Closest Pair of Points
CSC| 532

Closest Pair Problem

Given n points, find a pair of points with the
smallest distance between them.

Closest Pair Problem

Pi | P P,
P1 / d1 2 . d1’n
P2 d2,1 / . d2,n
I:)n dn,1 dn 2 /

Simple solution:

1. Compute distance for each pair.
2. Select smallest.
Running Time =7

Closest Pair Problem

Pi | P P,
P1 / d1 2 . d1’n
P2 d2,1 / . d2,n
I:)n dn,1 dn 2 /

Simple solution:

1. Compute distance for each pair.
2. Select smallest.
Running Time = 0(n?)

Closest Pair Problem

1. Compute distance for each pair.
2. Select smallest.
Running Time = 0(n?)

Closest Pair Problem

y) o 0 ®
o . o P1 P2 Pn
° Pi| / |dip din

o]

o ¢ ® P2 d2,1 / d2 n

o
> o °
[> o Pn dn,1 dn 2 /
o o

Divide and Conquer Algorithms:
* Divide into subproblems that are smaller instances of the original.
 “Conquer” the subproblems by solving them recursively.
* Combine subproblem solutions into solution for original problem.

Closest Pair Problem — Divide and Conquer

How can we make the problem
smaller and easier?

Closest Pair Problem — Divide and Conquer

How can we make the problem
smaller and easier?

Split it up!

Closest Pair Problem — Divide and Conquer

Divide: How can we draw line so that
half of the points are on each side?

Closest Pair Problem — Divide and Conquer

Divide: How can we draw line so that
half of the points are on each side?

1. Sort by x-coordinate.
2. Put L at median value.

Closest Pair Problem — Divide and Conquer

Conquer:

1Details to follow

Closest Pair Problem — Divide and Conquer

Combine: If we had the closest left
pair and the closest right pair, how
do we determine actual closest?

Closest Pair Problem — Divide and Conquer

Combine: If we had the closest left
pair and the closest right pair, how
do we determine actual closest?

1. Return minimum of: d|oft, dright-

Closest Pair Problem — Divide and Conquer

Combine: If we had the closest left
pair and the closest right pair, how
do we determine actual closest?

1. Return minimum of: d|oft, dright-

Closest Pair Problem — Divide and Conquer

Combine: If we had the closest left
pair and the closest right pair, how
do we determine actual closest?

1. Return minimum of: djeft, dright:

dmin_straddle-

Closest Pair Problem — Divide and Conquer

How should we search for “straddle
points”?

We know 6 = min(d|aft, dright)-

Closest Pair Problem — Divide and Conquer

How should we search for “straddle
points”?

We know 6 = min(d|aft, dright)-

Do we need to consider this point
. when looking for straddle points?

Closest Pair Problem — Divide and Conquer

Rule: We only need to hunt for
straddle points at most 6 away
from L.

Reason: Points outside L + 6 cannot
reach the other side in less than §.

Closest Pair Problem — Divide and Conquer

Rule: We only need to hunt for
straddle points at most 6 away
from L.

Reason: Points outside L = 6 cannot
reach the other side in less than §.

Let S be the set of straddle points.

Closest Pair Problem — Divide and Conquer

Can we just compare all left
straddle points to all right straddle
points?

Closest Pair Problem — Divide and Conquer

Can we just compare all left
straddle points to all right straddle
points?

So, we need to reduce the number
of straddle points we have to
consider.

Closest Pair Problem — Divide and Conquer

..) o) e)
Divide S into > X P boxes.

Can we focus our search to certain
boxesl

Closest Pair Problem — Divide and Conquer

.. i o) o)
Divide S into > X P boxes.
Can we focus our search to certain
boxes?

Yes — we only care about
points within 0.

Closest Pair Problem — Divide and Conquer

.. i o) o)
Divide S into > X P boxes.
Can we focus our search to certain
boxes?

Yes — we only care about
points within 0.

Closest Pair Problem — Divide and Conquer

.. i o) o)
Divide S into > X P boxes.
Can we focus our search to certain
boxes?

Yes — we only care about
points within 0.

Does this reduce the number of
points we need to considerr

Closest Pair Problem — Divide and Conquer

Can we have multiple points in
one box?

Closest Pair Problem — Divide and Conquer

Can we have multiple points in
one box?

No. ¢ is the smallest distance
on either side of L.

= at most one point per box.

Closest Pair Problem — Divide and Conquer

Only care about certain boxes
+ At most one point per box

Fixed number of points to check

1. Sort straddle points by y
coordinate.

2. Only possible “6-busting”
points are the 11 points after
our point being considered.

Closest Pair Problem — Divide and Conquer

Only care about certain boxes
+ At most one point per box

Fixed number of points to check

Straddle point hunting:
0(n%) — O0(nlogn)

Closest Pair Problem — Algorithm

findClosestPair(P):
1. Sort points by x-coord, find L, make PI , P .
eft” right

. Determine dleft and dright-

. Let 0 = min(d|qft, dright)-

. Sort § by y-coord.

2

3

4. Let S be straddle points within ¢ of L.

5

6. Compare pointsin S to next 11 points and update 0.
7

. Return §.

Closest Pair Problem — Algorithm

findClosestPair(P):

2. Determine dleft and dright°

Recursively find closest
pairs on each side.

Closest Pair Problem — Divide and Conquer

Recursive Process:

Closest Pair Problem — Divide and Conquer

Recursive Process:
1. Divide points in half.

Closest Pair Problem — Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining
dleft and dright is trivial.

Closest Pair Problem — Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining
dleft and dright is trivial.

Closest Pair Problem — Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining
dleft and dright is trivial.

Closest Pair Problem — Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining
dleft and dright is trivial.

When is finding d |t and dright trivial?

Closest Pair Problem — Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining
d|eft and dright is trivial.

When is finding d|oft and dright trivial?

When there are one or two points
on the left and right sides.

Closest Pair Problem — Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only
one or two points on each side.

When is finding d|oft and dright trivial?

When there are one or two points
on the left and right sides.

Closest Pair Problem — Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only
one or two points on each side.
3. Combine left and right sides to
find closest of subproblems.

Recursively find closest

pairs on each side.

Closest Pair Problem — Divide and Conquer

Recursive Process:
1.
2.

Divide points in half.

Repeat step 1 until there are only
one or two points on each side.
Combine left and right sides to
find closest of subproblems.

Recursively find closest
pairs on each side.

Closest Pair Problem — Divide and Conquer

Recursive Process:
1.
2.

Divide points in half.
Repeat step 1 until there are only
one or two points on each side.

. Combine left and right sides to

find closest of subproblems.
Repeat until initial division is
combined.

Recursively find closest
pairs on each side.

Closest Pair Problem — Divide and Conquer

Recursive Process:

1. Divide points in half.

2. Repeat step 1 until there are only
one or two points on each side.

3. Combine left and right sides to
find closest of subproblems.

4. Repeat until initial division is
combined.

Closest Pair Problem — Divide and Conquer

Recursive Process:
1.
2.

Divide points in half.
Repeat step 1 until there are only
one or two points on each side.

. Combine left and right sides to

find closest of subproblems.
Repeat until initial division is
combined.

Closest Pair Problem — Algorithm

findClosestPair(P):
1. Sort points by x-coord, find L, make

P _,P.

left” ~ right”

2. Determine djft and dright° —

d|cft = findClosestPair(P)

left

dright = findClosestPair(P

right

)

Closest Pair Problem — Algorithm

findClosestPair(P):

1. Sort points by x-coord, find L, make PI , P .
eft” right

. Determine dleft and dright-

Valid?

. Let 0 = min(d|qft, dright)'

. Sort § by y-coord.

2
3
4. Let S be straddle points within ¢ of L.
5
6. Compare pointsin S to next 11 points and update 0.
7

. Return §.

Closest Pair Problem — Algorithm

findClosestPair(P):

1. Sort points by x-coord, find L, make PI , P .
eft” right

. Determine d, and dright-
Valid?

It’s returning the distance
between two pointsin P.

. Let 0 = min(d|qft, dright)'

. Sort § by y-coord.

2
3
4. Let S be straddle points within ¢ of L.
5
6. Compare pointsin S to next 11 points and update 0.
7

. Return §.

Closest Pair Problem — Algorithm

findClosestPair(P):

1. Sort points by x-coord, find L, make PI , P .
eft” right

. Determine d, and dright' Optimal?

. Let 0 = min(d|qft, dright)'

. Sort § by y-coord.

2
3
4. Let S be straddle points within ¢ of L.
5
6. Compare pointsin S to next 11 points and update 0.
7

. Return §.

Closest Pair Problem — Algorithm

findClosestPair(P):
1. Sort points by x-coord, find L, make P, P_

left” ~ right”

. Determine d, and dright' Optimal?

. Leto = min(d|eft, dright)' If there was a closer pair, they

on the left side, right side, or
. Sort S by y-coord. as a straddle point.

2
3
4. Let S be straddle points within & of L.|Would have been compared
5
6. Compare pointsin S to next 11 points and update 0.

7

. Return §.

Closest Pair Problem — Algorithm

findClosestPair(P):

1. Sort points by x-coord, find L, make PI , P .
eft” right

. Determine dleft and dright-

. Let 6 = min(djeft, dright). Running Time?

. Sort § by y-coord.

2
3
4. Let S be straddle points within ¢ of L.
5
6. Compare pointsin S to next 11 points and update 0.
7

. Return §.

Closest Pair Problem — Algorithm

findClosestPair(P):

1. Sort points by x-coord, find L, make P _,P_ . O(nlogn)

left” = right’
. Determine dleft and dright-

. Let 0 = min(d|qft, dright)'

. Sort § by y-coord.

2

3

4. Let S be straddle points within ¢ of L.

5

6. Compare pointsin S to next 11 points and update 0.
7

. Return §.

Closest Pair Problem — Algorithm

findClosestPair(P):

1. Sort points by x-coord, find L, make P _,P_ . O(nlogn)

left” = right’
. Determine dleft and dright- TBD

. Let 0 = min(d|qft, dright)'

. Sort § by y-coord.

2

3

4. Let S be straddle points within ¢ of L.

5

6. Compare pointsin S to next 11 points and update 0.
7

. Return §.

Closest Pair Problem — Algorithm

findClosestPair(P):

1. Sort points by x-coord, find L, make P _,P_ . O(nlogn)

left” = right’
. Determine dleft and dright- TBD

. Let 0 = min(d|qft, dright)- Oo(1)

. Sort § by y-coord.

2

3

4. Let S be straddle points within ¢ of L.

5

6. Compare pointsin S to next 11 points and update 0.
7

. Return §.

Closest Pair Problem — Algorithm

findClosestPair(P):

1. Sort points by x-coord, find L, make P _,P_ . O(nlogn)

left” = right’
. Determine dleft and dright- TBD

. Let 0 = min(d|qft, dright)- Oo(1)

. Sort § by y-coord.

2

3

4. Let S be straddle points within § of L. O(n)

5

6. Compare pointsin S to next 11 points and update 0.
7

. Return §.

Closest Pair Problem — Algorithm

findClosestPair(P):

1. Sort points by x-coord, find L, make P _,P_ . O(nlogn)

left” = right’
. Determine dleft and dright- TBD

. Let 0 = min(d|qft, dright)- Oo(1)

. Sort S by y-coord. O(nlogn)

2

3

4. Let S be straddle points within § of L. O(n)

5

6. Compare pointsin S to next 11 points and update 0.
7

. Return §.

Closest Pair Problem — Algorithm

findClosestPair(P):

1. Sort points by x-coord, find L, make P _,P_ . O(nlogn)

left” = right’
. Determine dleft and dright- TBD

. Let 0 = min(d|qft, dright)- Oo(1)

. Sort S by y-coord. O(nlogn)

2

3

4. Let S be straddle points within 6 of L. O(n)

5

6. Compare pointsin S to next 11 points and update 4. O(n)
7/

. Return §.

Closest Pair Problem — Algorithm

findClosestPair(P):

1. Sort points by x-coord, find L, make P _,P_ . O(nlogn)

left” = right’
. Determine dleft and dright- TBD

. Let 0 = min(d|qft, dright)- Oo(1)

. Sort S by y-coord. O(nlogn)

2

3

4. Let S be straddle points within 6 of L. O(n)

5

6. Compare pointsin S to next 11 points and update 4. O(n)
7/

. Return 6. 0(1)

Closest Pair Problem — Algorithm

findClosestPair(P):

2. Determine dleft and dright- TBD

Closest Pair Problem — Algorithm

findClosestPair(P):

2. Determine dleft and dright- TBD

<_

How much work is
done at the first level?

Closest Pair Problem — Algorithm

findClosestPair(P):

1. Sort points by x-coord, find L, make P _,P_ . O(nlogn)

left” = right’
. Determine dleft and dright- TBD

. Let 0 = min(d|qft, dright)- Oo(1)

. Sort S by y-coord. O(nlogn)

2

3

4. Let S be straddle points within 6 of L. O(n)

5

6. Compare pointsin S to next 11 points and update 4. O(n)
7/

. Return 6. 0(1)

Closest Pair Problem — Algorithm

findClosestPair(P):

2. Determine dleft and dright- TBD

O(nlogn)

<_

How much work is
done at the first level?

Closest Pair Problem — Algorithm

findClosestPair(P):

2. Determine dleft and dright- TBD

O(nlogn)

O

T Splitinto P, P

left’” ~ right
and do how much

work on each?

Closest Pair Problem — Algorithm

findClosestPair(P):

2. Determine dleft and dright- TBD

O((nlogn) /2)

O(nlogn)

O

O((nlogn) /2)

T Splitinto P, P

left’” ~ right
and do how much

work on each?

Closest Pair Problem — Algorithm

findClosestPair(P):

2. Determine dleft and dright- TBD

O(nlogn)

O

O((nlogn) /2) O((nlogn) / 2)

N\ N\

O((nlogn) /4) || O((nlogn) /4) || O((nlogn) /4) || O((nlogn) / 4)

N N N N

Closest Pair Problem — Algorithm

findClosestPair(P):

2. Determine dleft and dright- TBD

O(nlogn)

O((nlogn) /2)

N\

O

O((nlogn) /2)

N\

O((nlogn) / 4)

O((nlogn) / 4)

O((nlogn) / 4)

O((nlogn) /4)

N N N N

1 Height = ?7?

Binary tree, divide
by 2 each level?

J

Closest Pair Problem — Algorithm

findClosestPair(P):

2. Determine dleft and dright- TBD

O(nlogn)
/\ Height = O(logn)

O((nlogn) /2) O((nlogn) /2)
/\ /\ Total
O((nlogn) /4) || O((nlogn) /4) || O((nlogn) /4) || O((nlogn) / 4) Running — O(TL lOgZ n)
/\ /\ /\ /\) Time

Closest Pair Problem — Algorithm

findClosestPair(P):

2. Determine dleft and @

O((nlogn) /2)

<\ Total

O((nlogn) /4) || O((nlogn) /4) || O((nlogn) /4) || O((nlogn) / 4) Running — O(n]()g2 n)

/\ /\ /\ /\ p Time

Closest Pair Problem — Algorithm

O(nlogn)

O((nlogn) /2)

N\

O

O((nlogn) / 2)

N\

1 Height = O(logn)

O((nlogn)/4) || O((nlogn) /4)

O((nlogn) /4) || O((nlogn) / 4)

N N

N N

J

Total
Running = O(nlog® n)
Time

Option 1: (Significantly) Reduce the height of the recursion tree.
Option 2: (Significantly) Reduce the amount of work done at each level.

Closest Pair Problem — Algorithm

findClosestPair(P):

1. Sort points by x-coord, find L, make P _,P_ . O(nlogn)

left” = right’
. Determine dleft and dright-

. Let 0 = min(d|qft, dright)- Oo(1)

. Sort S by y-coord. O(nlogn)

2

3

4. Let S be straddle points within 6 of L. O(n)

5

6. Compare pointsin S to next 11 points and update 4. O(n)
7/

. Return 6. 0(1)

Closest Pair Problem — Algorithm

findClosestPair(P):

1. Sort points by x-coord, find L, make P _,P_ . O(nlogn)

left” ~ right”

. Determine defy and dyjghy. Maybe we don’t need

. Let & = min(djeft, dright)- 0(1) to sort so often??

. Sort S by y-coord. O(nlogn)

2
3
4. Let S be straddle points within 6 of L. O(n)
5
6. Compare pointsin S to next 11 points and update 4. O(n)
7/

. Return 6. 0(1)

Closest Pair Problem — Algorithm

O(nlogn)

O

O((nlogn) /2) O((nlogn) /2)

N\ N\

1 Height = O(logn)

O((nlogn) /4) || O((nlogn) /4) || O((nlogn) /4) || O((nlogn) / 4)

N N N N

J

Total
Running = O(nlog® n)
Time

Plan:
* Presort by x-coordinate (X)

* Presort by y-coordinate (Y)
* Split X and Y by comparing to L.

Closest Pair Problem — Algorithm

findClosestPair(P):

1. Sort points by x-coord, find L, make P _,P_ . O(nlogn)

left” = right’
. Determine dleft and dright-

. Let 0 = min(d|qft, dright)- Oo(1)

. Sort S by y-coord. O(nlogn)

2

3

4. Let S be straddle points within 6 of L. O(n)

5

6. Compare pointsin S to next 11 points and update 4. O(n)
7/

. Return 6. 0(1)

Closest Pair Problem — Algorithm
0. Sort points by x-coordinate (X) and y-coordinate (Y).

Closest Pair Problem — Algorithm
0. Sort points by x-coordinate (X) and y-coordinate (Y). O(nlog n)

Closest Pair Problem — Algorithm

0. Sort points by x-coordinate (X) and y-coordinate (Y). O(nlog n)
findClosestPair(P):

1. Sort points by x-coord, find L, make P _,P_ . O(nlogn)

left” ~ right”

Closest Pair Problem — Algorithm

0. Sort points by x-coordinate (X) and y-coordinate (Y). O(nlog n)
findClosestPair(P):

1. Sertpeinrtsbyx——eoord; find L, split X, Y. O(n)

Closest Pair Problem — Algorithm
0. Sort points by x-coordinate (X) and y-coordinate (Y). O(nlog n)
findClosestPair(P):

1. Sertpeinrtsbyx——eoord; find L, split X, Y. O(n)
2. Determine dleft and dright-

3. Let 0 = min(d|aft, dright)- Oo(1)
4. Let S be straddle points within 6 of L. O(n)
5. Sort S by y-coord. O(nlogn)

Closest Pair Problem — Algorithm
0. Sort points by x-coordinate (X) and y-coordinate (Y). O(nlog n)
findClosestPair(P):

1. Sertpeinrtsbyx——eoord; find L, split X, Y. O(n)
2. Determine dleft and dright-

3. Let 0 = min(d|aft, dright)- 0(1)
4. Let S be straddle points within § of L. O(n)

5. SertSbyy-eoord——

Closest Pair Problem — Algorithm

0. Sort points by x-coordinate (X) and y-coordinate (Y). O(nlog n)
findClosestPair(P):

1. Sertpeinrtsbyx——eoord; find L, split X, Y. O(n)
2. Determine dleft and dright-

3. Let 0 = min(d|aft, dright)- 0(1)
4. Let S be straddle points within § of L. O(n)

5. SertSbyy-eoord——
6. Compare pointsin S to next 11 points and update 4. O(n)
7. Return 6. 0(1)

Closest Pair Problem — Algorithm

O(nlogn)
/\ Height = O(logn)

O((nlogn) / 2) O((nlogn) / 2)

 \\ \ Total
0((nlogn) / 4) || 0((nlogn) /4) || 0((nlogn) / 4) || O((nlogn) / 4) Running = ??
/\ /\ /\ /\ D Time

Plan:
* Presort by x-coordinate (X)

* Presort by y-coordinate (Y)
* Split X and Y by comparing to L.

Closest Pair Problem — Algorithm

0o(n)
/\ Height = O(logn)

0(n/?2) O(n/?2)

N\ \d Total
O(n/4) O(n/4) O(n/4) O(n/4) Running = 7?7
N N SN N) Time

Plan:
* Presort by x-coordinate (X)

* Presort by y-coordinate (Y)
* Split X and Y by comparing to L.

Closest Pair Problem — Algorithm

0o(n)

o(n/2)

N\

O

Oo(n/2)

N\

1 Height = O(logn)

O(n/4)

O(n/4)

O(n/4)

O(n/4)

N N N N

J

Total
Running = 0(nlogn)
Time

Plan:

* Presort by x-coordinate (X)
* Presort by y-coordinate (Y)
* Split X and Y by comparing to L.

Closest Pair Problem — Algorithm

Running = 0(nlogn)
Time

* Presort by x-coordinate (X)
* Presort by y-coordinate (Y)
* Split X and Y by comparing to L.

	Slide 1: Closest Pair of Points CSCI 532
	Slide 2: Closest Pair Problem
	Slide 3: Closest Pair Problem
	Slide 4: Closest Pair Problem
	Slide 5: Closest Pair Problem
	Slide 6: Closest Pair Problem
	Slide 7: Closest Pair Problem – Divide and Conquer
	Slide 8: Closest Pair Problem – Divide and Conquer
	Slide 9: Closest Pair Problem – Divide and Conquer
	Slide 10: Closest Pair Problem – Divide and Conquer
	Slide 11: Closest Pair Problem – Divide and Conquer
	Slide 12: Closest Pair Problem – Divide and Conquer
	Slide 13: Closest Pair Problem – Divide and Conquer
	Slide 14: Closest Pair Problem – Divide and Conquer
	Slide 15: Closest Pair Problem – Divide and Conquer
	Slide 16: Closest Pair Problem – Divide and Conquer
	Slide 17: Closest Pair Problem – Divide and Conquer
	Slide 18: Closest Pair Problem – Divide and Conquer
	Slide 19: Closest Pair Problem – Divide and Conquer
	Slide 20: Closest Pair Problem – Divide and Conquer
	Slide 21: Closest Pair Problem – Divide and Conquer
	Slide 22: Closest Pair Problem – Divide and Conquer
	Slide 23: Closest Pair Problem – Divide and Conquer
	Slide 24: Closest Pair Problem – Divide and Conquer
	Slide 25: Closest Pair Problem – Divide and Conquer
	Slide 26: Closest Pair Problem – Divide and Conquer
	Slide 27: Closest Pair Problem – Divide and Conquer
	Slide 28: Closest Pair Problem – Divide and Conquer
	Slide 29: Closest Pair Problem – Divide and Conquer
	Slide 30: Closest Pair Problem – Algorithm
	Slide 31: Closest Pair Problem – Algorithm
	Slide 32: Closest Pair Problem – Divide and Conquer
	Slide 33: Closest Pair Problem – Divide and Conquer
	Slide 34: Closest Pair Problem – Divide and Conquer
	Slide 35: Closest Pair Problem – Divide and Conquer
	Slide 36: Closest Pair Problem – Divide and Conquer
	Slide 37: Closest Pair Problem – Divide and Conquer
	Slide 38: Closest Pair Problem – Divide and Conquer
	Slide 39: Closest Pair Problem – Divide and Conquer
	Slide 40: Closest Pair Problem – Divide and Conquer
	Slide 41: Closest Pair Problem – Divide and Conquer
	Slide 42: Closest Pair Problem – Divide and Conquer
	Slide 43: Closest Pair Problem – Divide and Conquer
	Slide 44: Closest Pair Problem – Divide and Conquer
	Slide 45: Closest Pair Problem – Algorithm
	Slide 46: Closest Pair Problem – Algorithm
	Slide 47: Closest Pair Problem – Algorithm
	Slide 48: Closest Pair Problem – Algorithm
	Slide 49: Closest Pair Problem – Algorithm
	Slide 50: Closest Pair Problem – Algorithm
	Slide 51: Closest Pair Problem – Algorithm
	Slide 52: Closest Pair Problem – Algorithm
	Slide 53: Closest Pair Problem – Algorithm
	Slide 54: Closest Pair Problem – Algorithm
	Slide 55: Closest Pair Problem – Algorithm
	Slide 56: Closest Pair Problem – Algorithm
	Slide 57: Closest Pair Problem – Algorithm
	Slide 58: Closest Pair Problem – Algorithm
	Slide 59: Closest Pair Problem – Algorithm
	Slide 60: Closest Pair Problem – Algorithm
	Slide 61: Closest Pair Problem – Algorithm
	Slide 62: Closest Pair Problem – Algorithm
	Slide 63: Closest Pair Problem – Algorithm
	Slide 64: Closest Pair Problem – Algorithm
	Slide 65: Closest Pair Problem – Algorithm
	Slide 66: Closest Pair Problem – Algorithm
	Slide 67: Closest Pair Problem – Algorithm
	Slide 68: Closest Pair Problem – Algorithm
	Slide 69: Closest Pair Problem – Algorithm
	Slide 70: Closest Pair Problem – Algorithm
	Slide 71: Closest Pair Problem – Algorithm
	Slide 72: Closest Pair Problem – Algorithm
	Slide 73: Closest Pair Problem – Algorithm
	Slide 74: Closest Pair Problem – Algorithm
	Slide 75: Closest Pair Problem – Algorithm
	Slide 76: Closest Pair Problem – Algorithm
	Slide 77: Closest Pair Problem – Algorithm
	Slide 78: Closest Pair Problem – Algorithm
	Slide 79: Closest Pair Problem – Algorithm
	Slide 80: Closest Pair Problem – Algorithm
	Slide 81: Closest Pair Problem – Algorithm
	Slide 82: Closest Pair Problem – Algorithm
	Slide 83: Closest Pair Problem – Algorithm

