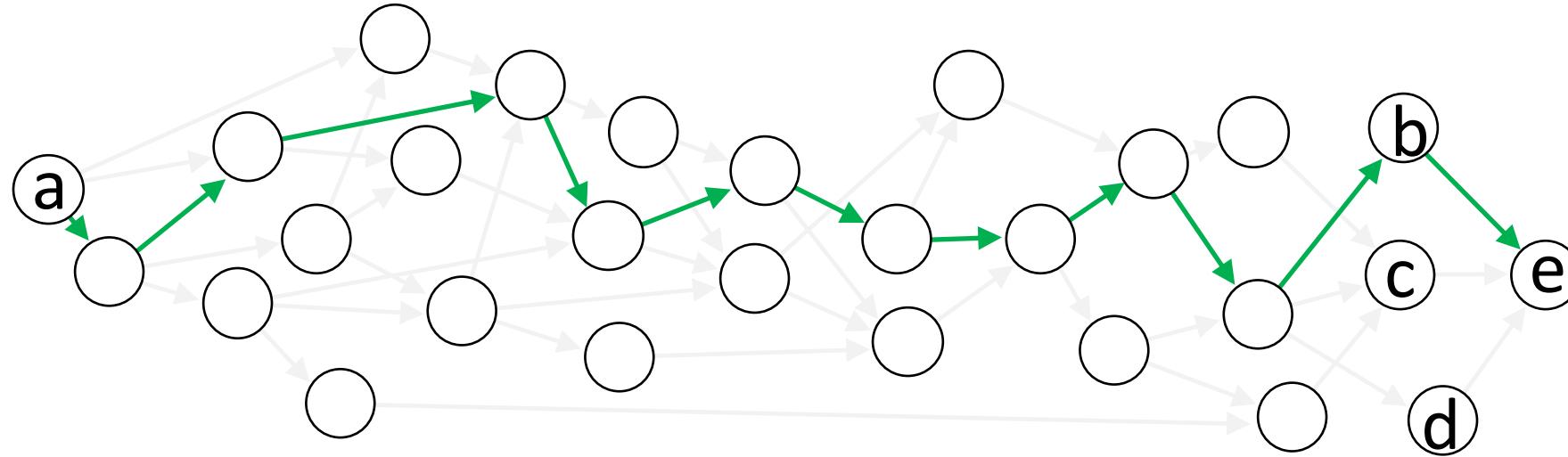
How do we do this?

Find the Longest Path in a DAG



Interesting observations?

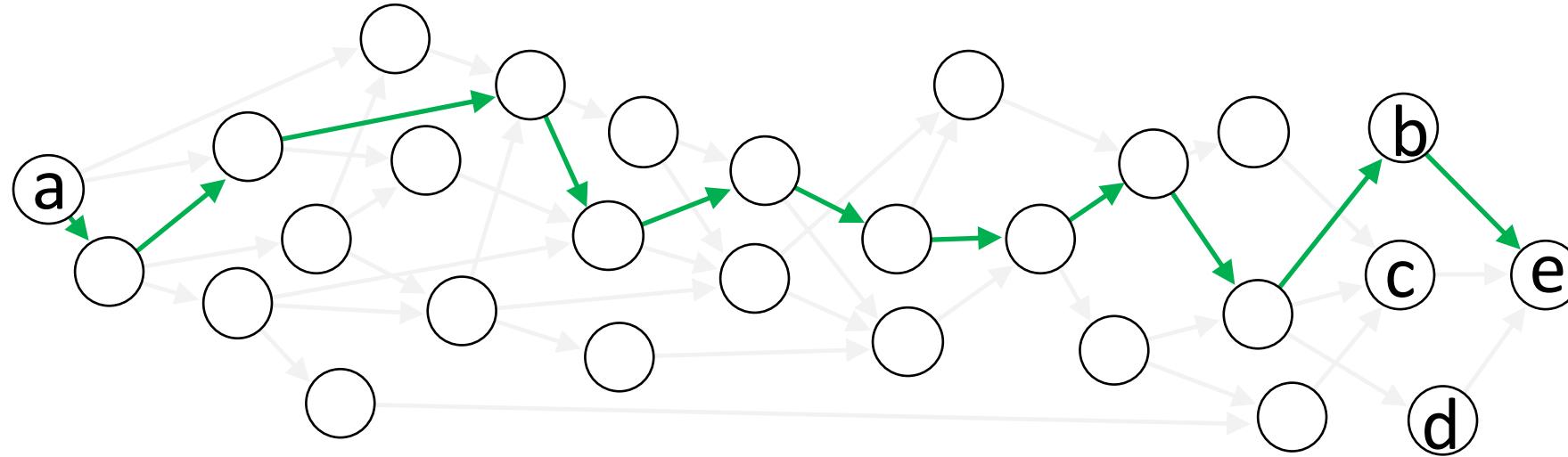
Find the Longest Path in a DAG



Interesting observations?

If the longest path goes from **a** to **e** and passes through **b**, what could we say about the part of that path to **b**?

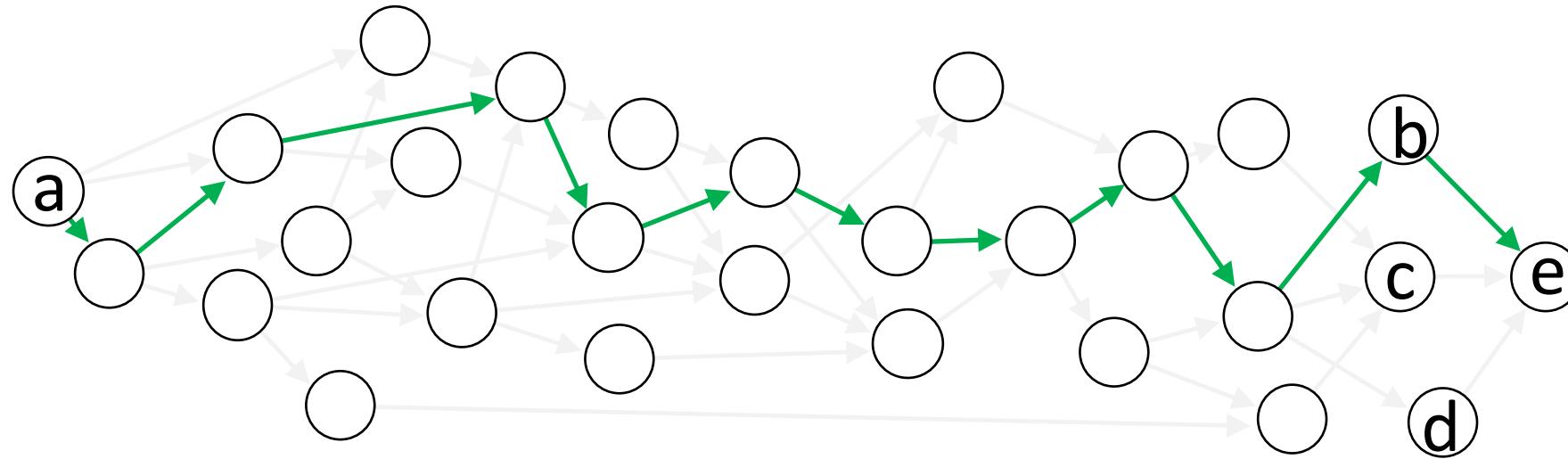
Find the Longest Path in a DAG



Interesting observations?

If the longest path goes from **a** to **e** and passes through **b**, that must be the longest path that ends at **b**.

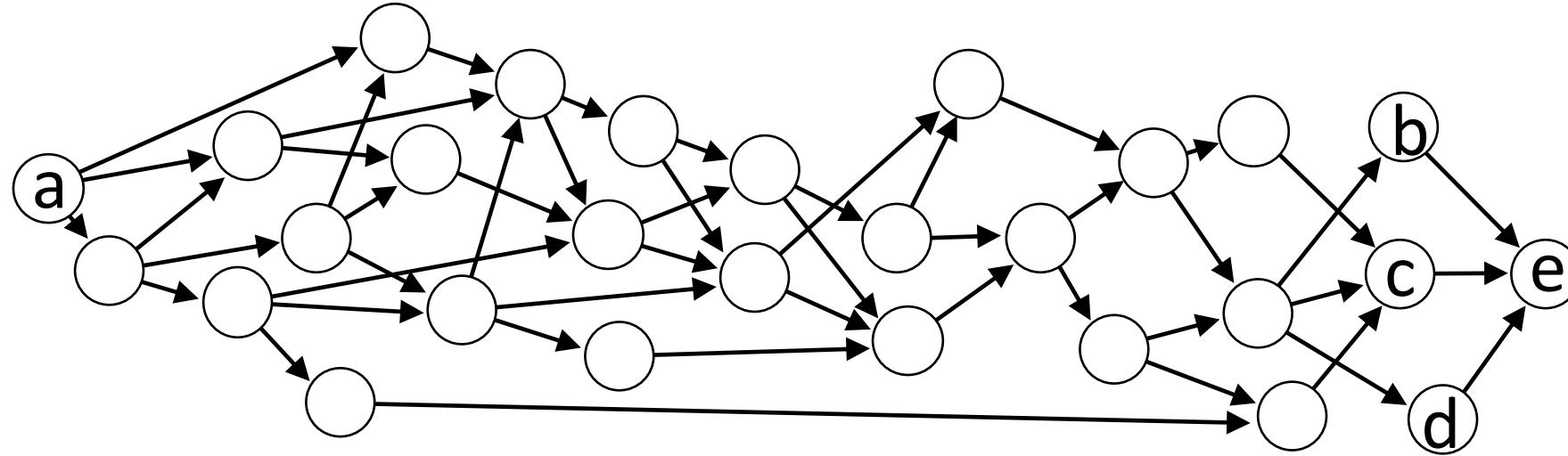
Find the Longest Path in a DAG



Interesting observations?

If the longest path goes from **a** to **e** and passes through **b**, that must be the longest path that ends at **b**. If not, then we could make a longer path.

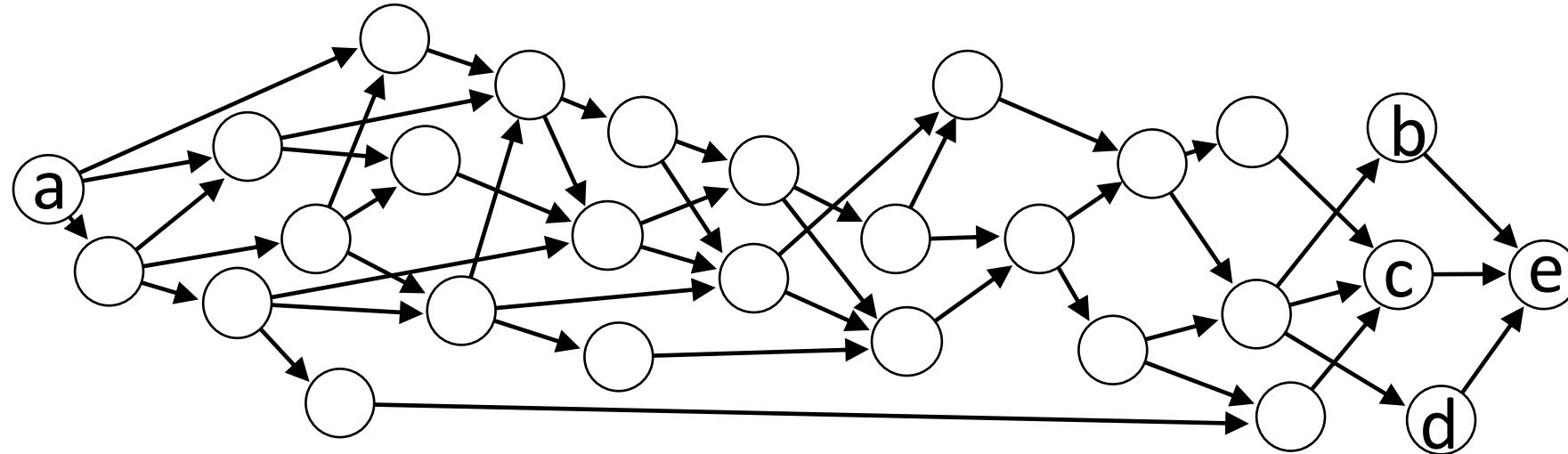
Find the Longest Path in a DAG



Interesting observations?

The longest path to e = ??

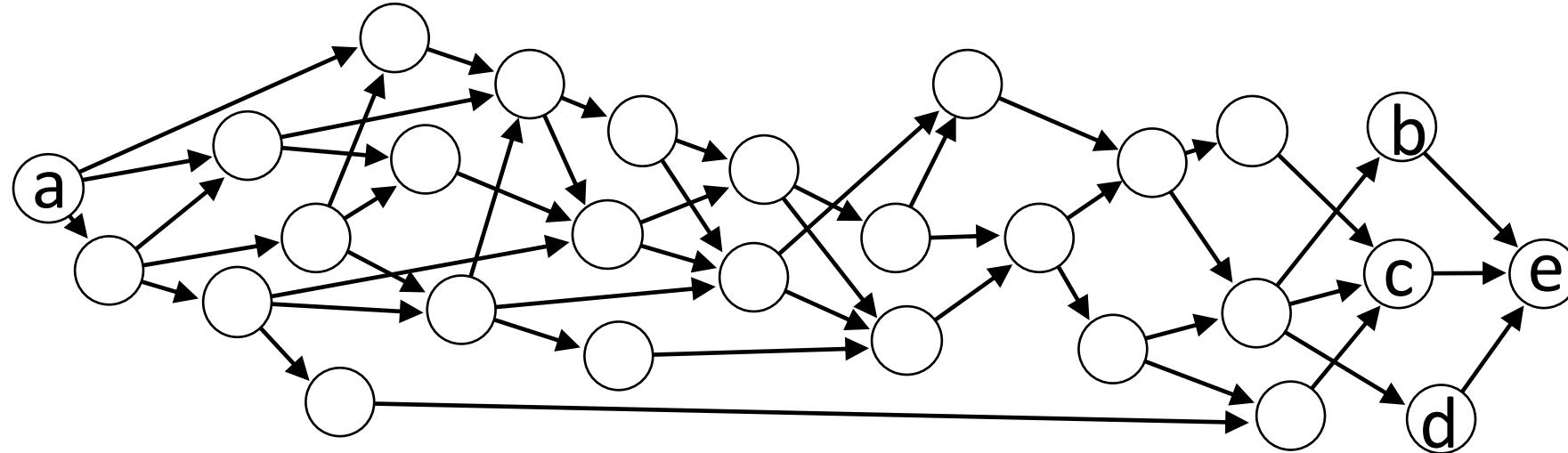
Find the Longest Path in a DAG



Interesting observations?

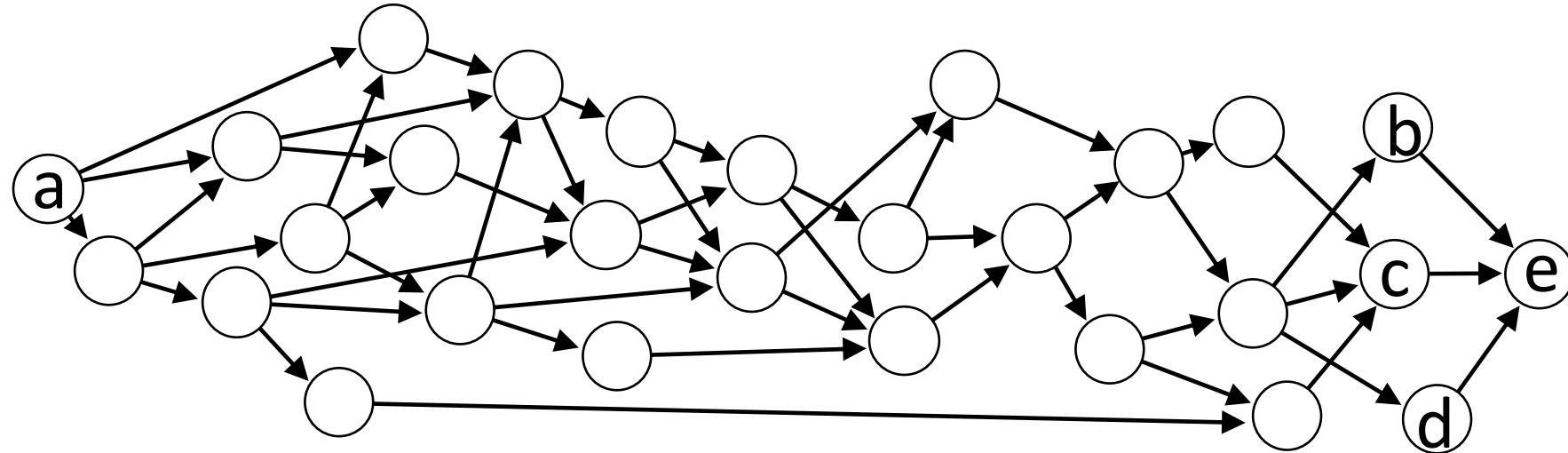
The longest path to e = $\max \left(\begin{array}{l} \text{longest path to } b \\ \text{longest path to } c \\ \text{longest path to } d \end{array} \right) + 1$

Find the Longest Path in a DAG



$$\text{longest path to } e = \max \begin{pmatrix} \text{longest path to } b \\ \text{longest path to } c \\ \text{longest path to } d \end{pmatrix} + 1$$

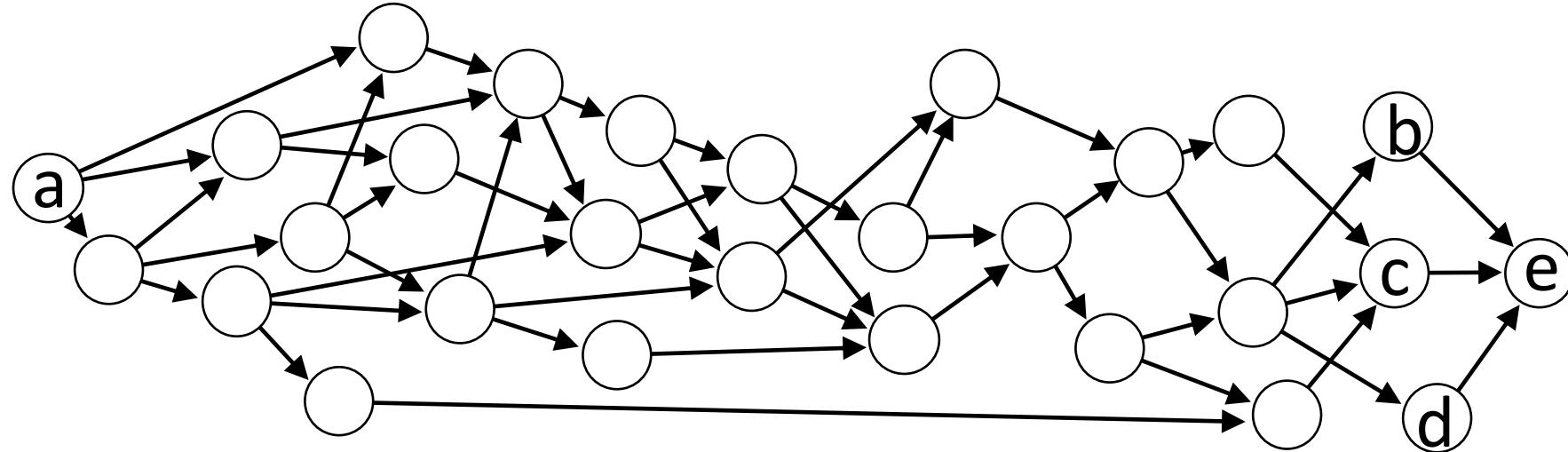
Find the Longest Path in a DAG



When are we ready to calculate
the longest path to e?

$$\text{longest path to e} = \max \begin{pmatrix} \text{longest path to b} \\ \text{longest path to c} \\ \text{longest path to d} \end{pmatrix} + 1$$

Find the Longest Path in a DAG

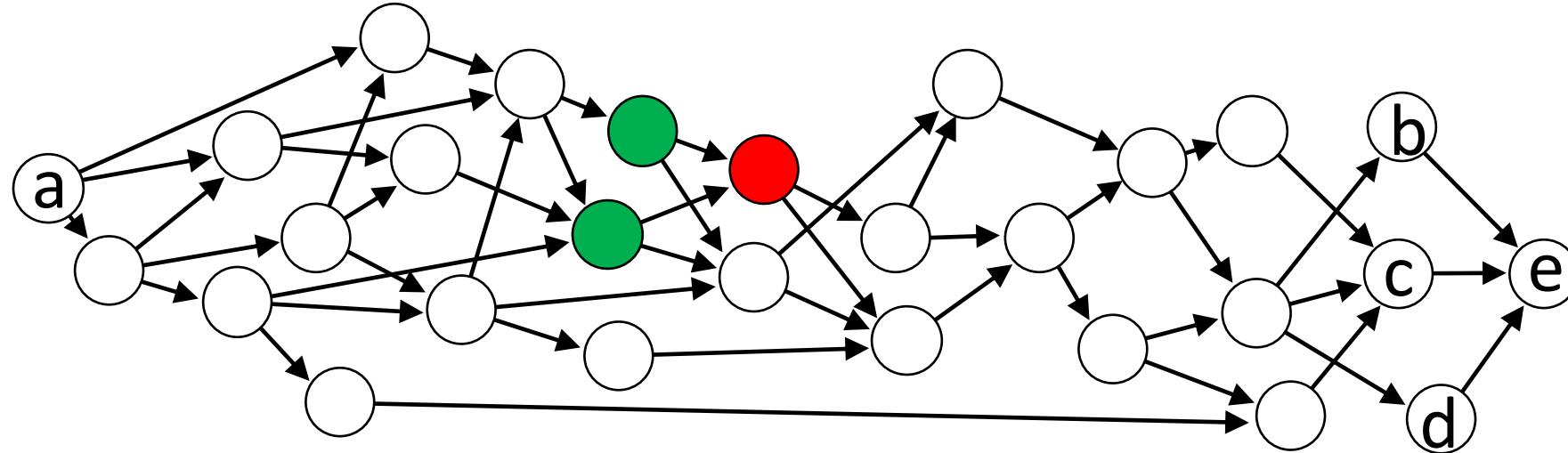


When are we ready to calculate
the longest path to e?

When we have the longest
paths to b, c, and d.

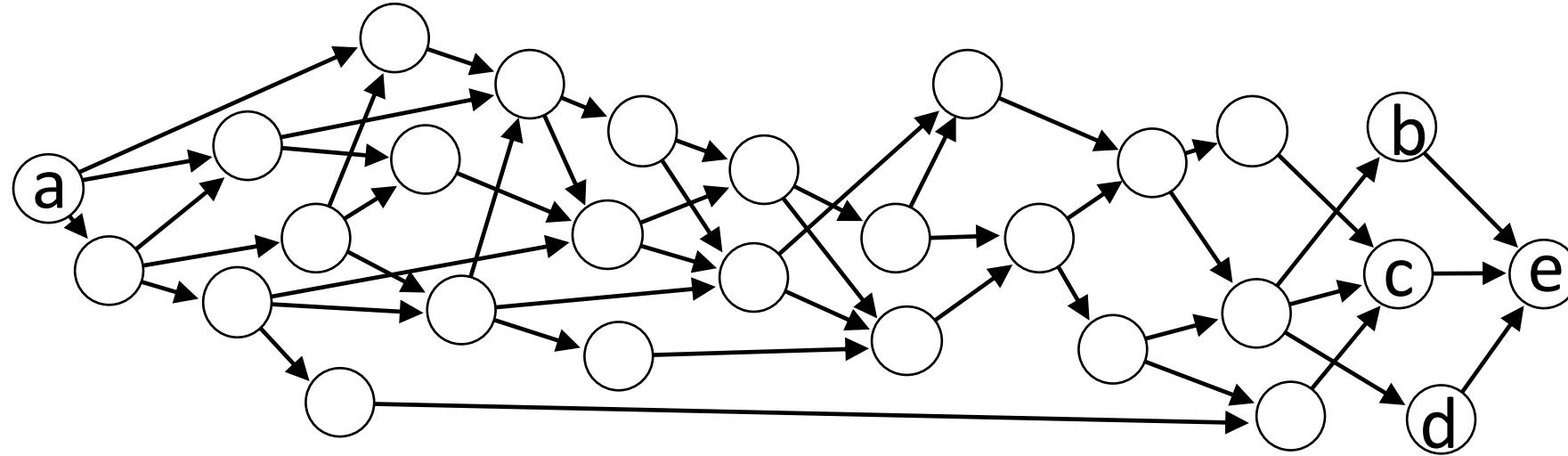
$$\text{longest path to e} = \max \begin{pmatrix} \text{longest path to b} \\ \text{longest path to c} \\ \text{longest path to d} \end{pmatrix} + 1$$

Find the Longest Path in a DAG



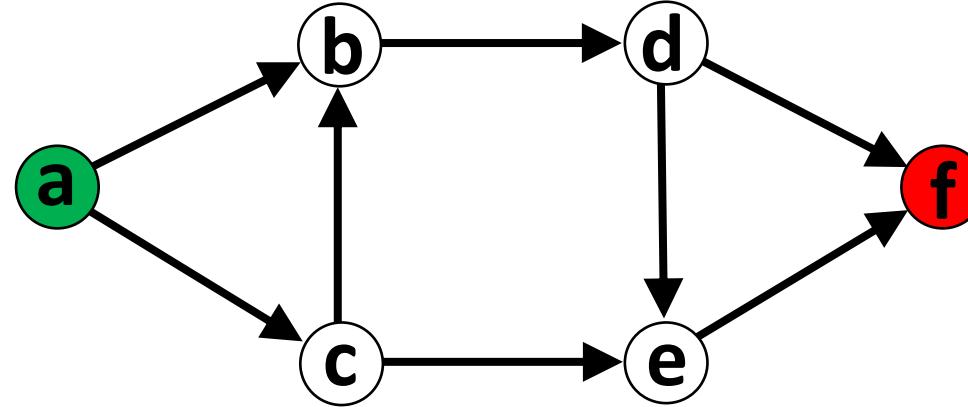
In general: We are ready to calculate the longest path to a vertex if we know the longest path for all incoming neighbors.

Find the Longest Path in a DAG



Topological Ordering of a graph: ordering of its vertices such that for every directed edge (u, v) , vertex u comes before vertex v in the ordering.

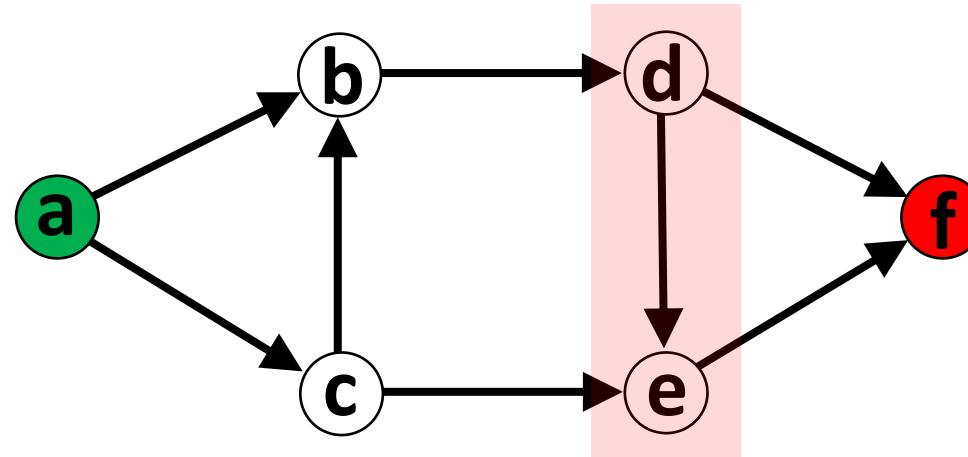
Topological Ordering



Topologically Ordered:

$\{a, c, b, d, e, f\}$

Topological Ordering

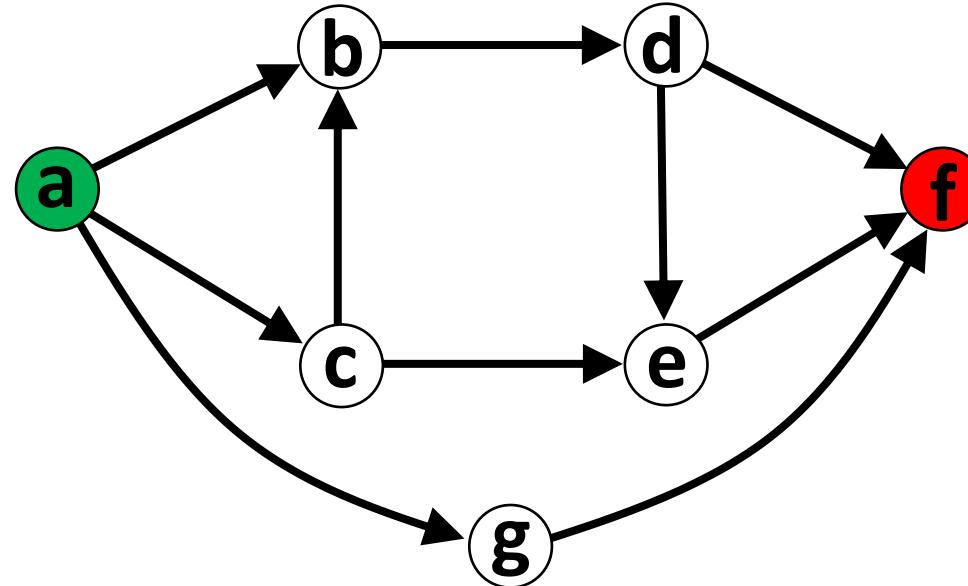


Topologically Ordered:

$\{a, c, b, d, e, f\}$ ✓

$\{a, c, b, e, d, f\}$ ✗

Topological Ordering

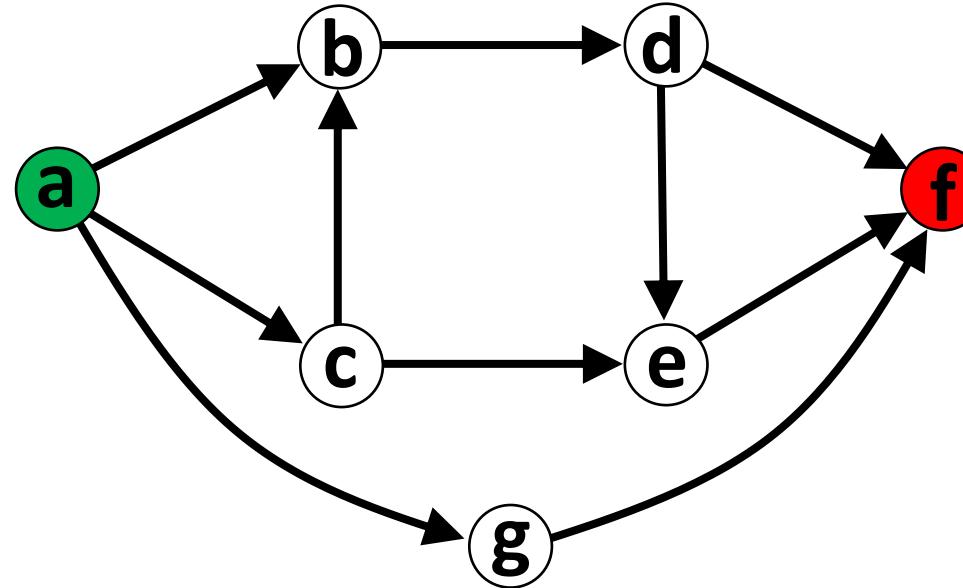


Topologically Ordered:

{a, c, g, b, d, e, f}

{a, c, b, d, e, g, f}

Topological Ordering

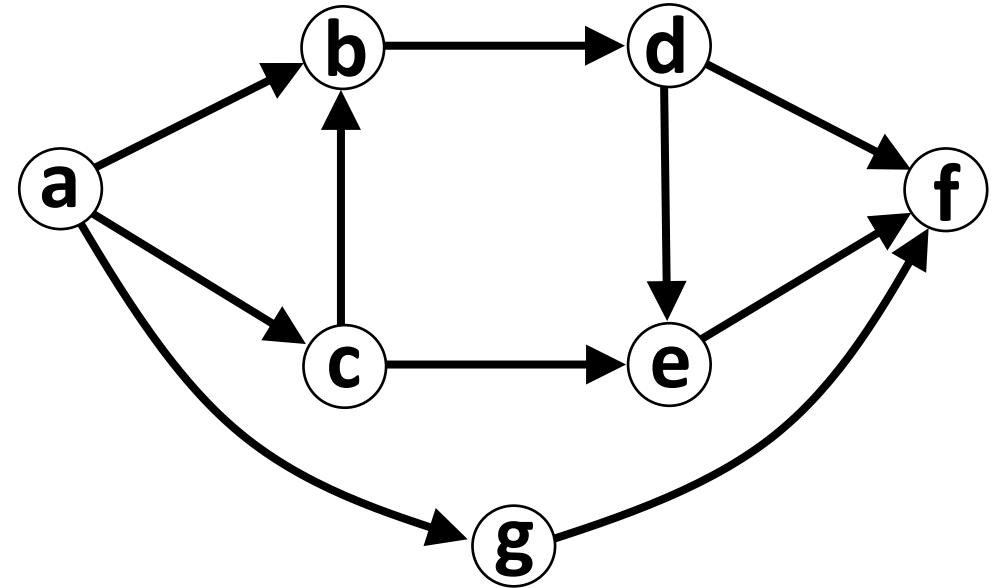


- There are various algorithms to find topological orderings
- Standard running time = $O(|V| + |E|)$.

Find the Longest Path in a DAG

Plan:

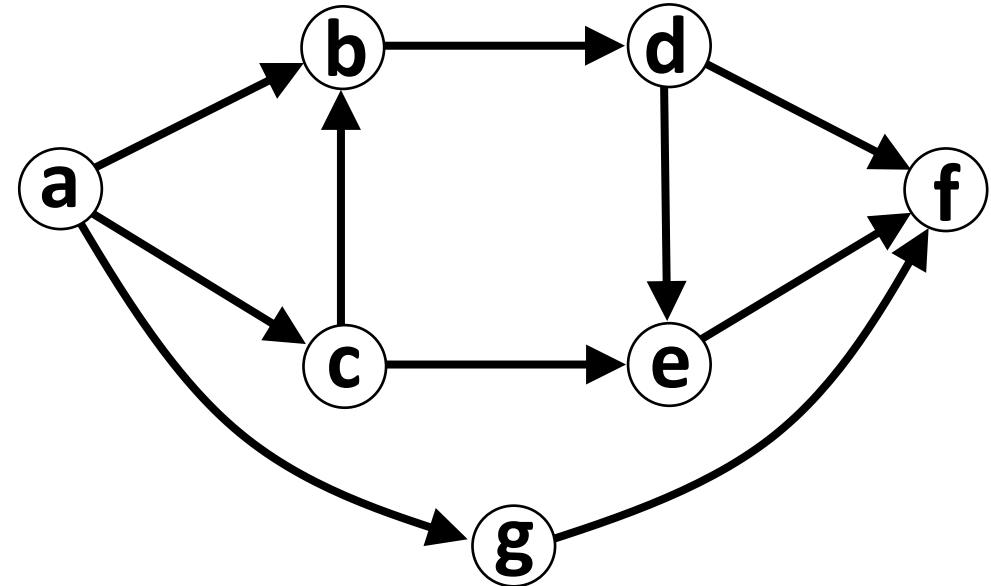
- ??



Find the Longest Path in a DAG

Plan:

- Topologically sort vertices.

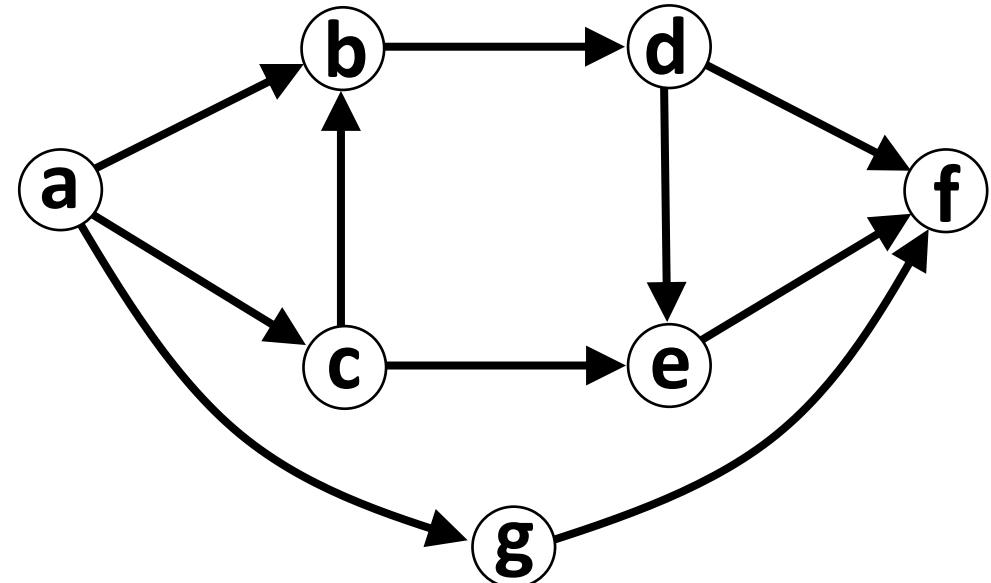


$\{a, c, g, b, d, e, f\}$

Find the Longest Path in a DAG

Plan:

- Topologically sort vertices.
- Make array to store length of longest path that ends at each vertex.



$\{a, c, g, b, d, e, f\}$

Length of longest path that ends at c.

a	b	c	d	e	f	g
0	0	0	0	0	0	0

Find the Longest Path in a DAG

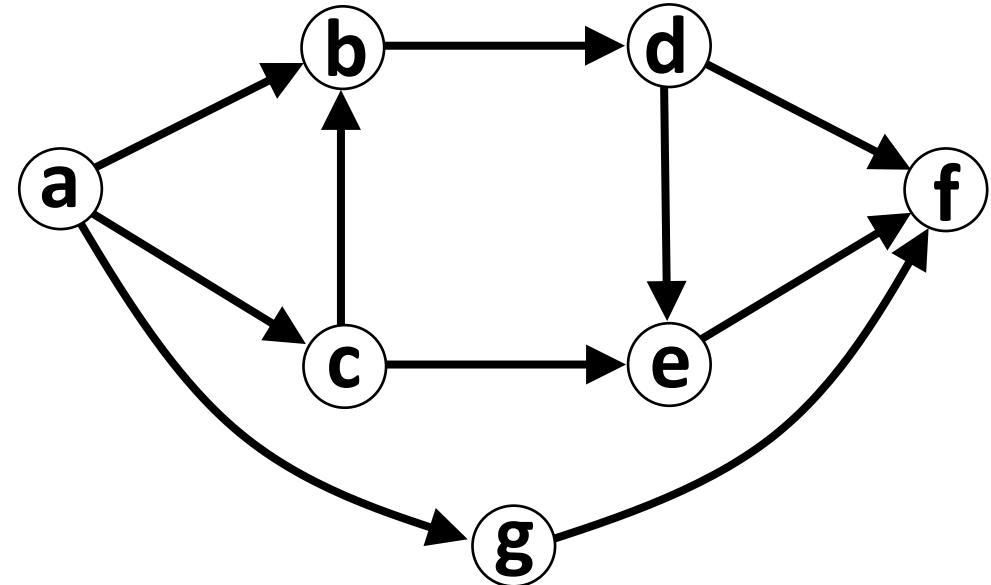
Plan:

- Topologically sort vertices.
- Make array to store length of longest path that ends at each vertex.

- For each vertex in order, calculate longest path as:

$\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .

(Or 0 if there are no incoming neighbors)



{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	0	0	0	0	0	0

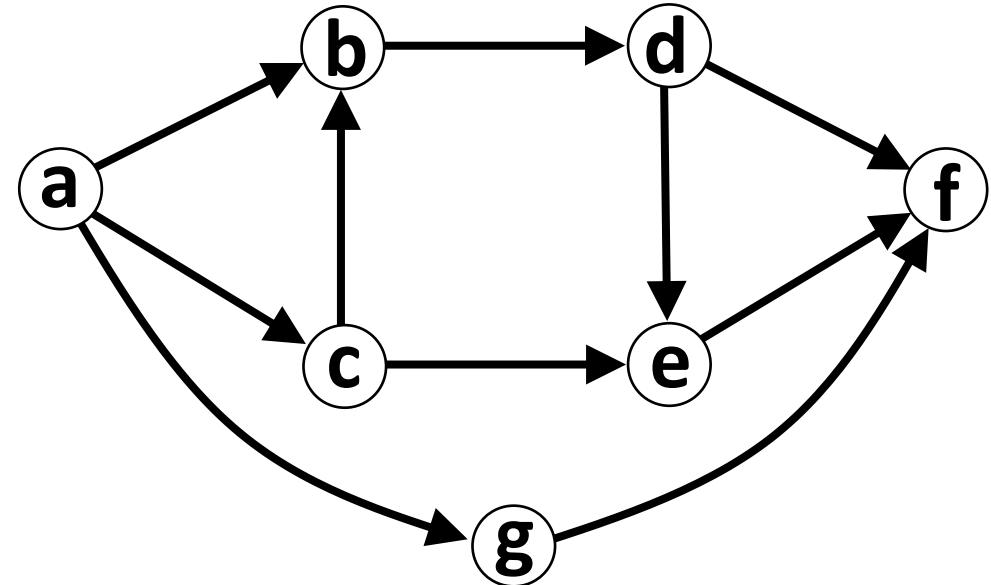
Find the Longest Path in a DAG

Plan:

- Topologically sort vertices.
- Make array to store length of longest path that ends at each vertex.
- For each vertex in order, calculate longest path as:

$\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .

(Or 0 if there are no incoming neighbors)



{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	0	0	0	0	0	0

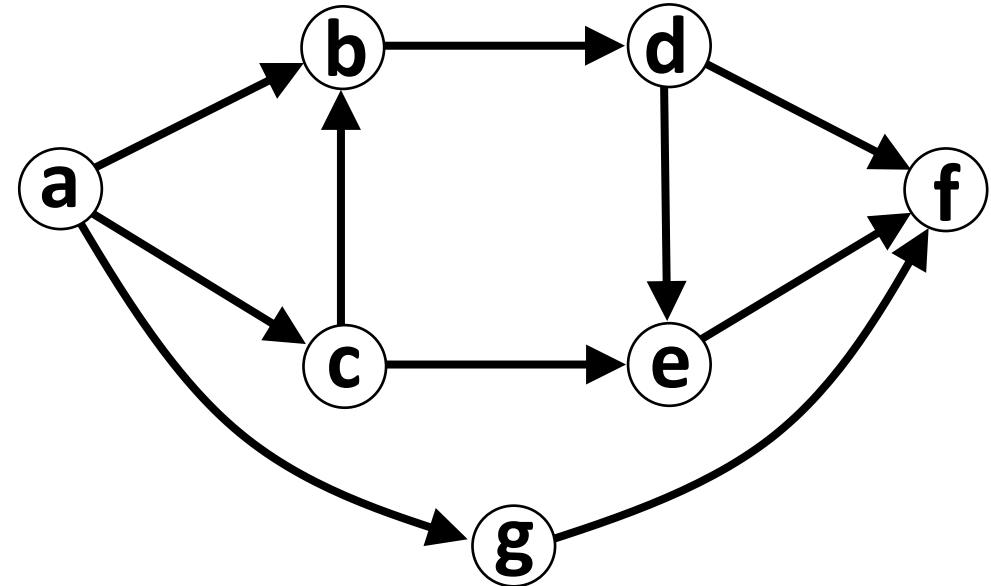
Find the Longest Path in a DAG

Plan:

- Topologically sort vertices.
- Make array to store length of longest path that ends at each vertex.
- For each vertex in order, calculate longest path as:

$\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .

(Or 0 if there are no incoming neighbors)



{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	0	0	0	0	0	0

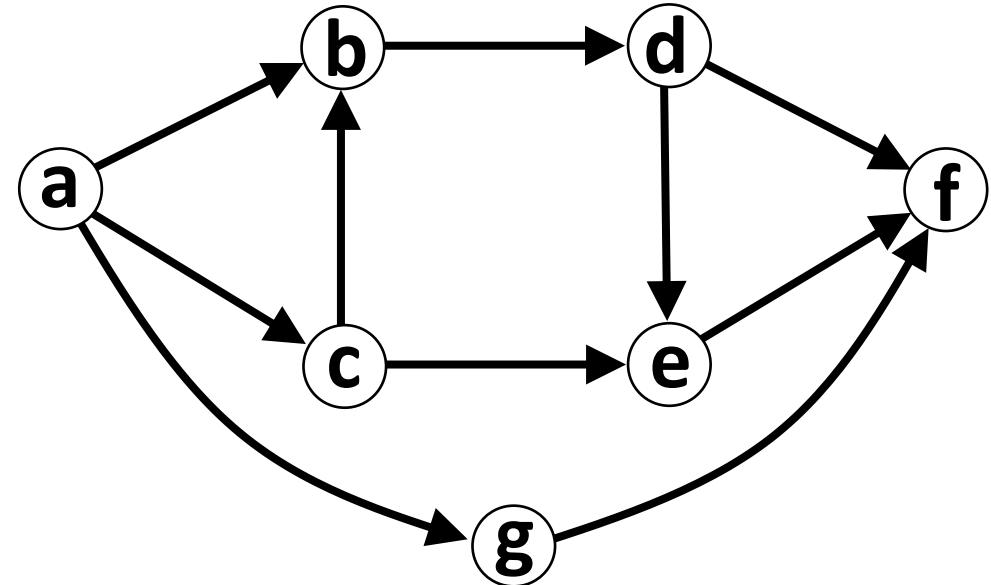
Find the Longest Path in a DAG

Plan:

- Topologically sort vertices.
- Make array to store length of longest path that ends at each vertex.
- For each vertex in order, calculate longest path as:

$\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .

(Or 0 if there are no incoming neighbors)



{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	0	1	0	0	0	0

Find the Longest Path in a DAG

Plan:

- Topologically sort vertices.
- Make array to store length of longest path that ends at each vertex.
- For each vertex in order, calculate longest path as:

$\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .

(Or 0 if there are no incoming neighbors)



{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	0	1	0	0	0	0

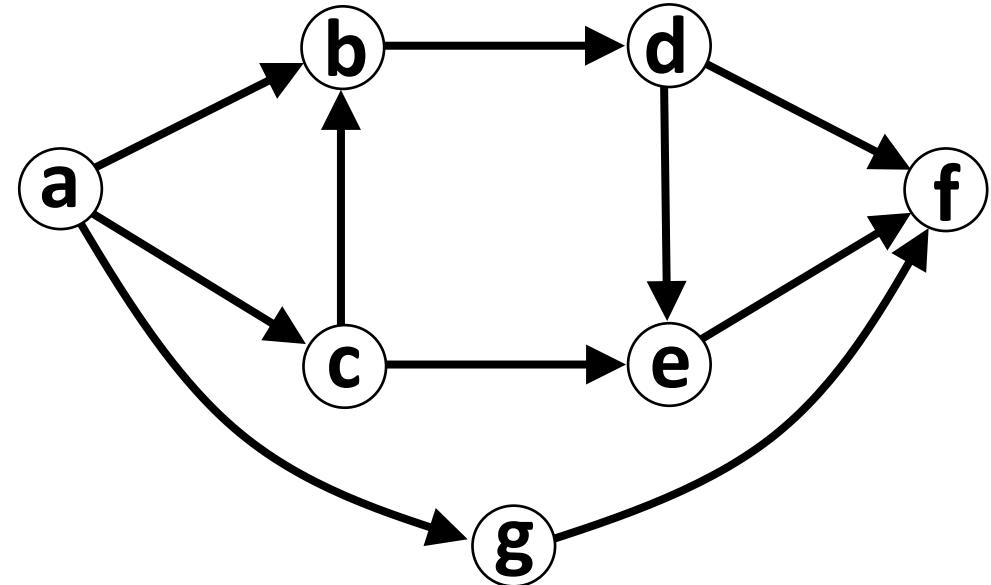
Find the Longest Path in a DAG

Plan:

- Topologically sort vertices.
- Make array to store length of longest path that ends at each vertex.
- For each vertex in order, calculate longest path as:

$\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .

(Or 0 if there are no incoming neighbors)



{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	0	1	0	0	0	1

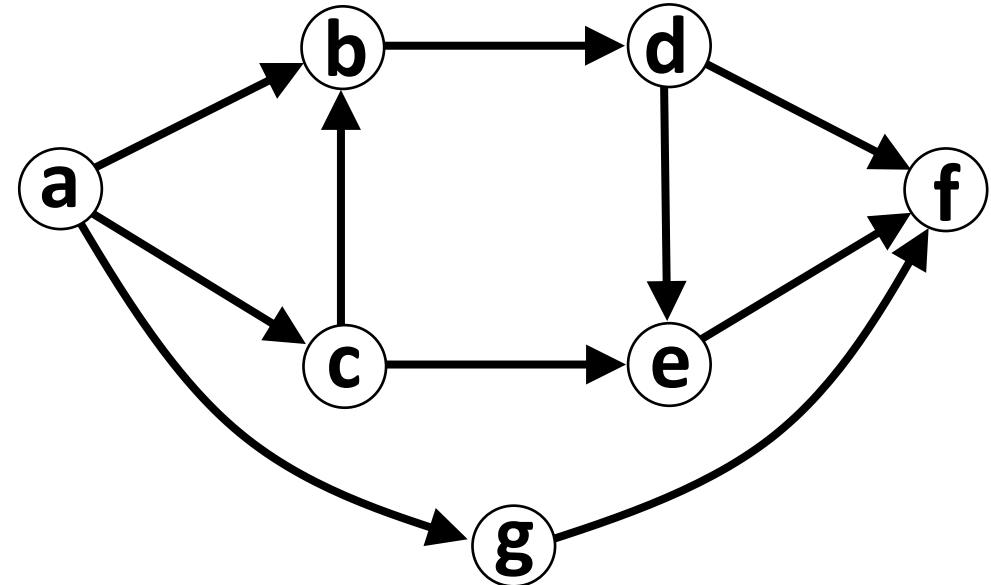
Find the Longest Path in a DAG

Plan:

- Topologically sort vertices.
- Make array to store length of longest path that ends at each vertex.
- For each vertex in order, calculate longest path as:

$\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .

(Or 0 if there are no incoming neighbors)



{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	0	1	0	0	0	1

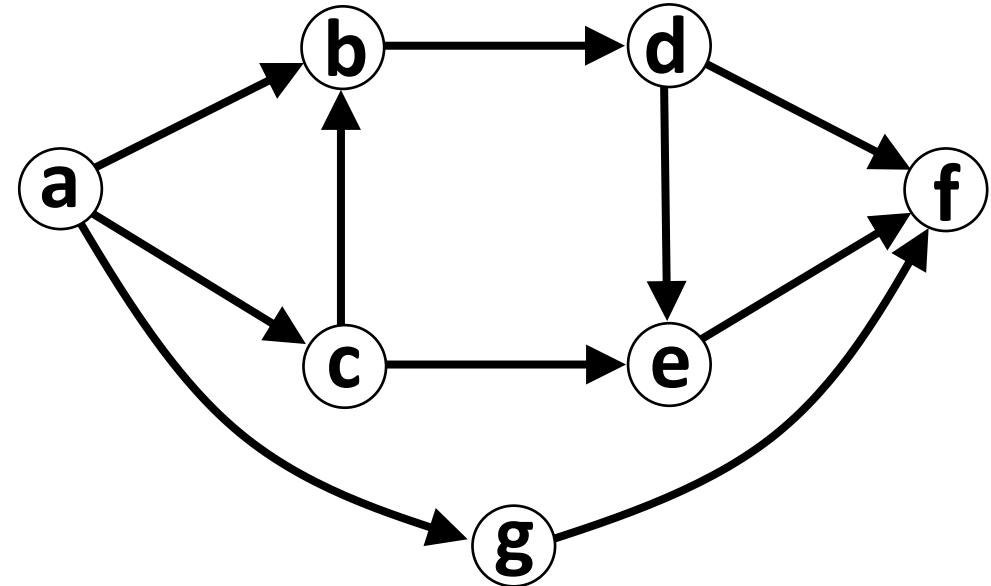
Find the Longest Path in a DAG

Plan:

- Topologically sort vertices.
- Make array to store length of longest path that ends at each vertex.
- For each vertex in order, calculate longest path as:

$\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .

(Or 0 if there are no incoming neighbors)



{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	2	1	0	0	0	1

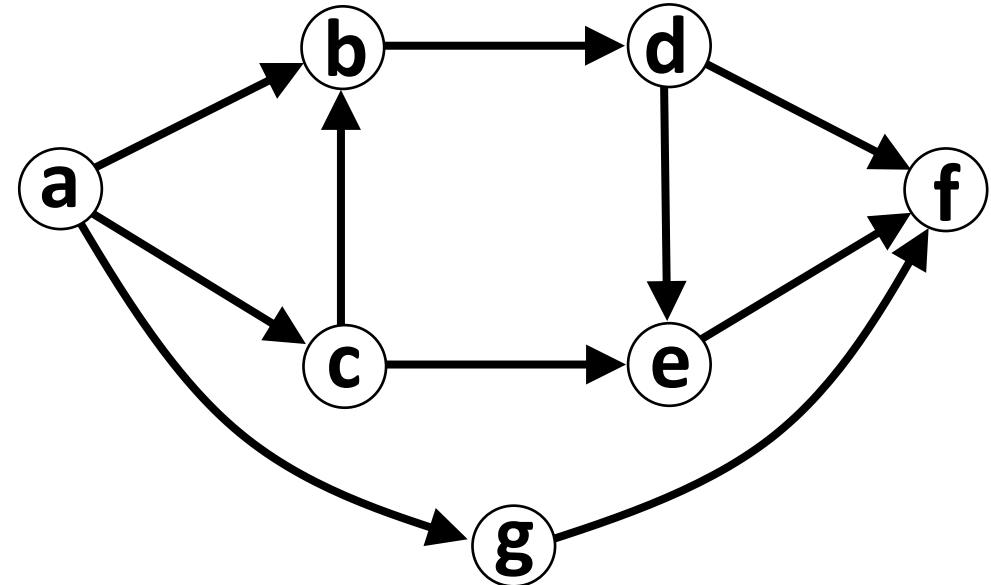
Find the Longest Path in a DAG

Plan:

- Topologically sort vertices.
- Make array to store length of longest path that ends at each vertex.
- For each vertex in order, calculate longest path as:

$\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .

(Or 0 if there are no incoming neighbors)



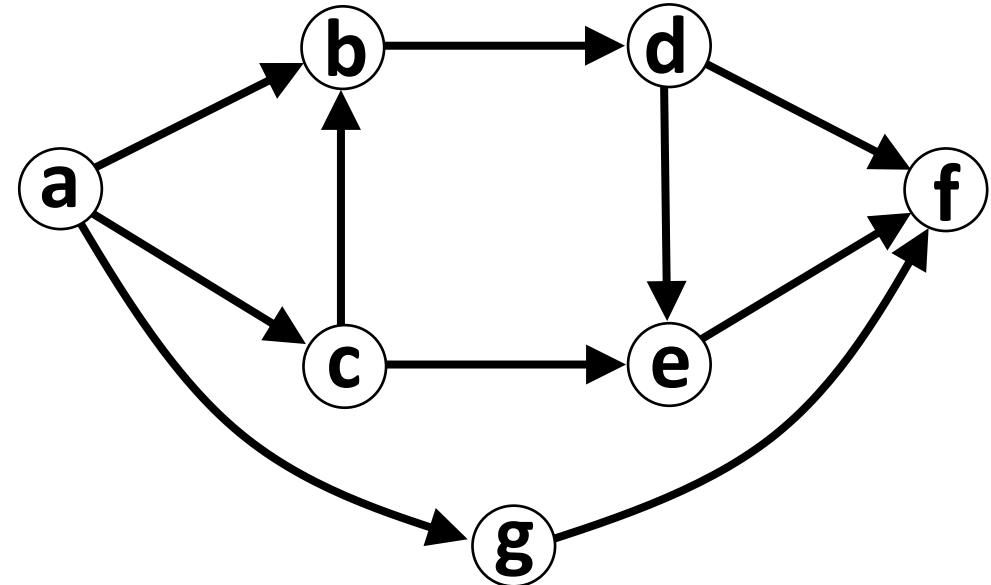
{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	2	1	3	4	5	1

Find the Longest Path in a DAG

Plan:

- Topologically sort vertices.
- Make array to store length of longest path that ends at each vertex.
- For each vertex in order, calculate longest path as:
$$\max_n(\text{longest path to } n) + 1,$$
 for all incoming neighbors $n.$
- Largest value in array = Longest path.



{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	2	1	3	4	5	1

Find the Longest Path in a DAG

```
longest_path(G=(v, E)):  
    pathLengths = [0, ..., 0]  
    Let  $v_{\text{sort}}$  be topologically sort vertices  
    for each vertex  $v$  in  $v_{\text{sort}}$ :  
        for each incoming neighbor  $n$  of  $v$ :  
            if  $\text{pathLengths}[n] + 1 > \text{pathLengths}[v]$ :  
                 $\text{pathLengths}[v] = \text{pathLengths}[n] + 1$   
    return maxvalue(pathLengths)
```

Running time: ?

Find the Longest Path in a DAG

```
longest_path(G=(V, E)):
```

```
    pathLengths = [0, ..., 0]
```

Let V_{sort} be topologically sort vertices

```
for each vertex v in  $V_{\text{sort}}$ :
```

```
    for each incoming neighbor n of v:
```

```
        if pathLengths[n] + 1 > pathLengths[v]:
```

```
            pathLengths[v] = pathLengths[n] + 1
```

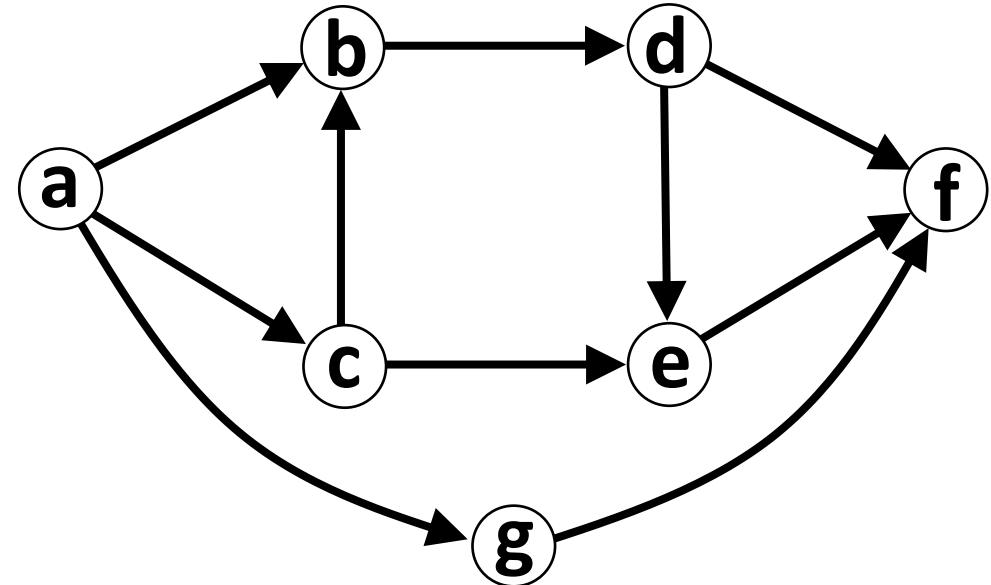
```
return maxvalue(pathLengths)
```

Running time: $O(\text{Topological Sort} + |V|^2) \in O(|V|^2)$

Find the Longest Path in a DAG

Plan:

- Topologically sort vertices.
- Make array to store length of longest path that ends at each vertex.
- For each vertex in order, calculate longest path as:
$$\max_n(\text{longest path to } n) + 1,$$
 for all incoming neighbors $n.$
- Largest value in array = Longest path.



{a, c, g, b, d, e, f}

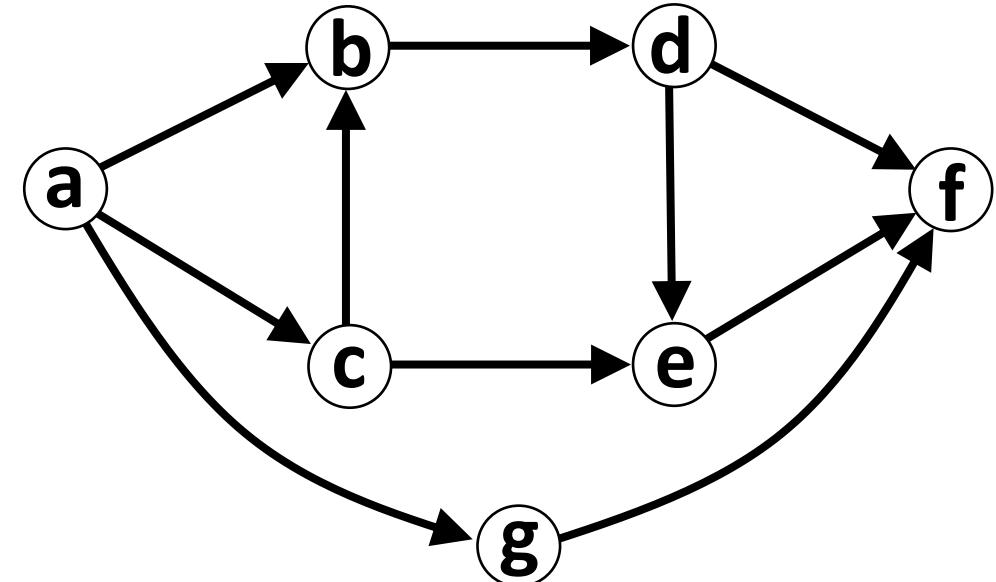
a	b	c	d	e	f	g
0	2	1	3	4	5	1

Find the Longest Path in a DAG

Plan:

- Topologically sort vertices.
- Make array to store length of longest path that ends at each vertex.
- For each vertex n , calculate longest path to n + 1, among incoming neighbors n .
- Largest value in array = Longest path.

So, what's the path??



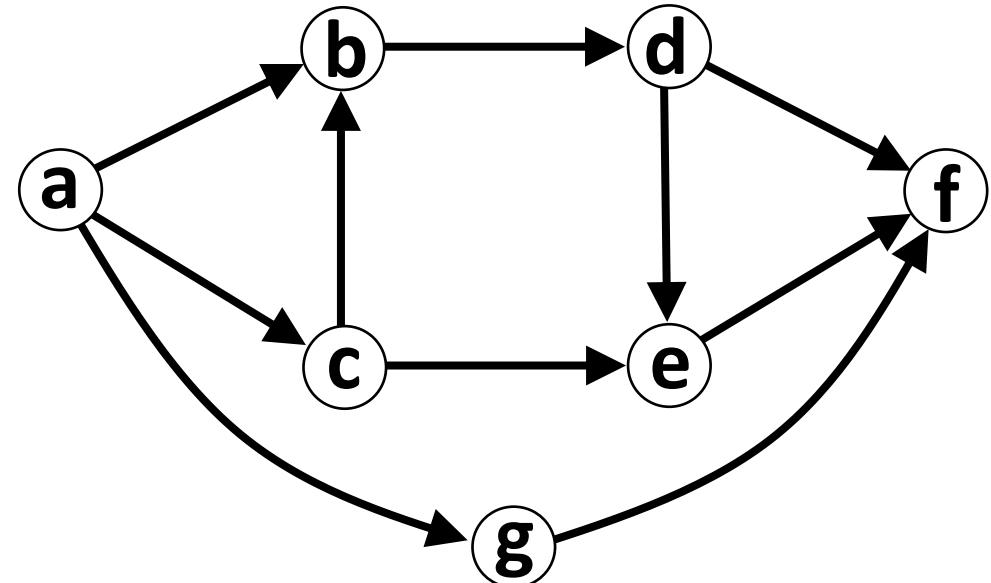
{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	2	1	3	4	5	1

Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.



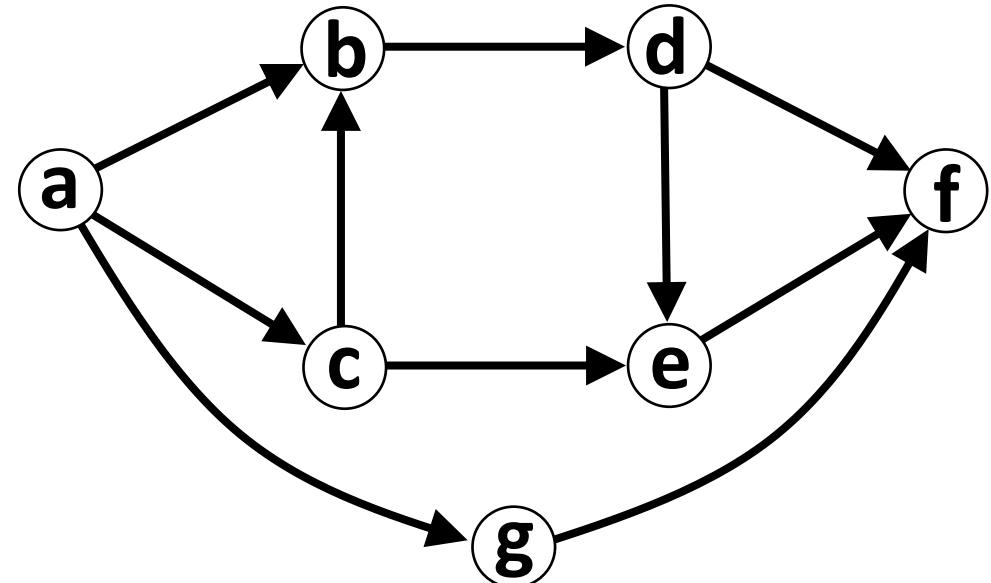
{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	2	1	3	4	5	1
-	-	-	-	-	-	-

Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.
- When neighbor with longest path is determined, save that neighbor.



{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	2	1	3	4	5	1
-	-	-	-	-	-	-

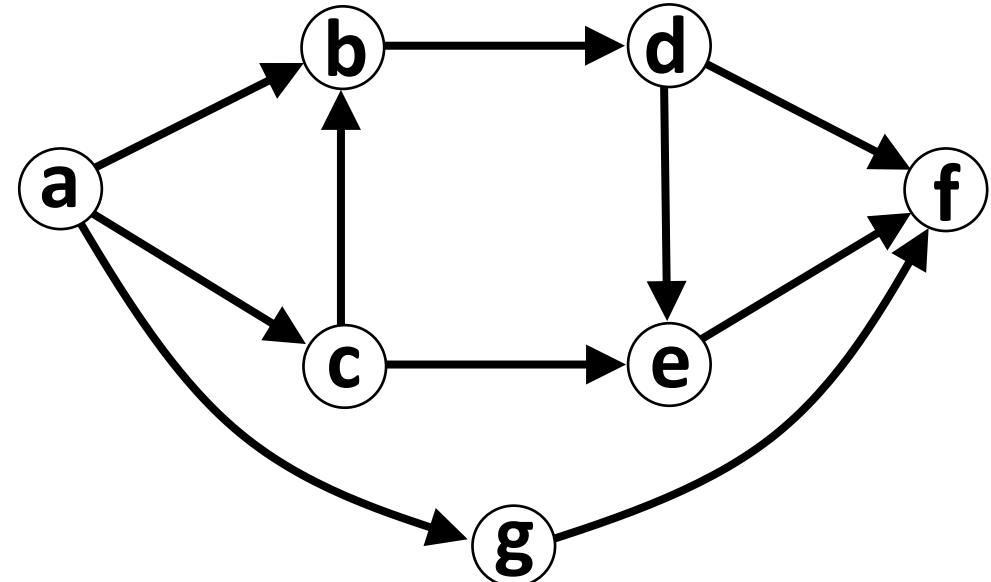
Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.
- When neighbor with longest path is determined, save that neighbor.

For each vertex in order, calculate longest path as:

$\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .



{a, c, g, b, d, e, f}

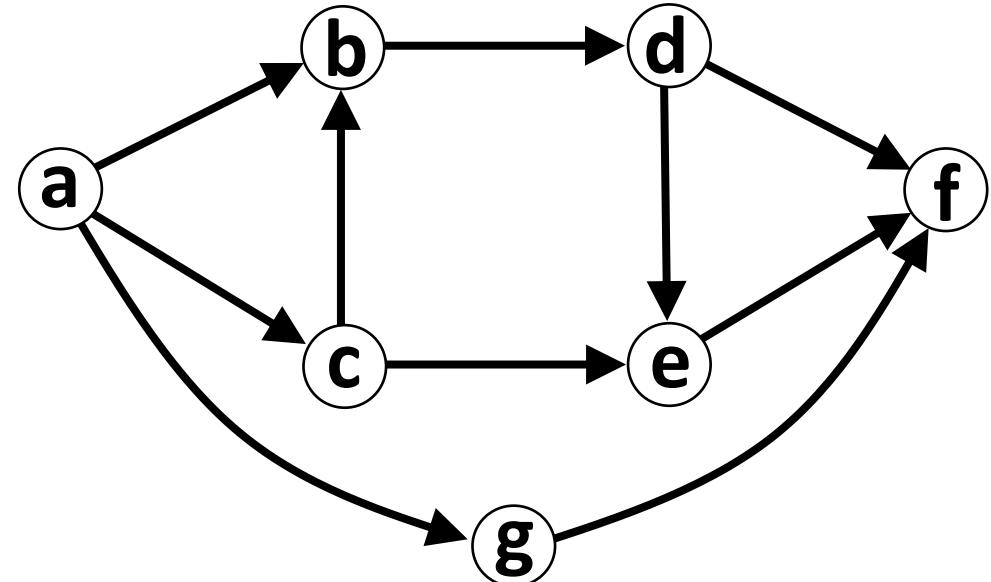
a	b	c	d	e	f	g
0	0	0	0	0	0	0
-	-	-	-	-	-	-

Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.
- When neighbor with longest path is determined, save that neighbor.

For each vertex in order, calculate longest path as:
 $\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .



{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	0	0	0	0	0	0
-	-	-	-	-	-	-

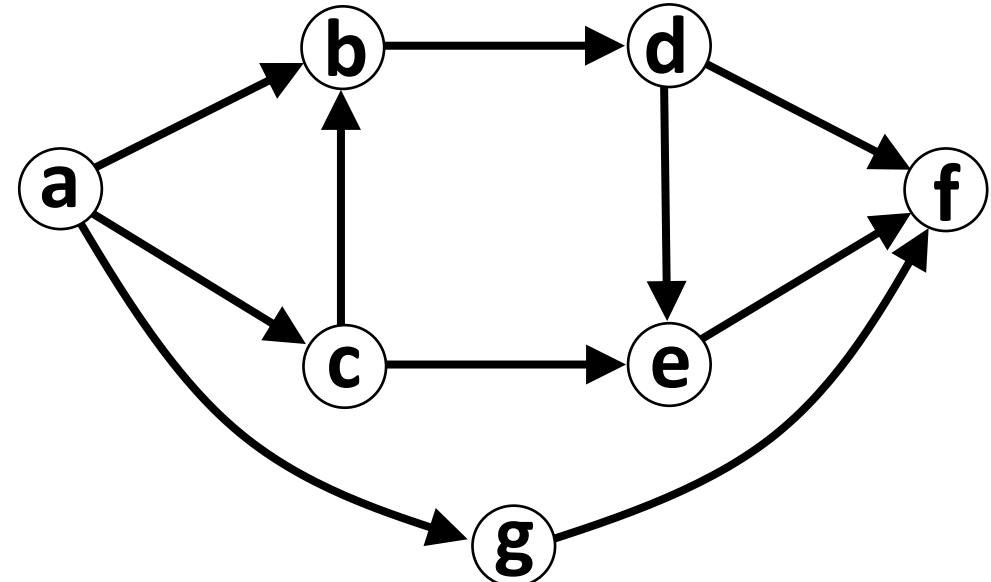
Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.
- When neighbor with longest path is determined, save that neighbor.

For each vertex in order, calculate longest path as:

$\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .



{a, **c**, g, b, d, e, f}

a	b	c	d	e	f	g
0	0	0	0	0	0	0
-	-	-	-	-	-	-

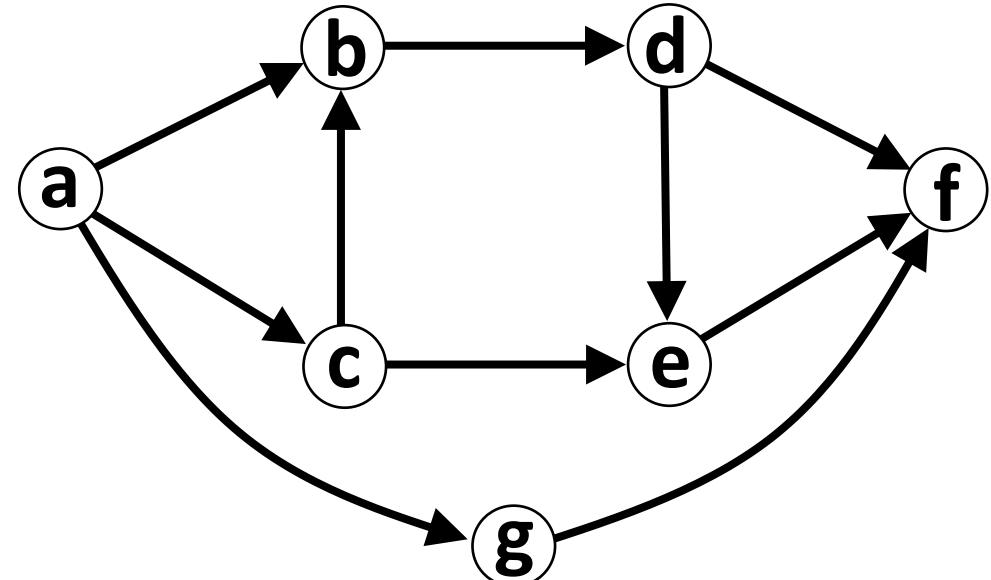
Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.
- When neighbor with longest path is determined, save that neighbor.

For each vertex in order, calculate longest path as:

$\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .



{a, **c**, g, b, d, e, f}

a	b	c	d	e	f	g
0	0	1	0	0	0	0
-	-	-	-	-	-	-

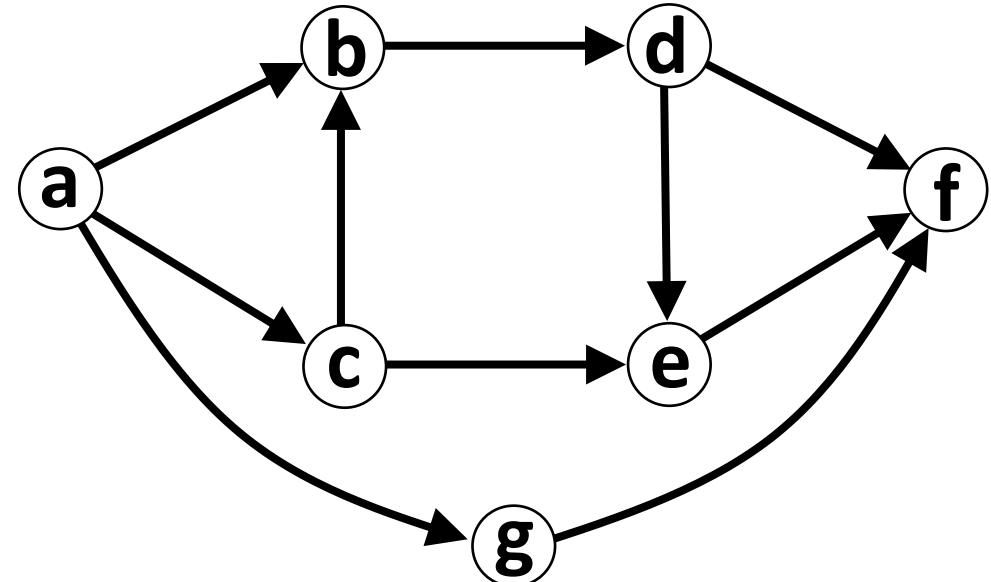
Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.
- When neighbor with longest path is determined, save that neighbor.

For each vertex in order, calculate longest path as:

$\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .



{a, **c**, g, b, d, e, f}

a	b	c	d	e	f	g
0	0	1	0	0	0	0
-	-	a	-	-	-	-

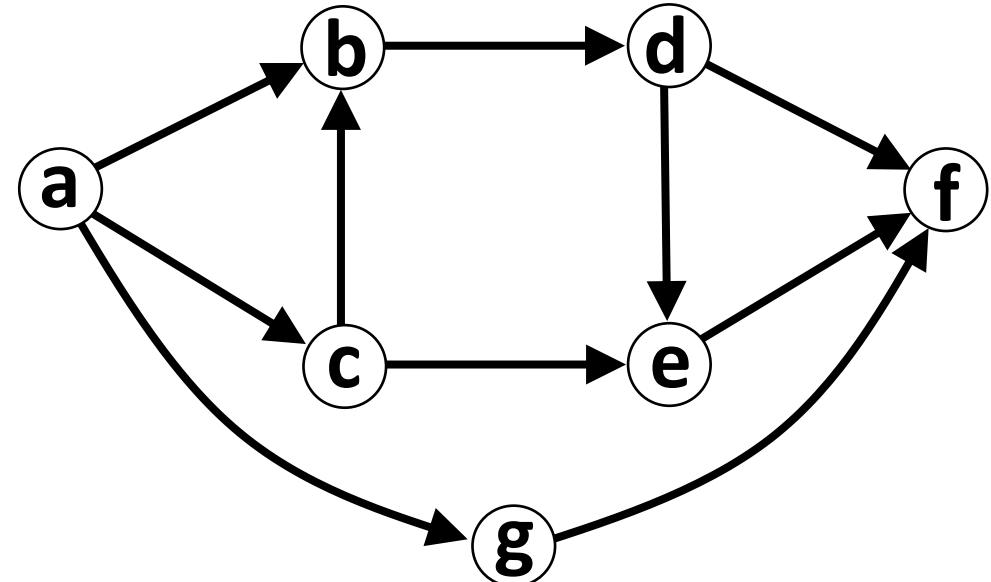
Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.
- When neighbor with longest path is determined, save that neighbor.

For each vertex in order, calculate longest path as:

$\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .



{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	0	1	0	0	0	1
-	-	a	-	-	-	a

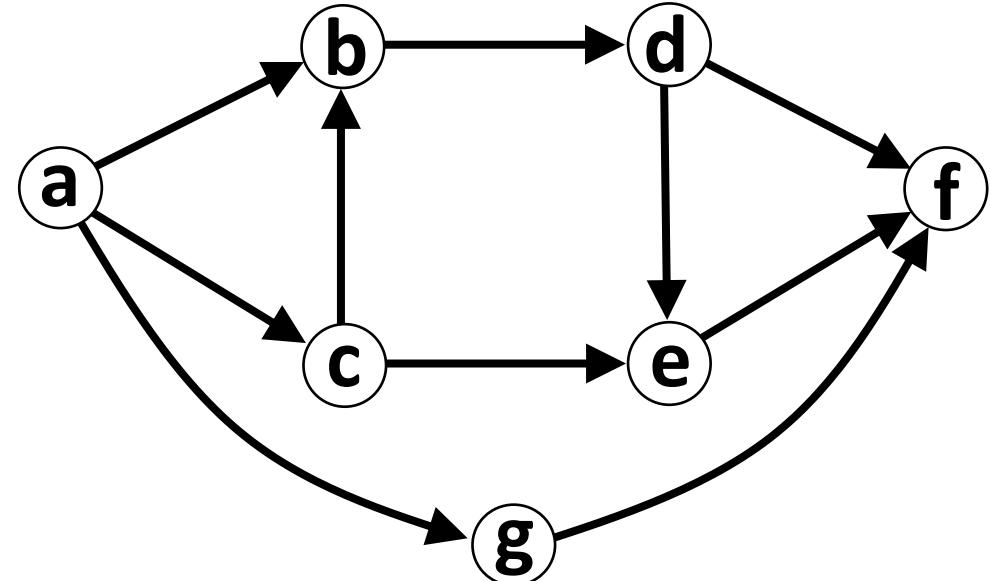
Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.
- When neighbor with longest path is determined, save that neighbor.

For each vertex in order, calculate longest path as:

$\max_n(\text{longest path to } n) + 1$,
for all incoming neighbors n .



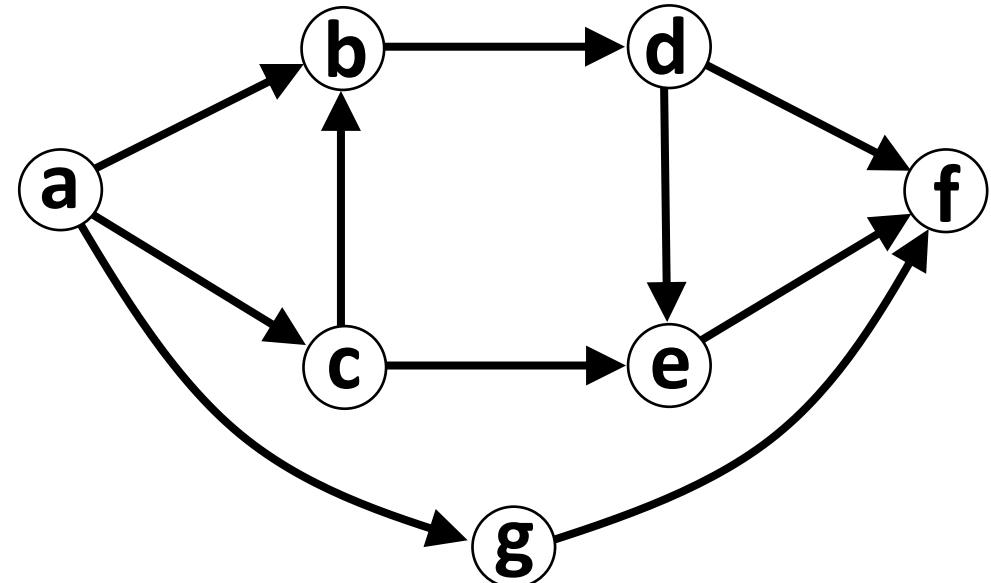
{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	2	1	0	0	0	1
-	c	a	-	-	-	a

Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.
- When neighbor with longest path is determined, save that neighbor.



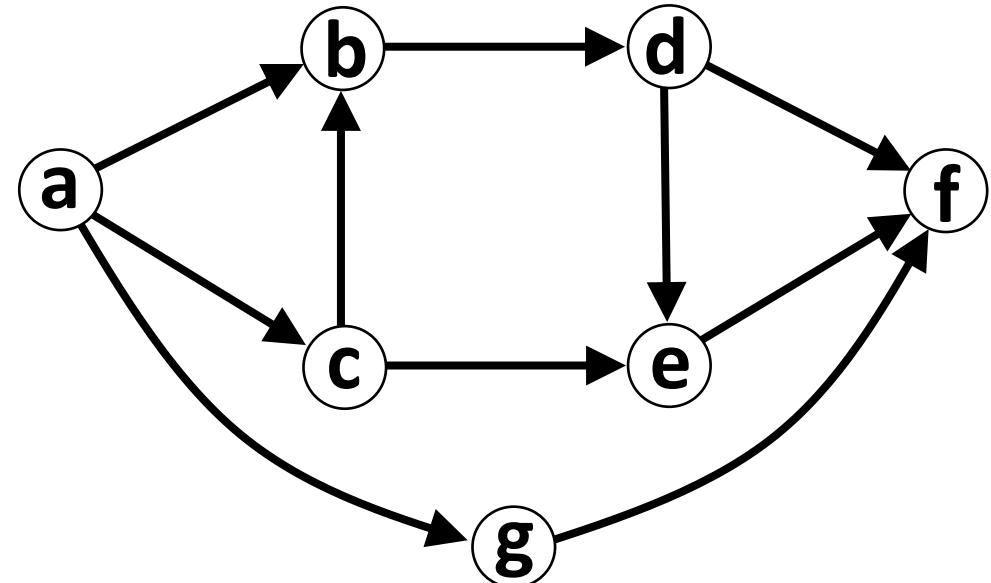
{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	2	1	3	4	5	1
-	c	a	b	d	e	a

Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.
- When neighbor with longest path is determined, save that neighbor.
- Backtrack through array to construct path.



{a, c, g, b, d, e, f}

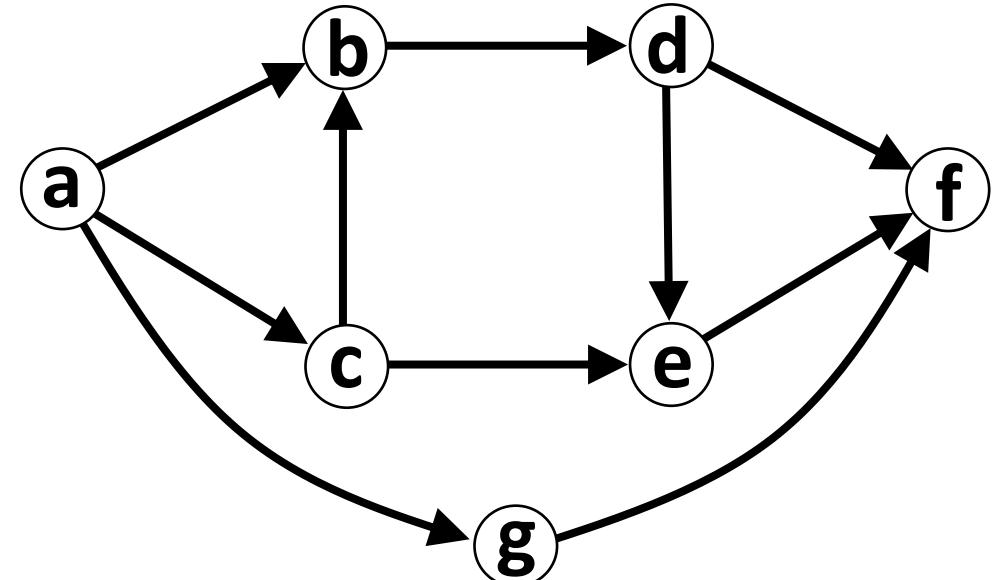
a	b	c	d	e	f	g
0	2	1	3	4	5	1
-	c	a	b	d	e	a

Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.
- When neighbor with longest path is determined, save that neighbor.
- Backtrack through array to construct path.

path: f



{a, c, g, b, d, e, f}

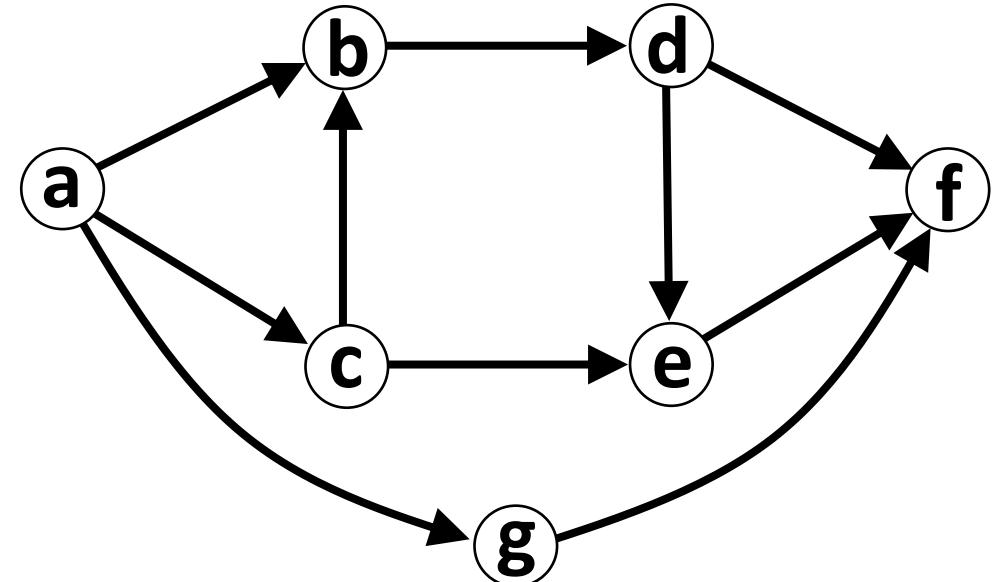
a	b	c	d	e	f	g
0	2	1	3	4	5	1
-	c	a	b	d	e	a

Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.
- When neighbor with longest path is determined, save that neighbor.
- Backtrack through array to construct path.

path: f <- e



{a, c, g, b, d, e, f}

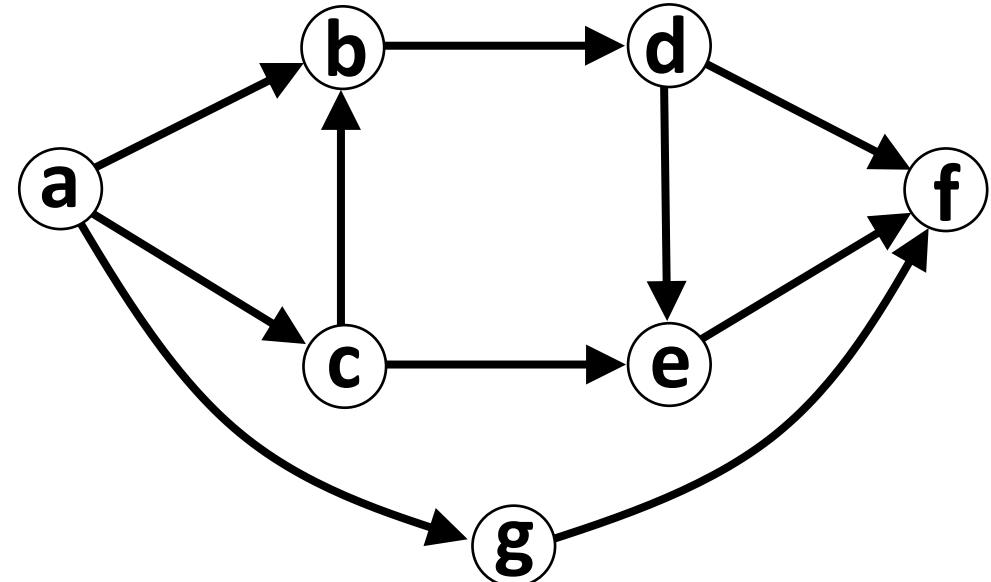
a	b	c	d	e	f	g
0	2	1	3	4	5	1
-	c	a	b	d	e	a

Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.
- When neighbor with longest path is determined, save that neighbor.
- Backtrack through array to construct path.

path: f <- e <- d



{a, c, g, b, d, e, f}

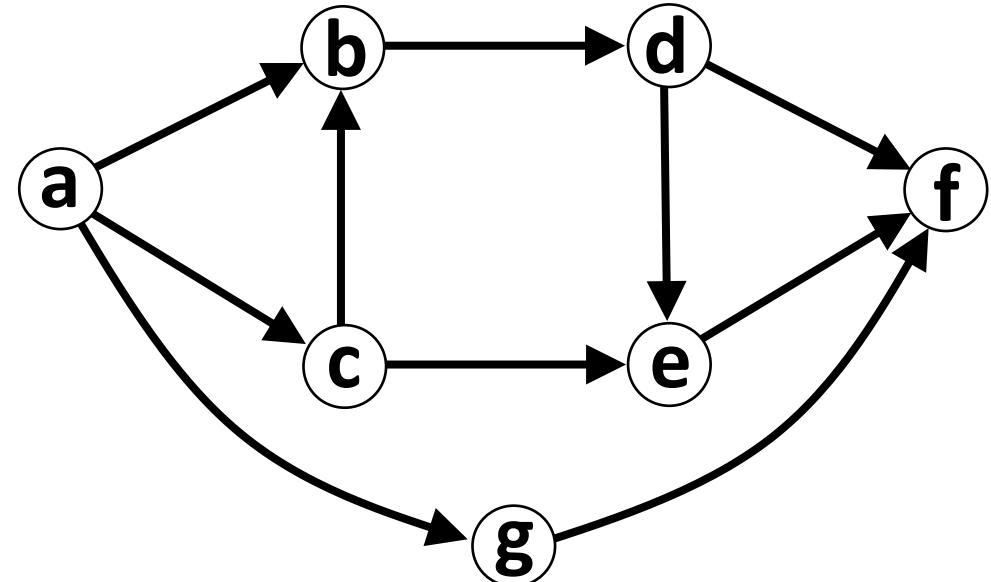
a	b	c	d	e	f	g
0	2	1	3	4	5	1
-	c	a	b	d	e	a

Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.
- When neighbor with longest path is determined, save that neighbor.
- Backtrack through array to construct path.

path: f <- e <- d <- b



{a, c, g, b, d, e, f}

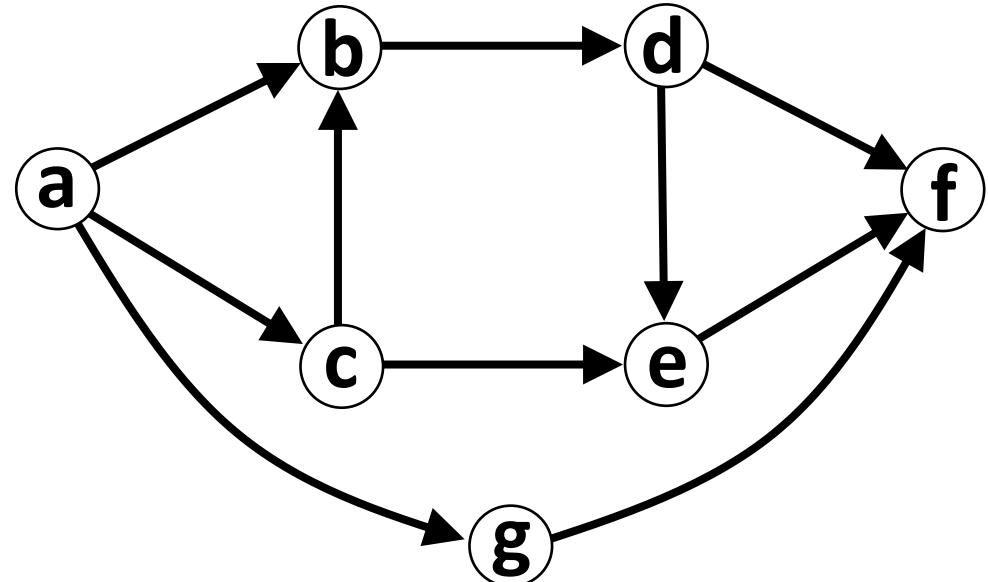
a	b	c	d	e	f	g
0	2	1	3	4	5	1
-	c	a	b	d	e	a

Find the Longest Path in a DAG

Plan:

- Make second array that tracks where longest path came from.
- When neighbor with longest path is determined, save that neighbor.
- Backtrack through array to construct path.

path: f <- e <- d <- b <- c <- a



{a, c, g, b, d, e, f}

a	b	c	d	e	f	g
0	2	1	3	4	5	1
-	c	a	b	d	e	a