Greedy Algorithms
CSCI 532

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

[] Greedy selection criteria?
[] Earliest compatible finish.
- - In each iteration, pick the course
- - that ends earliest and is compatible

with existing schedule.

Single Room Scheduling

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let C be the set of courses, S;;.; € C be the greedy algorithm’s selection,
and Spopr € C be an optimal selection, all sorted by increasing finish time.

Suppose Sy glil = Sopr[i], foralli < kand Sa.6lk] = ¢; # ¢; = Soprlk].

Create the revised schedule S)pr = Sppr \ {cj} U{c;}. (l.e., Swap Sy ¢l k] for Spprlk])
c; is compatible with previous courses in S, pr since Sy ¢lil = Spprlil = Soprl[i], foralli < k

c; is compatible with subsequent courses in S/ p7 since f; < fj- Otherwise, the greedy
algorithm would have selected c; instead of c;.

So S, pr is a valid schedule with the same number of courses as Sypr, S0 S, pr is also optimal.

/4
Sopr:
SaLG:

Room Minimization

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.

Room Minimization

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.
Goal: Compatibly schedule all courses with the min number of rooms.
Algorithm Idea?

Assign as much as possible to room 1,
then as much as possible to room 2,...

Optimal?

Room Minimization

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.
Algorithm Idea?

Assign as much as possible to room 1, Cc
then as much as possible to room 2,... C3

Optimal? No! €1 | C2 C4 || Co

Room Minimization

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.
Goal: Compatibly schedule all courses with the min number of rooms.
Algorithm Idea?

Given C, what is the smallest number of rooms possible?

Room Minimization

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.
Algorithm Idea?

Given C, what is the smallest number of rooms possible?
The number of concurrent courses.

Room Minimization

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.
Algorithm Idea?

Given C, what is the smallest number of rooms possible?
The number of concurrent courses.

What if we made a schedule where # rooms = # concurrent courses?

Room Minimization

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.
Algorithm Idea?

Given C, what is the smallest number of rooms possible?
The number of concurrent courses.

What if we made a schedule where # rooms = # concurrent courses?
It must be optimal.

Room Minimization

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.
Algorithm Idea?

Occupied Rooms But previously
Unoccupied Rooms ‘/occupied

Room Minimization

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.
: At h time:
Algorithm Idea? Sath HmE

Occupied Rooms But previously
Unoccupied Rooms ‘/occupied

—m
time

Room Minimization

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.

At each time:
i ?
Algorithm Idea: 1. When course ends, move its occupied

Occupied Rooms But previously room to UHOCCUPIEd rooms.

Unoccupied Rooms ‘/occupied

—m
time

Room Minimization

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.

At each time:
i ?
Algorithm Idea: 1. When course ends, move its occupied

Occupied Rooms But previously room to UHOCCLlpIEd rooms.
Unoccupied Rooms koccumed 2. When course starts, select

unoccupied room. If none exists,
—_————— >
time select a new (nhever used) room.

room_minimization(courses C) F = Unoccupied Rooms

F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C

if c.start ==
if F.isEmpty()
room_num += 1 Cs

F.add(room_num) €3
room = F.getFreeRoom() L_El_H_EZ_I LlELJLkaJ
S.schedule(c, room)
B.add(room)
return S

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 Cs
F.add(room_num) 3
room = F.getFreeRoom() L_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) P'::{}
B.add(room) B ={}

return S S=0

room_minimization(courses C) F = Unoccupied Rooms

F=B=S=20 Go through one B = Occupied Rooms

room_num = 0O / timeslot at a time S = course -> room Map
foreach timeslot t

foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 Cs
F.add(room_num) 3
room = F.getFreeRoom() L_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) P'::{}
B.add(room) B ={}

return S S = {}

room_minimization(courses C) F = Unoccupied Rooms

F=B=S=20 Go through one B = Occupied Rooms

room_num = 0O / timeslot at a time S = course -> room Map
foreach timeslot t

foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 E Cs
F.add(room_num) E €3
room = F.getFreeRoom() {_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) P'::{}
B.add(room) B ={}

return S S = {}

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedrRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 E Cs
F.add(room_num) E €3
room = F.getFreeRoom() {_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) P'::{}
B.add(room) B ={}

return S S=0

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 E Cs
F.add(room_num) E €3
room = F.getFreeRoom() {_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) P'::{}
B.add(room) B ={}

return S S=0

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 E Cs
F.add(room_num) E €3
room = F.getFreeRoom() {_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) P'::{l}
B.add(room) B ={}

return S S = {}

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 E Cs
F.add(room_num) E €3
room = F.getFreeRoom() {_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) P'::{}
B.add(room) B = {1}

return S S = {Cl N 1}

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 ; Cs
F.add(room_num) 3
room = F.getFreeRoom() L_gl_H_EZ_I LlELJLkaJ
S.schedule(c, room) P'::{}
B.add(room) B = {1}

return S S = {Cl N 1}

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedrRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 ; Cs
F.add(room_num) 3
room = F.getFreeRoom() L_gl_H_EZ_I LlELJLkaJ
S.schedule(c, room) P'::{}
B.add(room) B = {1}

return S S = {Cl N 1}

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 ; Cs
F.add(room_num) 3
room = F.getFreeRoom() L_gl_H_EZ_I LlELJLkaJ
S.schedule(c, room) P'::{}
B.add(room) B = {1}

return S S = {Cl N 1}

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 ; Cs
F.add(room_num) 3
room = F.getFreeRoom() L_gl_H_EZ_I LlELJLkaJ
S.schedule(c, room) P'::{Z}
B.add(room) B = {1}

return S S = {Cl N 1}

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 ; Cs
F.add(room_num) 3
room = F.getFreeRoom() L_gl_H_EZ_I LlELJLkaJ
S.schedule(c, room) P'::{}
B.add(room) B ={1,2}

return S S — {Cl — 1’ C3 RN 2}

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedrRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty() :
room_num += 1 E Cs
F.add(room_num) . C3
room = F.getFreeRoom() _L=£;=i=££=J LJQLJLJELJ__
S.schedule(c, room)

F={
B.add(room) B ={
S

return S

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedrRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty() :
room_num += 1 E Cs
F.add(room_num) . C3
room = F.getFreeRoom() _L=£;=i=££=J LJQLJLJELJ__
S.schedule(c, room)

F={
B.add(room) B ={
S

return S

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedrRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 E Cs
F.add(room_num) : C3
room = F.getFreeRoom() L_El_l_gl_l LlELJLkaJ
S.schedule(c, room) P'::{l}
B.add(room) B = {2}

return S S — {Cl — 1’ C3 RN 2}

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 E Cs
F.add(room_num) : C3
room = F.getFreeRoom() [_El_L_EZ_J LlELJLkaJ
S.schedule(c, room) P'::{l}
B.add(room) B = {2}

return S S — {Cl — 1’ C3 RN 2}

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedrRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty() :
room_num += 1 E Cs
F.add(room_num) . C3
room = F.getFreeRoom() _L=£;=L=££=J LJQLJLJELJ__
S.schedule(c, room)

F={
B.add(room) B ={
S

return S

room_minimization(courses C) F = Unoccupied Rooms
F=B=S=20 B = Occupied Rooms
room_num = 0 S = course -> room Map
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 Cs :
F.add(room_num) €3 E
room = F.getFreeRoom() L_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) F'=={],2}
B.add(room) B ={}

return S S={c;>1,¢c3-2,¢c,>1,..}

room_minimization(courses C)
F=B=S=0 Valid?
room_num = 0
foreach timeslot t
foreach c in C
if c.finish == t
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()
room_num += 1 Cs

F.add(room_num) ;
room = F.getFreeRoom() L_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) F'=={142}

B.add(room) B ={}

return S S={c;>1,¢c3-2,¢c,>1,..}

room_minimization(courses C)

F=B=S=0 Valid?

room_num = 0 Yes. Each course is given a

foreach timeslot t room and no rooms are
foreach c in C concurrently occupied.

if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C

if c.start ==
if F.isEmpty()
room_num += 1 Cs :
F.add(room_num) C3 E
room = F.getFreeRoom() L_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) F'=={142}
B.add(room) B ={}

return S S={c;>1,¢c3-2,¢c,>1,..}

room_minimization(courses C)
F=B=S=0¢ Running Time?
room_num = 0
foreach timeslot t

foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 Cs :
F.add(room_num) €3 E
room = F.getFreeRoom() L_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) F'=={142}
B.add(room) B ={}

return S S={c;>1,¢c3-2,¢c,>1,..}

room_minimization(courses C)

F=B=S=0 Running Time?

room_num = 0 0(|C|%) — Don’t need to go

foreach timeslot t through all timeslots. Just
foreach c in C start/finish for each activity.

if c.finish ==t

F.add(B.getBookedRoom(S.getroom(c)))

foreach c in C
if c.start == t

return S

if F.isEmpty()
room_num += 1 Cs

F.add(room_num)

room = F.getFreeRoom() L_El_H_EZ_I LlELJLkaJ

s.schedule(c, room) F={12}
B.add(room) B ={}
S={c;—>1,¢c3->2,¢c,—>1,..}

room_minimization(courses C)
F=B=S=20
room_num = 0
foreach timeslot t
foreach c in C
if c.finish == t
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()
room_num += 1 Cs

Optimal?

F.add(room_num) ;
room = F.getFreeRoom() L_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) F'=={142}

B.add(room) B ={}

return S S={c;>1,¢c3-2,¢c,>1,..}

room_minimization(courses C) _ 5
F_Bes g Optimal:

rooms needed > # concurrent courses.
room_num = 0

foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

room_num += 1 Cs :
F.add(room_num) €3 E
room = F.getFreeRoom() L_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) F'=={142}
B.add(room) B ={}

return S S={c;>1,¢c3-2,¢c,>1,..}

room_minimization(courses C)
F=B=S=20
room_num = 0
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

Optimal?
rooms needed = # concurrent courses.
New room added < all other rooms in use

room_num += 1 Cs :
F.add(room_num) €3 E
room = F.getFreeRoom() L_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) F'=={142}
B.add(room) B ={}

return S S={c;>1,¢c3-2,¢c,>1,..}

room_minimization(courses C) _ ,
F_B=sS =0 Optimal:
0 # rooms needed = # concurrent courses.
New room added < all other rooms in use

(i.e., # rooms used = max[# concurrent courses])

room_num =
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C

if c.start ==
if F.isEmpty()
room_num += 1 Cs :
F.add(room_num) C3 E
room = F.getFreeRoom() L_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) F'=={142}
B.add(room) B ={}

return S S={c;>1,¢c3-2,¢c,>1,..}

room_minimization(courses C)
F=B=S=20
room_num = 0
foreach timeslot t
foreach c in C
if c.finish ==
F.add(B.getBookedRoom(S.getroom(c)))
foreach c in C
if c.start ==t
if F.isEmpty()

Optimal?
rooms needed > # concurrent courses.
New room added < all other rooms in use
(i.e., # rooms used = max[# concurrent courses])

So, yes.

room_num += 1 Cs :
F.add(room_num) €3 E
room = F.getFreeRoom() L_El_H_EZ_I LlELJLkaJ
S.schedule(c, room) F'=={142}
B.add(room) B ={}

return S S={c;>1,¢c3-2,¢c,>1,..}

Client Scheduling

Suppose you are a plumber and you
have a list of clients that want help.

Client Scheduling

Suppose you are a plumber and you
« d;: deadline for client i. have a list of clients that want help.

* t;:time required for client i. .) _
Each client i has a deadline d; of when

they need help by and an amount of
time t; they will need help for.

Client | d; |¢;
1 513
2 6 | 4
3 8 | 3

Client Scheduling

Suppose you are a plumber and you
« d;: deadline for client i. have a list of clients that want help.

* t;:time required for client i. .) _
Each client i has a deadline d; of when

they need help by and an amount of
time t; they will need help for.

Client | d; | ¢;
1 5 | 3 You cannot help multiple clients at the
same time and cannot pause helping
: b | 4 one to help another.
3 8 | 3

Client Scheduling

Suppose you are a plumber and you
« d;: deadline for client i. have a list of clients that want help.

* t;:time required for client i. .) _
Each client i has a deadline d; of when

they need help by and an amount of
time t; they will need help for.

Client | d; | ¢;
1 5 | 3 You cannot help multiple clients at the
same time and cannot pause helping
: b | 4 one to help another.
3 8 | 3

You need to help all clients, even if it
goes over their deadline (though they
will be angry then).

Client Scheduling

* d;: deadline for client i.
* t;: time required for client i.
* s(i): start time for client i.

Client | d; | t;
1 513
2 6
3 8 | 3

Client Scheduling

* d;: deadline for client i. f(i) =s(i) + t;:finish time for client i.
* t;:time required for client i. * [; = f(i) — d;: lateness for client i.
* s(i): start time for client i.

- The lateness of a client is the amount of
Client | d; | t; . . .
past their deadline their request took.
1 51 3
2 6
3 3 | 3 Lateness for Lateness for

client 2. client 3.

Schedule: ﬂ

0 2 4 6 8 10

Client Scheduling

* d;: deadline for client i.
* t;: time required for client i.
* s(i): start time for client i.

Client | d; | t;
1 513
2 6
3 8 | 3

* f(i) =s(i) + t;:finish time for client i.

* [; = f(i) — d;: lateness for client i.

* L = max/;: maximum lateness.
l

We want a schedule that minimizes the
lateness of the latest client.

Lateness for
client 2.

Lateness for
client 3.

I_H (A)
Schedule: INCTERETCicrn2 N Cicnns

0

2

4 6 8

10

Client Scheduling

* d;: deadline for client i.
* t;: time required for client i.
* s(i): start time for client i.

* f(i) =s(i) + t;:finish time for client i.

* [; = f(i) — d;: lateness for client i.

* L = max/;: maximum lateness.
l

Client | d. | ¢ We want a schedule that minimizes the
L | lateness of the latest client.
1 51| 3
2 6
3 g | 3 Late.ness for
client 1.
A
[\
Schedule: GRS Clicnt 2 clicht T
| | | | | | | | | | |
0 2 4 6 8 10

Greedy Decision

What are some possible Greedy decisions?

Greedy Decision

What are some possible Greedy decisions?

* Smallest t; first.

* Smallest slack time (d; — t;) first.

* Earliest d; first.

Greedy Decision

What are some possible Greedy decisions?

* Smallest t; first.

* Smallest slack time (d; — t;) first.

How to decide which to use?

* Earliest d; first.

Greedy Decision

What are some possible Greedy decisions?

* Smallest t; first.

* Smallest slack time (d; — t;) first.

How to decide which to use?
* Earliest d; first. Hunt for counterexamples.

Greedy Decision

What are some possible Greedy decisions? Algorithm: 2 then 1,
lateness of 1.

* Smallest t; first. Optimal: 1 then 2,

Client | d; |t; lateness of 0.
1 | 8|7 :
2 |10] 2 ! !

10

* Smallest slack time (d; — t;) first.

* Earliest d; first.

Greedy Decision

What are some possible Greedy decisions? Algorithm: 2 then 1,
lateness of 1.
Client | d; |t; lateness of 0.
1 | 8|7 :
2 |10 2 1!0
Algorithm: 2 then 1,
lateness of 6.
Client di ti .
) 3 11 Optimal: 1 then 2,
, lateness of 0.
2 |98 10

* Earliest d; first.

Earliest Deadline First Algorithm

. Order clients by increasing deadline.
Rename so that d; < -+ < d,,.

et s(1) = 0. (implies that f(1) = t;)
~or each subsequent (in order) client c,

s(c)=f(c—1)and f(c) = s(c) + ¢,.

pwoNoR

Earliest Deadline First Algorithm

Theorem: The maximum lateness given by a schedule from
the EDF algorithm is optimal.

Plan of attack:

Earliest Deadline First Algorithm

Theorem: The maximum lateness given by a schedule from
the EDF algorithm is optimal.

Plan of attack: Consider an optimal schedule, modify it in

such a way that optimality is preserved until it is the same as
our schedule.

How could our schedule differ from optimal?

Earliest Deadline First Algorithm

Theorem: The maximum lateness given by a schedule from
the EDF algorithm is optimal.

Plan of attack: Consider an optimal schedule, modify it in

such a way that optimality is preserved until it is the same as
our schedule.

How could our schedule differ from optimal?
1. Gaps in schedules.
2. Clients out of order.

Earliest Deadline First Algorithm

. Order clients by increasing deadline.
Rename so that d; < -+ < d,,.

et s(1) = 0. (implies that f(1) = t;)
~or each subsequent (in order) client c,

s(c)=f(c—1)and f(c) = s(c) + ¢,.

pwoNoR

Could there be gaps in our schedule?

Earliest Deadline First Algorithm

. Order clients by increasing deadline.
Rename so that d; < -+ < d,,.

et s(1) = 0. (implies that f(1) = t;)
~or each subsequent (in order) client c,

s(c)=f(c—1)and f(c) = s(c) + ¢,.

pwoNoR

Could there be gaps in our schedule?
No — as soon as one client is finished, f(c), the
next client starts, s(c + 1) = f(¢).

Earliest Deadline First Algorithm

Lemma: An optimal schedule exists that has no gaps between
clients.

Proof: ?

Earliest Deadline First Algorithm

Lemma: An optimal schedule exists that has no gaps between
clients.

Proof: Since all clients are available to start at the same time,
they can be scheduled one after the other without gaps. If an
optimal schedule exists with gaps, those gaps can be removed by
shifting clients forward without increasing the maximum

lateness.

Earliest Deadline First Algorithm

Definition: A schedule has an inversion if some client is
scheduled before a client with an earlier deadline.

Client 1: Client 2:
dl - 5 dz - 6
tl - 2 tz - 3

No Inversion: [CHEREENNCIER2NN

0 2 4

Inversion: [NCHcAt2NNNNINNCIERETNN
| | | | | |

0 2 4

Earliest Deadline First Algorithm

Definition: A schedule has an inversion if some client is
scheduled before a client with an earlier deadline.

Client 1: Client 2: Does our schedule have any inversions?
dl =5 dz - 6
tl - 2 tz — 3

No Inversion: [CHEREENNCIER2NN

0 2 4 6

Inversion: [NCHcAt2NNNNINNCIERETNN
| | | | | |

0 2 4 6

Earliest Deadline First Algorithm

Definition: A schedule has an inversion if some client is
scheduled before a client with an earlier deadline.

Client1: Client 2: Does our schedule have any inversions?
dy =5 d, =6 No — The algorithm schedules
ty =2 t; =3 client i before client j if d; < d;
No Inversion: [IECHERETNNNNNCHeRt2NNNN
| | | | | | |
0 2 4 6

Inversion: [NCHcAt2NNNINNCIERETNN
| | | | | |

0 2 4 6

Earliest Deadline First Algorithm

Lemma: An optimal schedule exists that has no inversions.

Proof:

Earliest Deadline First Algorithm

Lemma: An optimal schedule exists that has no inversions.

Proof:

1. Any inversion results from two consecutive inverted
clients.

2. Swapping an inversion reduces the number of
Inversions.

3. Swapping an inversion does not increase the maximum
lateness of the schedule.

Earliest Deadline First Algorithm

3. Swapping an inversion does not increase the maximum lateness of
the schedule.

Proof: Whose lateness does swapping consecutive clients affect?

Earliest Deadline First Algorithm

3. Swapping an inversion does not increase the maximum lateness of
the schedule.

Proof: The lateness is less for the client swapped earlier, later for the
client swapped later, and the same for all other clients
(because inverted f (i) = swapped f(j)).

Earliest Deadline First Algorithm

3. Swapping an inversion does not increase the maximum lateness of
the schedule.

Proof: The only client we need to consider is the one swapped to be later
(because all other clients remain the same or have smaller lateness).

Earliest Deadline First Algorithm

3. Swapping an inversion does not increase the maximum lateness of
the schedule.

Proof: The only client we need to consider is the one swapped to be later
(because all other clients remain the same or have smaller lateness).

Let s(i), f (i), [; be for inverted schedule.
Let s'(i), (i), l;' be for swapped schedule.

Inverted: ENINCHERENI N Clientin
! | | | | | | |

Swapped: [ENNCERtCTiEnt

Earliest Deadline First Algorithm

3. Swapping an inversion does not increase the maximum lateness of
the schedule.

Proof: The only client we need to consider is the one swapped to be later
(because all other clients remain the same or have smaller lateness).

Let s(i), f (i), [; be for inverted schedule.
Let s'(i), (i), l;' be for swapped schedule.

/
L'B L,
Inverted: ﬁ Remember:

*Li=10)—4q;
Swapped: [EENClentE R ClentN -+ d; < d,

Earliest Deadline First Algorithm

3. Swapping an inversion does not increase the maximum lateness of
the schedule.

Proof: The only client we need to consider is the one swapped to be later
(because all other clients remain the same or have smaller lateness).

Let s(i), f (i), [; be for inverted schedule.
Let s'(i), (i), l;' be for swapped schedule.

L'=f'()—d;=f) —d; < f(i)) —d; =

Inverted: [EIRCHERE R Clih Remember:
‘= f0) — 4
Swapped: [Cleh e ClienEy -+ d; < d,

Earliest Deadline First Algorithm

3. Swapping an inversion does not increase the maximum lateness of
the schedule.

Proof: The only client we need to consider is the one swapped to be later
(because all other clients remain the same or have smaller lateness).

Let s(i), f (i), [; be for inverted schedule.
Let s'(i), (i), l;' be for swapped schedule.

L'=f'()—d;=f) —d; < f(i) —d; =

= The maximum lateness was not increased!

Earliest Deadline First Algorithm

Theorem: The maximum lateness given by a schedule from the
EDF algorithm is optimal.

Proof: The EDF schedule can only differ from an optimal schedule

by the order of clients with identical deadlines (since both have no
gaps or inversions).

Does the ordering of these clients lead to different maximal
lateness?

Earliest Deadline First Algorithm

Theorem: The maximum lateness given by a schedule from the
EDF algorithm is optimal.

Proof: The EDF schedule can only differ from an optimal schedule
by the order of clients with identical deadlines (since both have no
gaps or inversions).

Clients with identical deadlines d are all scheduled consecutively.
The client with the largest lateness ([; = f (i) — d) is the one with
the latest finish time (regardless of order).

Earliest Deadline First Algorithm

Theorem: The maximum lateness given by a schedule from the
EDF algorithm is optimal.

Proof: The EDF schedule can only differ from an optimal schedule
by the order of clients with identical deadlines (since both have no
gaps or inversions).

Clients with identical deadlines d are all scheduled consecutively.
The client with the largest lateness ([; = f (i) — d) is the one with
the latest finish time (regardless of order).

Thus, all schedules with no inversions or gaps have the same
maximal lateness.

Therefore, the EDF schedule is optimal.

	Slide 1: Greedy Algorithms CSCI 532
	Slide 2: Single Room Scheduling
	Slide 3: Single Room Scheduling
	Slide 4: Room Minimization
	Slide 5: Room Minimization
	Slide 6: Room Minimization
	Slide 7: Room Minimization
	Slide 8: Room Minimization
	Slide 9: Room Minimization
	Slide 10: Room Minimization
	Slide 11: Room Minimization
	Slide 12: Room Minimization
	Slide 13: Room Minimization
	Slide 14: Room Minimization
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Client Scheduling
	Slide 44: Client Scheduling
	Slide 45: Client Scheduling
	Slide 46: Client Scheduling
	Slide 47: Client Scheduling
	Slide 48: Client Scheduling
	Slide 49: Client Scheduling
	Slide 50: Client Scheduling
	Slide 51: Greedy Decision
	Slide 52: Greedy Decision
	Slide 53: Greedy Decision
	Slide 54: Greedy Decision
	Slide 55: Greedy Decision
	Slide 56: Greedy Decision
	Slide 57: Earliest Deadline First Algorithm
	Slide 58: Earliest Deadline First Algorithm
	Slide 59: Earliest Deadline First Algorithm
	Slide 60: Earliest Deadline First Algorithm
	Slide 61: Earliest Deadline First Algorithm
	Slide 62: Earliest Deadline First Algorithm
	Slide 63: Earliest Deadline First Algorithm
	Slide 64: Earliest Deadline First Algorithm
	Slide 65: Earliest Deadline First Algorithm
	Slide 66: Earliest Deadline First Algorithm
	Slide 67: Earliest Deadline First Algorithm
	Slide 68: Earliest Deadline First Algorithm
	Slide 69: Earliest Deadline First Algorithm
	Slide 70: Earliest Deadline First Algorithm
	Slide 71: Earliest Deadline First Algorithm
	Slide 72: Earliest Deadline First Algorithm
	Slide 73: Earliest Deadline First Algorithm
	Slide 74: Earliest Deadline First Algorithm
	Slide 75: Earliest Deadline First Algorithm
	Slide 76: Earliest Deadline First Algorithm
	Slide 77: Earliest Deadline First Algorithm
	Slide 78: Earliest Deadline First Algorithm
	Slide 79: Earliest Deadline First Algorithm

