
Closest Pair of Points
CSCI 532

Closest Pair Problem

Given 𝑛 points, find a pair of points with the
smallest distance between them.

(𝑥, 𝑦)

Closest Pair Problem

Simple solution:

1. Compute distance for each pair.

2. Select smallest.

 Running Time = ?

P1 P2 ... Pn

P1 / d1,2 ... d1,n

P2 d2,1 / ... d2,n

… ... …

Pn dn,1 dn,2 ... /

(𝑥, 𝑦)

Closest Pair Problem

Simple solution:

1. Compute distance for each pair.

2. Select smallest.

 Running Time = 𝑂 𝑛2

P1 P2 ... Pn

P1 / d1,2 ... d1,n

P2 d2,1 / ... d2,n

… ... …

Pn dn,1 dn,2 ... /

(𝑥, 𝑦)

Closest Pair Problem

Simple solution:

1. Compute distance for each pair.

2. Select smallest.

 Running Time = 𝑂 𝑛2

P1 P2 ... Pn

P1 / d1,2 ... d1,n

P2 d2,1 / ... d2,n

… ... …

Pn dn,1 dn,2 ... /

(𝑥, 𝑦)

Closest Pair Problem

(𝑥, 𝑦)

P1 P2 ... Pn

P1 / d1,2 ... d1,n

P2 d2,1 / ... d2,n

… ... …

Pn dn,1 dn,2 ... /

• Divide into subproblems that are smaller instances of the original.

• “Conquer” the subproblems by solving them recursively.

• Combine subproblem solutions into solution for original problem.

Divide and Conquer Algorithms:

Closest Pair Problem – Divide and Conquer

How can we make the problem
smaller and easier?

Closest Pair Problem – Divide and Conquer

How can we make the problem
smaller and easier?

 Split it up!

Closest Pair Problem – Divide and Conquer

Divide: How can we draw line so that
half of the points are on each side?

Closest Pair Problem – Divide and Conquer

Divide: How can we draw line so that
half of the points are on each side?

1. Sort by 𝑥-coordinate.

2. Put 𝐿 at median value.

𝐿

Closest Pair Problem – Divide and Conquer

Conquer:

Recursively find closest
pairs on each side1.

1Details to follow

𝐿

Closest Pair Problem – Divide and Conquer

Combine: If we had the closest left
pair and the closest right pair, how
do we determine actual closest?

𝐿

Closest Pair Problem – Divide and Conquer

Combine: If we had the closest left
pair and the closest right pair, how
do we determine actual closest?

1. Return minimum of: 𝑑left, 𝑑right.

𝐿

Closest Pair Problem – Divide and Conquer

Combine: If we had the closest left
pair and the closest right pair, how
do we determine actual closest?

1. Return minimum of: 𝑑left, 𝑑right.

𝐿

Closest Pair Problem – Divide and Conquer

Combine: If we had the closest left
pair and the closest right pair, how
do we determine actual closest?

1. Return minimum of: 𝑑left, 𝑑right,

𝑑min_straddle.

𝐿

Closest Pair Problem – Divide and Conquer

How should we search for “straddle
points”?

We know 𝛿 = min(𝑑left, 𝑑right).

𝐿

Closest Pair Problem – Divide and Conquer

How should we search for “straddle
points”?

We know 𝛿 = min(𝑑left, 𝑑right).

Do we need to consider this point
when looking for straddle points?

𝐿

Closest Pair Problem – Divide and Conquer

Rule: We only need to hunt for
straddle points at most 𝛿 away
from 𝐿.

Reason: Points outside 𝐿 ± 𝛿 cannot
reach the other side in less than 𝛿.

𝐿-𝛿 +𝛿

Closest Pair Problem – Divide and Conquer

Rule: We only need to hunt for
straddle points at most 𝛿 away
from 𝐿.

Reason: Points outside 𝐿 ± 𝛿 cannot
reach the other side in less than 𝛿.

Let 𝑺 be the set of straddle points.𝐿-𝛿 +𝛿

Closest Pair Problem – Divide and Conquer

Can we just compare all left
straddle points to all right straddle
points?

𝐿-𝛿 +𝛿

Closest Pair Problem – Divide and Conquer

Can we just compare all left
straddle points to all right straddle
points?

So, we need to reduce the number
of straddle points we have to
consider.

𝐿-𝛿 +𝛿

Closest Pair Problem – Divide and Conquer

Divide 𝑆 into
𝛿

2
×

𝛿

2
 boxes.

Can we focus our search to certain
boxes?

𝐿-𝛿 +𝛿𝛿

2

Closest Pair Problem – Divide and Conquer

Divide S into
𝛿

2
×

𝛿

2
 boxes.

Can we focus our search to certain
boxes?

 Yes – we only care about
points within 𝛿.

-𝛿 +𝛿𝐿𝛿

2

Closest Pair Problem – Divide and Conquer

Divide S into
𝛿

2
×

𝛿

2
 boxes.

Can we focus our search to certain
boxes?

 Yes – we only care about
points within 𝛿.

-𝛿 +𝛿𝐿𝛿

2

Closest Pair Problem – Divide and Conquer

Divide S into
𝛿

2
×

𝛿

2
 boxes.

Can we focus our search to certain
boxes?

 Yes – we only care about
points within 𝛿.

Does this reduce the number of
points we need to consider?

-𝛿 +𝛿𝐿𝛿

2

Closest Pair Problem – Divide and Conquer

Can we have multiple points in
one box?

-𝛿 +𝛿𝐿𝛿

2

Closest Pair Problem – Divide and Conquer

Can we have multiple points in
one box?

 No. 𝛿 is the smallest distance
on either side of L.

⇒ at most one point per box.

-𝛿 +𝛿𝐿𝛿

2

Closest Pair Problem – Divide and Conquer

Only care about certain boxes

-𝛿 +𝛿

At most one point per box+
Fixed number of points to check

1. Sort straddle points by 𝑦
coordinate.

2. Only possible “𝛿-busting”
points are the 11 points after
our point being considered. 𝐿𝛿

2

Closest Pair Problem – Divide and Conquer

Only care about certain boxes

-𝛿 +𝛿

At most one point per box+
Fixed number of points to check

Straddle point hunting:
 𝑂(𝑛2) ⟶ 𝑂(𝑛 log 𝑛)

𝐿𝛿

2

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

.

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

.

2. Determine 𝒅left and 𝒅right.

3. Let 𝛿 = min(𝑑left, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

findClosestPair(𝑃):

Closest Pair Problem – Divide and Conquer

Recursive Process:

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining

𝑑left and 𝑑right is trivial.

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining

𝑑left and 𝑑right is trivial.

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining

𝑑left and 𝑑right is trivial.

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining

𝑑left and 𝑑right is trivial.

When is finding 𝑑left and 𝑑right trivial?

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining

𝑑left and 𝑑right is trivial.

When is finding 𝑑left and 𝑑right trivial?

When there are one or two points
on the left and right sides.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only

one or two points on each side.

When is finding 𝑑left and 𝑑right trivial?

When there are one or two points
on the left and right sides.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only

one or two points on each side.
3. Combine left and right sides to

find closest of subproblems.

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only

one or two points on each side.
3. Combine left and right sides to

find closest of subproblems.

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only

one or two points on each side.
3. Combine left and right sides to

find closest of subproblems.
4. Repeat until initial division is

combined.

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only

one or two points on each side.
3. Combine left and right sides to

find closest of subproblems.
4. Repeat until initial division is

combined.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only

one or two points on each side.
3. Combine left and right sides to

find closest of subproblems.
4. Repeat until initial division is

combined.

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

.

2. Determine 𝒅left and 𝒅right.

3. Let 𝛿 = min(𝑑left, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝒅left = findClosestPair(𝑷
left

)

𝒅right = findClosestPair(𝑷
right

)

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

.

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

Valid?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

.

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

Valid?
It’s returning the distance
between two points in P.

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

.

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

Optimal?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

.

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

Optimal?
If there was a closer pair, they
would have been compared
on the left side, right side, or
as a straddle point.

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

.

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

Running Time?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.

5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿.

7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

How much work is
done at the first level?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝑂(𝑛 log 𝑛) How much work is
done at the first level?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝑂(𝑛 log 𝑛)

Split into 𝑃
left

, 𝑃
right

and do how much
work on each?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

𝑂((𝑛 log 𝑛) / 2)

Split into 𝑃
left

, 𝑃
right

and do how much
work on each?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

Height = ??

Binary tree, divide
by 2 each level?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log2 𝑛
Time

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right. TBD

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log2 𝑛
Time

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

Closest Pair Problem – Algorithm

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log2 𝑛
Time

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

Option 1: (Significantly) Reduce the height of the recursion tree.

Option 2: (Significantly) Reduce the amount of work done at each level.

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

Maybe we don’t need
to sort so often??

Closest Pair Problem – Algorithm

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log2 𝑛
Time

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

Plan:
• Presort by 𝑥-coordinate (𝑋)
• Presort by 𝑦-coordinate (𝑌)
• Split 𝑋 and 𝑌 by comparing to 𝐿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

0. Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌).

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

0. Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝒍𝒐𝒈 𝒏

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
left

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

0. Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝒍𝒐𝒈 𝒏

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, split 𝑋, 𝑌. 𝑶 𝒏

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

0. Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝒍𝒐𝒈 𝒏

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, split 𝑋, 𝑌. 𝑶 𝒏

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

0. Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝒍𝒐𝒈 𝒏

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, split 𝑋, 𝑌. 𝑶 𝒏

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

0. Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝒍𝒐𝒈 𝒏

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, split 𝑋, 𝑌. 𝑶 𝒏

2. Determine 𝑑left and 𝑑right.

3. Let 𝛿 = min(𝑑left, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)

5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠 𝒏

6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)

7. Return 𝛿. 𝑶(𝟏)

0. Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝒍𝒐𝒈 𝒏

Closest Pair Problem – Algorithm

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

Height = 𝑂 log 𝑛

Total
Running = ??
Time

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

Plan:
• Presort by 𝑥-coordinate (𝑋)
• Presort by 𝑦-coordinate (𝑌)
• Split 𝑋 and 𝑌 by comparing to 𝐿.

Closest Pair Problem – Algorithm

𝑂(𝑛 / 4)

𝑂(𝑛 / 2)

𝑂(𝑛)

Height = 𝑂 log 𝑛

Total
Running = ??
Time

𝑂(𝑛 / 4) 𝑂(𝑛 / 4) 𝑂(𝑛 / 4)

𝑂(𝑛 / 2)

Plan:
• Presort by 𝑥-coordinate (𝑋)
• Presort by 𝑦-coordinate (𝑌)
• Split 𝑋 and 𝑌 by comparing to 𝐿.

Closest Pair Problem – Algorithm

𝑂(𝑛 / 4)

𝑂(𝑛 / 2)

𝑂(𝑛)

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log 𝑛
Time

𝑂(𝑛 / 4) 𝑂(𝑛 / 4) 𝑂(𝑛 / 4)

𝑂(𝑛 / 2)

Plan:
• Presort by 𝑥-coordinate (𝑋)
• Presort by 𝑦-coordinate (𝑌)
• Split 𝑋 and 𝑌 by comparing to 𝐿.

Closest Pair Problem – Algorithm

𝑂(𝑛 / 4)

𝑂(𝑛 / 2)

𝑂(𝑛)

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log 𝑛
Time

𝑂(𝑛 / 4) 𝑂(𝑛 / 4) 𝑂(𝑛 / 4)

𝑂(𝑛 / 2)

Plan:
• Presort by 𝑥-coordinate (𝑋)
• Presort by 𝑦-coordinate (𝑌)
• Split 𝑋 and 𝑌 by comparing to 𝐿.

	Slide 1: Closest Pair of Points CSCI 532
	Slide 2: Closest Pair Problem
	Slide 3: Closest Pair Problem
	Slide 4: Closest Pair Problem
	Slide 5: Closest Pair Problem
	Slide 6: Closest Pair Problem
	Slide 7: Closest Pair Problem – Divide and Conquer
	Slide 8: Closest Pair Problem – Divide and Conquer
	Slide 9: Closest Pair Problem – Divide and Conquer
	Slide 10: Closest Pair Problem – Divide and Conquer
	Slide 11: Closest Pair Problem – Divide and Conquer
	Slide 12: Closest Pair Problem – Divide and Conquer
	Slide 13: Closest Pair Problem – Divide and Conquer
	Slide 14: Closest Pair Problem – Divide and Conquer
	Slide 15: Closest Pair Problem – Divide and Conquer
	Slide 16: Closest Pair Problem – Divide and Conquer
	Slide 17: Closest Pair Problem – Divide and Conquer
	Slide 18: Closest Pair Problem – Divide and Conquer
	Slide 19: Closest Pair Problem – Divide and Conquer
	Slide 20: Closest Pair Problem – Divide and Conquer
	Slide 21: Closest Pair Problem – Divide and Conquer
	Slide 22: Closest Pair Problem – Divide and Conquer
	Slide 23: Closest Pair Problem – Divide and Conquer
	Slide 24: Closest Pair Problem – Divide and Conquer
	Slide 25: Closest Pair Problem – Divide and Conquer
	Slide 26: Closest Pair Problem – Divide and Conquer
	Slide 27: Closest Pair Problem – Divide and Conquer
	Slide 28: Closest Pair Problem – Divide and Conquer
	Slide 29: Closest Pair Problem – Divide and Conquer
	Slide 30: Closest Pair Problem – Algorithm
	Slide 31: Closest Pair Problem – Algorithm
	Slide 32: Closest Pair Problem – Divide and Conquer
	Slide 33: Closest Pair Problem – Divide and Conquer
	Slide 34: Closest Pair Problem – Divide and Conquer
	Slide 35: Closest Pair Problem – Divide and Conquer
	Slide 36: Closest Pair Problem – Divide and Conquer
	Slide 37: Closest Pair Problem – Divide and Conquer
	Slide 38: Closest Pair Problem – Divide and Conquer
	Slide 39: Closest Pair Problem – Divide and Conquer
	Slide 40: Closest Pair Problem – Divide and Conquer
	Slide 41: Closest Pair Problem – Divide and Conquer
	Slide 42: Closest Pair Problem – Divide and Conquer
	Slide 43: Closest Pair Problem – Divide and Conquer
	Slide 44: Closest Pair Problem – Divide and Conquer
	Slide 45: Closest Pair Problem – Algorithm
	Slide 46: Closest Pair Problem – Algorithm
	Slide 47: Closest Pair Problem – Algorithm
	Slide 48: Closest Pair Problem – Algorithm
	Slide 49: Closest Pair Problem – Algorithm
	Slide 50: Closest Pair Problem – Algorithm
	Slide 51: Closest Pair Problem – Algorithm
	Slide 52: Closest Pair Problem – Algorithm
	Slide 53: Closest Pair Problem – Algorithm
	Slide 54: Closest Pair Problem – Algorithm
	Slide 55: Closest Pair Problem – Algorithm
	Slide 56: Closest Pair Problem – Algorithm
	Slide 57: Closest Pair Problem – Algorithm
	Slide 58: Closest Pair Problem – Algorithm
	Slide 59: Closest Pair Problem – Algorithm
	Slide 60: Closest Pair Problem – Algorithm
	Slide 61: Closest Pair Problem – Algorithm
	Slide 62: Closest Pair Problem – Algorithm
	Slide 63: Closest Pair Problem – Algorithm
	Slide 64: Closest Pair Problem – Algorithm
	Slide 65: Closest Pair Problem – Algorithm
	Slide 66: Closest Pair Problem – Algorithm
	Slide 67: Closest Pair Problem – Algorithm
	Slide 68: Closest Pair Problem – Algorithm
	Slide 69: Closest Pair Problem – Algorithm
	Slide 70: Closest Pair Problem – Algorithm
	Slide 71: Closest Pair Problem – Algorithm
	Slide 72: Closest Pair Problem – Algorithm
	Slide 73: Closest Pair Problem – Algorithm
	Slide 74: Closest Pair Problem – Algorithm
	Slide 75: Closest Pair Problem – Algorithm
	Slide 76: Closest Pair Problem – Algorithm
	Slide 77: Closest Pair Problem – Algorithm
	Slide 78: Closest Pair Problem – Algorithm
	Slide 79: Closest Pair Problem – Algorithm
	Slide 80: Closest Pair Problem – Algorithm
	Slide 81: Closest Pair Problem – Algorithm
	Slide 82: Closest Pair Problem – Algorithm
	Slide 83: Closest Pair Problem – Algorithm

