Closest Pair of Points
CSC| 532



Closest Pair Problem

Given n points, find a pair of points with the
smallest distance between them.
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Simple solution:

1. Compute distance for each pair.
2. Select smallest.
Running Time =7
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Divide and Conquer Algorithms:
* Divide into subproblems that are smaller instances of the original.
 “Conquer” the subproblems by solving them recursively.
* Combine subproblem solutions into solution for original problem.



Closest Pair Problem — Divide and Conquer

How can we make the problem
smaller and easier?




Closest Pair Problem — Divide and Conquer

How can we make the problem
smaller and easier?

Split it up!




Closest Pair Problem — Divide and Conquer

Divide: How can we draw line so that
half of the points are on each side?




Closest Pair Problem — Divide and Conquer

Divide: How can we draw line so that
half of the points are on each side?

1. Sort by x-coordinate.
2. Put L at median value.




Closest Pair Problem — Divide and Conquer

Conquer:

1Details to follow
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Combine: If we had the closest left
pair and the closest right pair, how
do we determine actual closest?
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Combine: If we had the closest left
pair and the closest right pair, how
do we determine actual closest?

1. Return minimum of: djeft, dright:

dmin_straddle-




Closest Pair Problem — Divide and Conquer

How should we search for “straddle
points”?

We know 6 = min(d|aft, dright)-




Closest Pair Problem — Divide and Conquer

How should we search for “straddle
points”?

We know 6 = min(d|aft, dright)-

Do we need to consider this point
. when looking for straddle points?



Closest Pair Problem — Divide and Conquer

Rule: We only need to hunt for
straddle points at most 6 away
from L.

Reason: Points outside L + 6 cannot
reach the other side in less than §.




Closest Pair Problem — Divide and Conquer

Rule: We only need to hunt for
straddle points at most 6 away
from L.

Reason: Points outside L = 6 cannot
reach the other side in less than §.

Let S be the set of straddle points.




Closest Pair Problem — Divide and Conquer

Can we just compare all left
straddle points to all right straddle
points?




Closest Pair Problem — Divide and Conquer

Can we just compare all left
straddle points to all right straddle
points?

So, we need to reduce the number
of straddle points we have to
consider.
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Closest Pair Problem — Divide and Conquer

.. i o) o)
Divide S into > X P boxes.
Can we focus our search to certain
boxes?

Yes — we only care about
points within 0.

Does this reduce the number of
points we need to considerr




Closest Pair Problem — Divide and Conquer

Can we have multiple points in
one box?




Closest Pair Problem — Divide and Conquer

Can we have multiple points in
one box?

No. ¢ is the smallest distance
on either side of L.

= at most one point per box.




Closest Pair Problem — Divide and Conquer

Only care about certain boxes
+ At most one point per box

Fixed number of points to check

1. Sort straddle points by y
coordinate.

2. Only possible “6-busting”
points are the 11 points after
our point being considered.




Closest Pair Problem — Divide and Conquer

Only care about certain boxes
+ At most one point per box

Fixed number of points to check

Straddle point hunting:
0(n%) — O0(nlogn)




Closest Pair Problem — Algorithm

findClosestPair(P):
1. Sort points by x-coord, find L, make PI , P .
eft” right

. Determine dleft and dright-

. Let 0 = min(d|qft, dright)-

. Sort § by y-coord.

2

3

4. Let S be straddle points within ¢ of L.

5

6. Compare pointsin S to next 11 points and update 0.
7

. Return §.



Closest Pair Problem — Algorithm

findClosestPair(P):

2. Determine dleft and dright°

Recursively find closest
pairs on each side.
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Recursive Process:
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Recursive Process:
1. Divide points in half.
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Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining
dleft and dright is trivial.
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Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining
d|eft and dright is trivial.

When is finding d|oft and dright trivial?

When there are one or two points
on the left and right sides.
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Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only
one or two points on each side.

When is finding d|oft and dright trivial?

When there are one or two points
on the left and right sides.
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Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only
one or two points on each side.
3. Combine left and right sides to
find closest of subproblems.

Recursively find closest

pairs on each side.




Closest Pair Problem — Divide and Conquer

Recursive Process:
1.
2.

Divide points in half.

Repeat step 1 until there are only
one or two points on each side.
Combine left and right sides to
find closest of subproblems.

Recursively find closest
pairs on each side.
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Recursive Process:
1.
2.

Divide points in half.
Repeat step 1 until there are only
one or two points on each side.

. Combine left and right sides to

find closest of subproblems.
Repeat until initial division is
combined.

Recursively find closest
pairs on each side.




Closest Pair Problem — Divide and Conquer

Recursive Process:

1. Divide points in half.

2. Repeat step 1 until there are only
one or two points on each side.

3. Combine left and right sides to
find closest of subproblems.

4. Repeat until initial division is
combined.




Closest Pair Problem — Divide and Conquer

Recursive Process:
1.
2.

Divide points in half.
Repeat step 1 until there are only
one or two points on each side.

. Combine left and right sides to

find closest of subproblems.
Repeat until initial division is
combined.



Closest Pair Problem — Algorithm

findClosestPair(P):
1. Sort points by x-coord, find L, make

P _,P.

left” ~ right”

2. Determine djft and dright° —

d|cft = findClosestPair(P )

left

dright = findClosestPair(P

right

)
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1. Sort points by x-coord, find L, make PI , P .
eft” right

. Determine dleft and dright-

Valid?

. Let 0 = min(d|qft, dright)'

. Sort § by y-coord.

2
3
4. Let S be straddle points within ¢ of L.
5
6. Compare pointsin S to next 11 points and update 0.
7

. Return §.
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findClosestPair(P):

1. Sort points by x-coord, find L, make PI , P .
eft” right

. Determine d, and dright-
Valid?

It’s returning the distance
between two pointsin P.

. Let 0 = min(d|qft, dright)'

. Sort § by y-coord.

2
3
4. Let S be straddle points within ¢ of L.
5
6. Compare pointsin S to next 11 points and update 0.
7

. Return §.



Closest Pair Problem — Algorithm

findClosestPair(P):
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findClosestPair(P):
1. Sort points by x-coord, find L, make P, P_

left” ~ right”

. Determine d, and dright' Optimal?

. Leto = min(d|eft, dright)' If there was a closer pair, they

on the left side, right side, or
. Sort S by y-coord. as a straddle point.

2
3
4. Let S be straddle points within & of L.|Would have been compared
5
6. Compare pointsin S to next 11 points and update 0.

7

. Return §.
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findClosestPair(P):

1. Sort points by x-coord, find L, make PI , P .
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. Let 6 = min(djeft, dright). Running Time?
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7
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done at the first level?
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findClosestPair(P):

2. Determine dleft and dright- TBD

O(nlogn)

O

T Splitinto P, P

left’” ~ right
and do how much

work on each?
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findClosestPair(P):

2. Determine dleft and dright- TBD

O((nlogn) /2)

O(nlogn)

O
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T Splitinto P, P

left’” ~ right
and do how much
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findClosestPair(P):

2. Determine dleft and dright- TBD

O(nlogn)

O

O((nlogn) /2) O((nlogn) / 2)

N\ N\

O((nlogn) /4) || O((nlogn) /4) || O((nlogn) /4) || O((nlogn) / 4)

N N N N




Closest Pair Problem — Algorithm

findClosestPair(P):

2. Determine dleft and dright- TBD

O(nlogn)

O((nlogn) /2)

N\

O

O((nlogn) /2)

N\

O((nlogn) / 4)

O((nlogn) / 4)

O((nlogn) / 4)

O((nlogn) /4)

N N N N

1 Height = ?7?

Binary tree, divide
by 2 each level?

J
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findClosestPair(P):

2. Determine dleft and dright- TBD

O(nlogn)
/\ Height = O(logn)

O((nlogn) /2) O((nlogn) /2)
/\ /\ Total
O((nlogn) /4) || O((nlogn) /4) || O((nlogn) /4) || O((nlogn) / 4) Running — O(TL lOgZ n)
/\ /\ /\ /\ ) Time




Closest Pair Problem — Algorithm

findClosestPair(P):

2. Determine dleft and @

O((nlogn) /2)

<\ Total

O((nlogn) /4) || O((nlogn) /4) || O((nlogn) /4) || O((nlogn) / 4) Running — O(n ]()g2 n)

/\ /\ /\ /\ p Time
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O(nlogn)

O((nlogn) /2)

N\

O

O((nlogn) / 2)

N\

1 Height = O(logn)

O((nlogn)/4) || O((nlogn) /4)

O((nlogn) /4) || O((nlogn) / 4)

N N

N N

J

Total
Running = O(nlog® n)
Time

Option 1: (Significantly) Reduce the height of the recursion tree.
Option 2: (Significantly) Reduce the amount of work done at each level.
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findClosestPair(P):

1. Sort points by x-coord, find L, make P _,P_ . O(nlogn)

left” ~ right”

. Determine defy and dyjghy. Maybe we don’t need

. Let & = min(djeft, dright)- 0(1) to sort so often??

. Sort S by y-coord. O(nlogn)

2
3
4. Let S be straddle points within 6 of L. O(n)
5
6. Compare pointsin S to next 11 points and update 4. O(n)
7/

. Return 6. 0(1)
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1 Height = O(logn)
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N N N N
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Total
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Time

Plan:
* Presort by x-coordinate (X)

* Presort by y-coordinate (Y)
* Split X and Y by comparing to L.
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left” = right’
. Determine dleft and dright-

. Let 0 = min(d|qft, dright)- Oo(1)

. Sort S by y-coord. O(nlogn)

2

3
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5

6. Compare pointsin S to next 11 points and update 4. O(n)
7/

. Return 6. 0(1)



Closest Pair Problem — Algorithm
0. Sort points by x-coordinate (X) and y-coordinate (Y).
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0. Sort points by x-coordinate (X) and y-coordinate (Y). O(nlog n)
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0. Sort points by x-coordinate (X) and y-coordinate (Y). O(nlog n)
findClosestPair(P):

1. Sort points by x-coord, find L, make P _,P_ . O(nlogn)

left” ~ right”
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0. Sort points by x-coordinate (X) and y-coordinate (Y). O(nlog n)
findClosestPair(P):

1. Sertpeinrtsbyx——eoord; find L, split X, Y. O(n)
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0. Sort points by x-coordinate (X) and y-coordinate (Y). O(nlog n)
findClosestPair(P):

1. Sertpeinrtsbyx——eoord; find L, split X, Y. O(n)
2. Determine dleft and dright-

3. Let 0 = min(d|aft, dright)- Oo(1)
4. Let S be straddle points within 6 of L. O(n)
5. Sort S by y-coord. O(nlogn)
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0. Sort points by x-coordinate (X) and y-coordinate (Y). O(nlog n)
findClosestPair(P):

1. Sertpeinrtsbyx——eoord; find L, split X, Y. O(n)
2. Determine dleft and dright-

3. Let 0 = min(d|aft, dright)- 0(1)
4. Let S be straddle points within § of L. O(n)

5. SertSbyy-eoord——
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0. Sort points by x-coordinate (X) and y-coordinate (Y). O(nlog n)
findClosestPair(P):

1. Sertpeinrtsbyx——eoord; find L, split X, Y. O(n)
2. Determine dleft and dright-

3. Let 0 = min(d|aft, dright)- 0(1)
4. Let S be straddle points within § of L. O(n)

5. SertSbyy-eoord——
6. Compare pointsin S to next 11 points and update 4. O(n)
7. Return 6. 0(1)
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O(nlogn)
/\ Height = O(logn)

O((nlogn) / 2) O((nlogn) / 2)

 \\  \ Total
0((nlogn) / 4) || 0((nlogn) /4) || 0((nlogn) / 4) || O((nlogn) / 4) Running = ??
/\ /\ /\ /\ D Time

Plan:
* Presort by x-coordinate (X)

* Presort by y-coordinate (Y)
* Split X and Y by comparing to L.
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0o(n)
/\ Height = O(logn)

0(n/?2) O(n/?2)

N\  \d Total
O(n/4) O(n/4) O(n/4) O(n/4) Running = 7?7
N N SN N ) Time

Plan:
* Presort by x-coordinate (X)

* Presort by y-coordinate (Y)
* Split X and Y by comparing to L.
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0o(n)

o(n/2)

N\

O

Oo(n/2)

N\

1 Height = O(logn)

O(n/4)

O(n/4)

O(n/4)

O(n/4)

N N N N

J

Total
Running = 0(nlogn)
Time

Plan:

* Presort by x-coordinate (X)
* Presort by y-coordinate (Y)
* Split X and Y by comparing to L.
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Running = 0(nlogn)
Time

* Presort by x-coordinate (X)
* Presort by y-coordinate (Y)
* Split X and Y by comparing to L.
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