
Greedy Algorithms
CSCI 532

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course
that ends earliest and is compatible
with existing schedule.

Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection,
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time.

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 < 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Create the revised schedule 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑗 ∪ 𝑐𝑖 . (I.e., Swap 𝑆𝐴𝐿𝐺 𝑘 for 𝑆𝑂𝑃𝑇 𝑘)

𝑐𝑖 is compatible with previous courses in 𝑆𝑂𝑃𝑇
′ since 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇 𝑖 = 𝑆𝑂𝑃𝑇

′ [𝑖], for all 𝑖 < 𝑘

𝑐𝑖 is compatible with subsequent courses in 𝑆𝑂𝑃𝑇
′ since 𝑓𝑖 ≤ 𝑓𝑗. Otherwise, the greedy

algorithm would have selected 𝑐𝑗 instead of 𝑐𝑖.

So 𝑆𝑂𝑃𝑇
′ is a valid schedule with the same number of courses as 𝑆𝑂𝑃𝑇, so 𝑆𝑂𝑃𝑇

′ is also optimal.

𝑺𝑶𝑷𝑻
′ :

𝑺𝑨𝑳𝑮:

Room Minimization

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.

Room Minimization

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.

Algorithm Idea?

Assign as much as possible to room 1,
then as much as possible to room 2,…

Optimal?

Room Minimization

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.

Algorithm Idea?

Assign as much as possible to room 1,
then as much as possible to room 2,…

Optimal? No! 𝒄𝟏 𝒄𝟐 𝒄𝟒 𝒄𝟔

𝒄𝟑

𝒄𝟓

Room Minimization

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.

Algorithm Idea?

Given 𝐶, what is the smallest number of rooms possible?

Room Minimization

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.

Algorithm Idea?

Given 𝐶, what is the smallest number of rooms possible?
 The number of concurrent courses.

Room Minimization

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.

Algorithm Idea?

Given 𝐶, what is the smallest number of rooms possible?
 The number of concurrent courses.

What if we made a schedule where # rooms = # concurrent courses?

Room Minimization

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.

Algorithm Idea?

Given 𝐶, what is the smallest number of rooms possible?
 The number of concurrent courses.

What if we made a schedule where # rooms = # concurrent courses?
 It must be optimal.

Room Minimization

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.

Occupied Rooms
Unoccupied Rooms

But previously
occupied

Algorithm Idea?

Room Minimization

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.

time

Occupied Rooms
Unoccupied Rooms

But previously
occupied

At each time:
Algorithm Idea?

Room Minimization

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.

time

Occupied Rooms
Unoccupied Rooms

But previously
occupied

At each time:
1. When course ends, move its occupied

room to unoccupied rooms.

Algorithm Idea?

Room Minimization

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.

time

Occupied Rooms
Unoccupied Rooms

But previously
occupied

At each time:
1. When course ends, move its occupied

room to unoccupied rooms.
2. When course starts, select

unoccupied room. If none exists,
select a new (never used) room.

Algorithm Idea?

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {}
𝐵 = {}
𝑆 = {}

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {}
𝐵 = {}
𝑆 = {}

Go through one
timeslot at a time

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {}
𝐵 = {}
𝑆 = {}

Go through one
timeslot at a time

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {}
𝐵 = {}
𝑆 = {}

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {}
𝐵 = {}
𝑆 = {}

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {1}
𝐵 = {}
𝑆 = {}

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {}
𝐵 = {1}
𝑆 = {𝑐1 → 1}

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {}
𝐵 = {1}
𝑆 = {𝑐1 → 1}

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {}
𝐵 = {1}
𝑆 = {𝑐1 → 1}

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {}
𝐵 = {1}
𝑆 = {𝑐1 → 1}

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {2}
𝐵 = {1}
𝑆 = {𝑐1 → 1}

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {}
𝐵 = {1,2}
𝑆 = {𝑐1 → 1, 𝑐3 → 2}

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {}
𝐵 = {1,2}
𝑆 = {𝑐1 → 1, 𝑐3 → 2}

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {}
𝐵 = {1,2}
𝑆 = {𝑐1 → 1, 𝑐3 → 2}

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {1}
𝐵 = {2}
𝑆 = {𝑐1 → 1, 𝑐3 → 2}

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {1}
𝐵 = {2}
𝑆 = {𝑐1 → 1, 𝑐3 → 2}

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {}
𝐵 = {2,1}
𝑆 = {𝑐1 → 1, 𝑐3 → 2, 𝑐2 → 1}

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

F = Unoccupied Rooms
B = Occupied Rooms

S = course -> room Map

𝐹 = {1,2}
𝐵 = {}
𝑆 = {𝑐1 → 1, 𝑐3 → 2, 𝑐2 → 1, … }

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

𝐹 = {1,2}
𝐵 = {}
𝑆 = {𝑐1 → 1, 𝑐3 → 2, 𝑐2 → 1, … }

Valid?

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

𝐹 = {1,2}
𝐵 = {}
𝑆 = {𝑐1 → 1, 𝑐3 → 2, 𝑐2 → 1, … }

Valid?
Yes. Each course is given a
room and no rooms are
concurrently occupied.

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

𝐹 = {1,2}
𝐵 = {}
𝑆 = {𝑐1 → 1, 𝑐3 → 2, 𝑐2 → 1, … }

Running Time?

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

𝐹 = {1,2}
𝐵 = {}
𝑆 = {𝑐1 → 1, 𝑐3 → 2, 𝑐2 → 1, … }

Running Time?
𝑂 𝐶 2 – Don’t need to go
through all timeslots. Just
start/finish for each activity.

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

𝐹 = {1,2}
𝐵 = {}
𝑆 = {𝑐1 → 1, 𝑐3 → 2, 𝑐2 → 1, … }

Optimal?

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

𝐹 = {1,2}
𝐵 = {}
𝑆 = {𝑐1 → 1, 𝑐3 → 2, 𝑐2 → 1, … }

Optimal?
rooms needed ≥ # concurrent courses.

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

𝐹 = {1,2}
𝐵 = {}
𝑆 = {𝑐1 → 1, 𝑐3 → 2, 𝑐2 → 1, … }

Optimal?
rooms needed ≥ # concurrent courses.
New room added ⇔ all other rooms in use

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

𝐹 = {1,2}
𝐵 = {}
𝑆 = {𝑐1 → 1, 𝑐3 → 2, 𝑐2 → 1, … }

Optimal?
rooms needed ≥ # concurrent courses.
New room added ⇔ all other rooms in use
(i.e., # rooms used = max[# concurrent courses])

room_minimization(courses C)

 F = B = S = ∅

 room_num = 0

 foreach timeslot t

 foreach c in C

 if c.finish == t

 F.add(B.getBookedRoom(S.getroom(c)))

 foreach c in C

 if c.start == t

 if F.isEmpty()

 room_num += 1

 F.add(room_num)

 room = F.getFreeRoom()

 S.schedule(c, room)

 B.add(room)

 return S

𝐹 = {1,2}
𝐵 = {}
𝑆 = {𝑐1 → 1, 𝑐3 → 2, 𝑐2 → 1, … }

Optimal?
rooms needed ≥ # concurrent courses.
New room added ⇔ all other rooms in use
(i.e., # rooms used = max[# concurrent courses])

So, yes.

Client Scheduling
Suppose you are a plumber and you
have a list of clients that want help.

Client Scheduling

• 𝑑𝑖: deadline for client 𝑖.
• 𝑡𝑖: time required for client 𝑖.

Client 𝒅𝒊 𝒕𝒊

1 5 3

2 6 4

3 8 3

Each client 𝑖 has a deadline 𝑑𝑖 of when
they need help by and an amount of
time 𝑡𝑖 they will need help for.

Suppose you are a plumber and you
have a list of clients that want help.

Client Scheduling

• 𝑑𝑖: deadline for client 𝑖.
• 𝑡𝑖: time required for client 𝑖.

Client 𝒅𝒊 𝒕𝒊

1 5 3

2 6 4

3 8 3

You cannot help multiple clients at the
same time and cannot pause helping
one to help another.

Each client 𝑖 has a deadline 𝑑𝑖 of when
they need help by and an amount of
time 𝑡𝑖 they will need help for.

Suppose you are a plumber and you
have a list of clients that want help.

Client Scheduling

• 𝑑𝑖: deadline for client 𝑖.
• 𝑡𝑖: time required for client 𝑖.

Client 𝒅𝒊 𝒕𝒊

1 5 3

2 6 4

3 8 3
You need to help all clients, even if it
goes over their deadline (though they
will be angry then).

You cannot help multiple clients at the
same time and cannot pause helping
one to help another.

Each client 𝑖 has a deadline 𝑑𝑖 of when
they need help by and an amount of
time 𝑡𝑖 they will need help for.

Suppose you are a plumber and you
have a list of clients that want help.

Client Scheduling

• 𝑑𝑖: deadline for client 𝑖.
• 𝑡𝑖: time required for client 𝑖.
• 𝑠(𝑖): start time for client 𝑖.

Client 𝒅𝒊 𝒕𝒊

1 5 3

2 6 4

3 8 3

Schedule:

0 102 4 6 8

Client 1

Client Scheduling

• 𝑑𝑖: deadline for client 𝑖.
• 𝑡𝑖: time required for client 𝑖.
• 𝑠(𝑖): start time for client 𝑖.

• 𝑓(𝑖) = 𝑠(𝑖) + 𝑡𝑖: finish time for client 𝑖.
• 𝑙𝑖 = 𝑓(𝑖) − 𝑑𝑖: lateness for client 𝑖.

Client 𝒅𝒊 𝒕𝒊

1 5 3

2 6 4

3 8 3

The lateness of a client is the amount of
past their deadline their request took.

Client 1 Client 2 Client 3Schedule:

0 102 4 6 8

Lateness for
client 2.

Lateness for
client 3.

Client Scheduling

Client 𝒅𝒊 𝒕𝒊

1 5 3

2 6 4

3 8 3

Client 1 Client 2 Client 3Schedule:

0 102 4 6 8

Lateness for
client 2.

Lateness for
client 3.

• 𝑑𝑖: deadline for client 𝑖.
• 𝑡𝑖: time required for client 𝑖.
• 𝑠(𝑖): start time for client 𝑖.

• 𝑓(𝑖) = 𝑠(𝑖) + 𝑡𝑖: finish time for client 𝑖.
• 𝑙𝑖 = 𝑓(𝑖) − 𝑑𝑖: lateness for client 𝑖.
• 𝐿 = max

𝑖
𝑙𝑖: maximum lateness.

We want a schedule that minimizes the
lateness of the latest client.

Client Scheduling

Client 𝒅𝒊 𝒕𝒊

1 5 3

2 6 4

3 8 3

Client 3 Client 2 Client 1Schedule:

0 102 4 6 8

Lateness for
client 1.

• 𝑑𝑖: deadline for client 𝑖.
• 𝑡𝑖: time required for client 𝑖.
• 𝑠(𝑖): start time for client 𝑖.

• 𝑓(𝑖) = 𝑠(𝑖) + 𝑡𝑖: finish time for client 𝑖.
• 𝑙𝑖 = 𝑓(𝑖) − 𝑑𝑖: lateness for client 𝑖.
• 𝐿 = max

𝑖
𝑙𝑖: maximum lateness.

We want a schedule that minimizes the
lateness of the latest client.

Greedy Decision

What are some possible Greedy decisions?

Greedy Decision

What are some possible Greedy decisions?

• Smallest 𝑡𝑖 first.

• Smallest slack time (𝑑𝑖 − 𝑡𝑖) first.

• Earliest 𝑑𝑖 first.

Greedy Decision

What are some possible Greedy decisions?

• Smallest 𝑡𝑖 first.

• Smallest slack time (𝑑𝑖 − 𝑡𝑖) first.

• Earliest 𝑑𝑖 first.

How to decide which to use?

Greedy Decision

What are some possible Greedy decisions?

• Smallest 𝑡𝑖 first.

• Smallest slack time (𝑑𝑖 − 𝑡𝑖) first.

• Earliest 𝑑𝑖 first.

How to decide which to use?
 Hunt for counterexamples.

Greedy Decision

What are some possible Greedy decisions?

• Smallest 𝑡𝑖 first.

• Smallest slack time (𝑑𝑖 − 𝑡𝑖) first.

• Earliest 𝑑𝑖 first.

Client 𝒅𝒊 𝒕𝒊

1 8 7

2 10 2 0 102 4 6 8

1
2

Algorithm: 2 then 1,
lateness of 1.

Optimal: 1 then 2,
lateness of 0.

Greedy Decision

What are some possible Greedy decisions?

• Smallest 𝑡𝑖 first.

• Smallest slack time (𝑑𝑖 − 𝑡𝑖) first.

• Earliest 𝑑𝑖 first.

Client 𝒅𝒊 𝒕𝒊

1 8 7

2 10 2 0 102 4 6 8

1
2

Algorithm: 2 then 1,
lateness of 1.

Optimal: 1 then 2,
lateness of 0.

Client 𝒅𝒊 𝒕𝒊

1 3 1

2 9 8 0 102 4 6 8

1
2

Algorithm: 2 then 1,
lateness of 6.

Optimal: 1 then 2,
lateness of 0.

Earliest Deadline First Algorithm

1. Order clients by increasing deadline.

2. Rename so that 𝑑1 ≤ ⋯ ≤ 𝑑𝑛.

3. Let 𝑠 1 = 0. (implies that 𝑓 1 = 𝑡1)

4. For each subsequent (in order) client 𝑐,

 𝑠(𝑐) = 𝑓(𝑐 − 1) and 𝑓(𝑐) = 𝑠(𝑐) + 𝑡𝑐.

Earliest Deadline First Algorithm

Theorem: The maximum lateness given by a schedule from
the EDF algorithm is optimal.

Plan of attack:

Earliest Deadline First Algorithm

Theorem: The maximum lateness given by a schedule from
the EDF algorithm is optimal.

Plan of attack: Consider an optimal schedule, modify it in
such a way that optimality is preserved until it is the same as
our schedule.

 How could our schedule differ from optimal?

Earliest Deadline First Algorithm

Theorem: The maximum lateness given by a schedule from
the EDF algorithm is optimal.

Plan of attack: Consider an optimal schedule, modify it in
such a way that optimality is preserved until it is the same as
our schedule.

 How could our schedule differ from optimal?

1. Gaps in schedules.

2. Clients out of order.

Earliest Deadline First Algorithm

Could there be gaps in our schedule?

1. Order clients by increasing deadline.

2. Rename so that 𝑑1 ≤ ⋯ ≤ 𝑑𝑛.

3. Let 𝑠 1 = 0. (implies that 𝑓 1 = 𝑡1)

4. For each subsequent (in order) client 𝑐,

 𝑠(𝑐) = 𝑓(𝑐 − 1) and 𝑓(𝑐) = 𝑠(𝑐) + 𝑡𝑐.

Earliest Deadline First Algorithm

Could there be gaps in our schedule?
 No – as soon as one client is finished, 𝑓(𝑐), the

next client starts, 𝑠(𝑐 + 1) = 𝑓(𝑐).

1. Order clients by increasing deadline.

2. Rename so that 𝑑1 ≤ ⋯ ≤ 𝑑𝑛.

3. Let 𝑠 1 = 0. (implies that 𝑓 1 = 𝑡1)

4. For each subsequent (in order) client 𝑐,

 𝑠(𝑐) = 𝑓(𝑐 − 1) and 𝑓(𝑐) = 𝑠(𝑐) + 𝑡𝑐.

Earliest Deadline First Algorithm

Lemma: An optimal schedule exists that has no gaps between
clients.

Proof: ?

Earliest Deadline First Algorithm

Lemma: An optimal schedule exists that has no gaps between
clients.

Proof: Since all clients are available to start at the same time,
they can be scheduled one after the other without gaps. If an
optimal schedule exists with gaps, those gaps can be removed by
shifting clients forward without increasing the maximum
lateness.

Earliest Deadline First Algorithm

Definition: A schedule has an inversion if some client is
scheduled before a client with an earlier deadline.

Client 1:
 𝑑1 = 5
 𝑡1 = 2

Client 2:
 𝑑2 = 6
 𝑡2 = 3

Client 1 Client 2No Inversion:

0 2 4 6

Client 1Client 2Inversion:

0 2 4 6

Earliest Deadline First Algorithm

Definition: A schedule has an inversion if some client is
scheduled before a client with an earlier deadline.

Client 1:
 𝑑1 = 5
 𝑡1 = 2

Client 2:
 𝑑2 = 6
 𝑡2 = 3

Client 1 Client 2No Inversion:

0 2 4 6

Client 1Client 2Inversion:

0 2 4 6

Does our schedule have any inversions?

Earliest Deadline First Algorithm

Definition: A schedule has an inversion if some client is
scheduled before a client with an earlier deadline.

Client 1:
 𝑑1 = 5
 𝑡1 = 2

Client 2:
 𝑑2 = 6
 𝑡2 = 3

Client 1 Client 2No Inversion:

0 2 4 6

Client 1Client 2Inversion:

0 2 4 6

Does our schedule have any inversions?
 No – The algorithm schedules

client 𝑖 before client 𝑗 if 𝑑𝑖 ≤ 𝑑𝑗

Earliest Deadline First Algorithm

Lemma: An optimal schedule exists that has no inversions.

Proof:

Earliest Deadline First Algorithm

Lemma: An optimal schedule exists that has no inversions.

Proof:

1. Any inversion results from two consecutive inverted
clients.

2. Swapping an inversion reduces the number of
inversions.

3. Swapping an inversion does not increase the maximum
lateness of the schedule.

Earliest Deadline First Algorithm

3. Swapping an inversion does not increase the maximum lateness of
the schedule.

Proof: Whose lateness does swapping consecutive clients affect?

Client 𝒋 Client 𝒊Inverted:

Client 𝒋Client 𝒊Swapped:

Earliest Deadline First Algorithm

3. Swapping an inversion does not increase the maximum lateness of
the schedule.

Proof: The lateness is less for the client swapped earlier, later for the
client swapped later, and the same for all other clients
(because inverted 𝑓(𝑖) = swapped 𝑓(𝑗)).

Client 𝒋 Client 𝒊Inverted:

Client 𝒋Client 𝒊Swapped:

Earliest Deadline First Algorithm

3. Swapping an inversion does not increase the maximum lateness of
the schedule.

Proof: The only client we need to consider is the one swapped to be later
(because all other clients remain the same or have smaller lateness).

Client 𝒋 Client 𝒊Inverted:

Client 𝒋Client 𝒊Swapped:

Earliest Deadline First Algorithm

3. Swapping an inversion does not increase the maximum lateness of
the schedule.

Proof: The only client we need to consider is the one swapped to be later
(because all other clients remain the same or have smaller lateness).

 Let 𝑠(𝑖), 𝑓(𝑖), 𝑙𝑖 be for inverted schedule.
 Let 𝑠′(𝑖), 𝑓′(𝑖), 𝑙𝑖′ be for swapped schedule.

Earliest Deadline First Algorithm

3. Swapping an inversion does not increase the maximum lateness of
the schedule.

Proof: The only client we need to consider is the one swapped to be later
(because all other clients remain the same or have smaller lateness).

 Let 𝑠(𝑖), 𝑓(𝑖), 𝑙𝑖 be for inverted schedule.
 Let 𝑠′(𝑖), 𝑓′(𝑖), 𝑙𝑖′ be for swapped schedule.

 𝑙𝑗′ ? 𝑙𝑖

Remember:
• 𝑙𝑗 = 𝑓(𝑗) − 𝑑𝑗

• 𝑑𝑖 ≤ 𝑑𝑗

Earliest Deadline First Algorithm

3. Swapping an inversion does not increase the maximum lateness of
the schedule.

Proof: The only client we need to consider is the one swapped to be later
(because all other clients remain the same or have smaller lateness).

 Let 𝑠(𝑖), 𝑓(𝑖), 𝑙𝑖 be for inverted schedule.
 Let 𝑠′(𝑖), 𝑓′(𝑖), 𝑙𝑖′ be for swapped schedule.

 𝑙𝑗′ = 𝑓′ 𝑗 − 𝑑𝑗 = 𝑓 𝑖 − 𝑑𝑗 ≤ 𝑓 𝑖 − 𝑑𝑖 = 𝑙𝑖

Remember:
• 𝑙𝑗 = 𝑓(𝑗) − 𝑑𝑗

• 𝑑𝑖 ≤ 𝑑𝑗

Earliest Deadline First Algorithm

3. Swapping an inversion does not increase the maximum lateness of
the schedule.

Proof: The only client we need to consider is the one swapped to be later
(because all other clients remain the same or have smaller lateness).

 Let 𝑠(𝑖), 𝑓(𝑖), 𝑙𝑖 be for inverted schedule.
 Let 𝑠′(𝑖), 𝑓′(𝑖), 𝑙𝑖′ be for swapped schedule.

 𝑙𝑗′ = 𝑓′ 𝑗 − 𝑑𝑗 = 𝑓 𝑖 − 𝑑𝑗 ≤ 𝑓 𝑖 − 𝑑𝑖 = 𝑙𝑖

 ⇒ The maximum lateness was not increased!

Earliest Deadline First Algorithm

Theorem: The maximum lateness given by a schedule from the
EDF algorithm is optimal.

Proof: The EDF schedule can only differ from an optimal schedule
by the order of clients with identical deadlines (since both have no
gaps or inversions).

Does the ordering of these clients lead to different maximal
lateness?

Earliest Deadline First Algorithm

Theorem: The maximum lateness given by a schedule from the
EDF algorithm is optimal.

Proof: The EDF schedule can only differ from an optimal schedule
by the order of clients with identical deadlines (since both have no
gaps or inversions).

Clients with identical deadlines 𝑑 are all scheduled consecutively.
The client with the largest lateness (𝑙𝑖 = 𝑓(𝑖) − 𝑑) is the one with
the latest finish time (regardless of order).

Earliest Deadline First Algorithm

Theorem: The maximum lateness given by a schedule from the
EDF algorithm is optimal.

Proof: The EDF schedule can only differ from an optimal schedule
by the order of clients with identical deadlines (since both have no
gaps or inversions).

Clients with identical deadlines 𝑑 are all scheduled consecutively.
The client with the largest lateness (𝑙𝑖 = 𝑓(𝑖) − 𝑑) is the one with
the latest finish time (regardless of order).

Thus, all schedules with no inversions or gaps have the same
maximal lateness.

Therefore, the EDF schedule is optimal.

	Slide 1: Greedy Algorithms CSCI 532
	Slide 2: Single Room Scheduling
	Slide 3: Single Room Scheduling
	Slide 4: Room Minimization
	Slide 5: Room Minimization
	Slide 6: Room Minimization
	Slide 7: Room Minimization
	Slide 8: Room Minimization
	Slide 9: Room Minimization
	Slide 10: Room Minimization
	Slide 11: Room Minimization
	Slide 12: Room Minimization
	Slide 13: Room Minimization
	Slide 14: Room Minimization
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Client Scheduling
	Slide 44: Client Scheduling
	Slide 45: Client Scheduling
	Slide 46: Client Scheduling
	Slide 47: Client Scheduling
	Slide 48: Client Scheduling
	Slide 49: Client Scheduling
	Slide 50: Client Scheduling
	Slide 51: Greedy Decision
	Slide 52: Greedy Decision
	Slide 53: Greedy Decision
	Slide 54: Greedy Decision
	Slide 55: Greedy Decision
	Slide 56: Greedy Decision
	Slide 57: Earliest Deadline First Algorithm
	Slide 58: Earliest Deadline First Algorithm
	Slide 59: Earliest Deadline First Algorithm
	Slide 60: Earliest Deadline First Algorithm
	Slide 61: Earliest Deadline First Algorithm
	Slide 62: Earliest Deadline First Algorithm
	Slide 63: Earliest Deadline First Algorithm
	Slide 64: Earliest Deadline First Algorithm
	Slide 65: Earliest Deadline First Algorithm
	Slide 66: Earliest Deadline First Algorithm
	Slide 67: Earliest Deadline First Algorithm
	Slide 68: Earliest Deadline First Algorithm
	Slide 69: Earliest Deadline First Algorithm
	Slide 70: Earliest Deadline First Algorithm
	Slide 71: Earliest Deadline First Algorithm
	Slide 72: Earliest Deadline First Algorithm
	Slide 73: Earliest Deadline First Algorithm
	Slide 74: Earliest Deadline First Algorithm
	Slide 75: Earliest Deadline First Algorithm
	Slide 76: Earliest Deadline First Algorithm
	Slide 77: Earliest Deadline First Algorithm
	Slide 78: Earliest Deadline First Algorithm
	Slide 79: Earliest Deadline First Algorithm

