Greedy Algorithms
CSCI 532

Single Room Scheduling

Goal: Assign courses to a single classroom.

Single Room Scheduling

Input
= {cy, Cy, ..., C,,} — set of courses that need rooms.
= [s;, fi) — start and finish times for each course.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

l.e., Fill a single room up with
the most possible courses.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

i |1 2 3 4 5 -
s; |1 3 4 5 7

fil3 5 6 7

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

fil3 5 6 7

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

i |1 2 34 s -
- €1 Cs |
fo P35 6 79 —— ——

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?

fil3 5 6 7 9

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Smallest conflict first.
In each iteration, pick the course

that overlaps with the smallest
number of other courses.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

3 4 4 3 Greedy selection criteria?
A 2 4 Smallest conflict first.
4 4 In each iteration, pick the course

that overlaps with the smallest
number of other courses.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Smallest duration first.
In each iteration, pick the course

that takes the least amount of
time.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Smallest duration first.

In each iteration, pick the course
that takes the least amount of
time.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course
that ends earliest and is compatible
with existing schedule.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course
- that ends earliest and is compatible
with existing schedule.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course
- that ends earliest and is compatible
with existing schedule.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course

- - that ends earliest and is compatible

with existing schedule.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course

- - that ends earliest and is compatible

with existing schedule.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?

[] Earliest compatible finish.
In each iteration, pick the course
- - that ends earliest and is compatible

with existing schedule.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?

[] Earliest compatible finish.
- In each iteration, pick the course
- - that ends earliest and is compatible

with existing schedule.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?

[] Earliest compatible finish.
- In each iteration, pick the course
- - that ends earliest and is compatible

with existing schedule.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

[] Greedy selection criteria?
[] Earliest compatible finish.
- In each iteration, pick the course
- - that ends earliest and is compatible

with existing schedule.

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

[] Greedy selection criteria?
[] Earliest compatible finish.
- - In each iteration, pick the course
- - that ends earliest and is compatible

with existing schedule.

Valid?

Running Time?

Single Room Scheduling

Performance?

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

[] Greedy selection criteria?
[] Earliest compatible finish.
- - In each iteration, pick the course
- - that ends earliest and is compatible

with existing schedule.

Valid? Selected compatible courses.

Single Room Scheduling

Running Time?

Performance?

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if [s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

[] Greedy selection criteria?
[] Earliest compatible finish.
- - In each iteration, pick the course
- - that ends earliest and is compatible

with existing schedule.

Single Room Scheduling

Input:

Valid? Selected compatible courses.

Running Time?

Performance?

* C =1{cq,Cy,..,C }—set of courses
* ¢; = |s;, fi) —start and finish time!

Rules:
* ¢; and ¢; are compatible if [s;, f;) ¢

Implementation Plan:

1. Sort by increasing finish
times.

2. Select first course.

3. lterate through list looking

Goal: Select a maximum sized subset of for first compatible course.
- 4. Repeat.
—__Qgreeaqgy serecuort criteridr
[] Earliest compatible finish.
- - In each iteration, pick the course
- - that ends earliest and is compatible

with existing schedule.

Single Room Scheduling

Input:

Valid? Selected compatible courses.
Running Time? O(nlogn)

Performance?

* C =1{cq,Cy,..,C }—set of courses
* ¢; = |s;, fi) —start and finish time!

Rules:
* ¢; and ¢; are compatible if [s;, f;) ¢

Goal: Select a maximum sized subset of for first compatible course.

Implementation Plan:

1. Sort by increasing finish
times.

2. Select first course.

3. lterate through list looking

4. Repeat.
—__Qgreeaqgy serecuort criteridr
Earliest compatible finish.
In each iteration, pick the course

that ends earliest and is compatible
with existing schedule.

Single Room Scheduling

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality:

Plan: Turn a hypothetical optimal solution into the
algorithm’s solution without changing the cost (i.e., number
of courses) and without violating course compatibility.

Single Room Scheduling

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let C be the set of courses, S, € C be the greedy algorithm’s selection,
and Spopr € C be an optimal selection, all sorted by increasing finish time.

Plan: Turn a hypothetical optimal solution into the
algorithm’s solution without changing the cost (i.e., number
of courses) and without violating course compatibility.

Sopr:
SaLc:

Single Room Scheduling

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let C be the set of courses, S, € C be the greedy algorithm’s selection,
and Spopr € C be an optimal selection, all sorted by increasing finish time.

Suppose SALG[i] — SOPT[i]I foralli < k and SALG[k] = C; F Cj — SOPT[k]'

Suppose S 45 and Sypr schedule the
same courses up until course k.

Plan: Turn a hypothetical optimal solution into the
algorithm’s solution without changing the cost (i.e., number
of courses) and without violating course compatibility.

Sopr:
SaLc:

Single Room Scheduling

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let C be the set of courses, S, € C be the greedy algorithm’s selection,
and Spopr € C be an optimal selection, all sorted by increasing finish time.

Suppose SALG[i] — SOPT[i]I foralli < k and SALG[k] = C; F Cj — SOPT[k]'

Create the revised schedule S)pr = Sppr \ {cj} U{c;}. (l.e., Swap Sy ¢l k] for Spprlk])

Plan: Turn a hypothetical optimal solution into the
algorithm’s solution without changing the cost (i.e., number
of courses) and without violating course compatibility.

/4
Sopr:
SaLG:

Single Room Scheduling

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let C be the set of courses, S, € C be the greedy algorithm’s selection,
and Spopr € C be an optimal selection, all sorted by increasing finish time.

SUppOse SALG[i] = SOPT[i]I foralli < k and SALG[k] = C; F Cj = SOPT[k]'

Create the revised schedule S)pr = Sppr \ {cj} U{c;}. (l.e., Swap Sy ¢l k] for Spprlk])

Will S, p7 be valid?

/4
Sopr:
SaLG:

Single Room Scheduling

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let C be the set of courses, S, € C be the greedy algorithm’s selection,
and Spopr € C be an optimal selection, all sorted by increasing finish time.

SUppOse SALG[i] = SOPT[i]I foralli < k and SALG[k] = C; F Cj = SOPT[k]'

Create the revised schedule S)pr = Sppr \ {cj} U{c;}. (l.e., Swap Sy ¢l k] for Spprlk])

Will S/, pr be valid?
Need to check and see if ¢;
messed up any compatibilities.

/4
Sopr:
SaLG:

Single Room Scheduling

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let C be the set of courses, S, € C be the greedy algorithm’s selection,
and Spopr € C be an optimal selection, all sorted by increasing finish time.

SUppOse SALG[i] — SOPT[i]I foralli < k and SALG[k] = C; F Cj — SOPT[k]'

Create the revised schedule S)pr = Sppr \ {cj} U{c;}. (l.e., Swap Sy ¢l k] for Spprlk])

c; is compatible with previous courses in S, pr since Sy ¢lil = Spprlil = Soprl[i], foralli < k

c; is compatible with S 4;, and Sypr and
S, pr share the same courses before c;.

/4
Sopr:
SaLG:

Single Room Scheduling

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let C be the set of courses, S, € C be the greedy algorithm’s selection,
and Spopr € C be an optimal selection, all sorted by increasing finish time.

SUppOse SALG[i] — SOPT[i]I foralli < k and SALG[k] = C; F Cj = SOPT[k]'

Create the revised schedule S)pr = Sppr \ {cj} U{c;}. (l.e., Swap Sy ¢l k] for Spprlk])
c; is compatible with previous courses in S, pr since Sy ¢lil = Spprlil = Soprl[i], foralli < k

c; is compatible with subsequent courses in S/ p7 since f; < fj- Otherwise, the greedy
algorithm would have selected c; instead of c;.

/4
Sopr:
SaLG:

Single Room Scheduling

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let C be the set of courses, S, € C be the greedy algorithm’s selection,
and Spopr € C be an optimal selection, all sorted by increasing finish time.

Suppose Sy glil = Sopr[i], foralli < kand Sa.6lk] = ¢; # ¢; = Soprlk].

Create the revised schedule S)pr = Sppr \ {cj} U{c;}. (l.e., Swap Sy ¢l k] for Spprlk])
c; is compatible with previous courses in S, pr since Sy ¢lil = Spprlil = Soprl[i], foralli < k

c; is compatible with subsequent courses in S/ p7 since f; < fj- Otherwise, the greedy
algorithm would have selected c; instead of c;.

So S, pr is a valid schedule with the same number of courses as Sypr, S0 S, pr is also optimal.

/4
Sopr:
SaLG:

Single Room Scheduling

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let C be the set of courses, S, € C be the greedy algorithm’s selection,
and Spopr € C be an optimal selection, all sorted by increasing finish time.

Suppose Sy glil = Sopr[i], foralli < kand Sa.6lk] = ¢; # ¢; = Soprlk].

Create the revised schedule S)pr = Sppr \ {cj} U{c;}. (l.e., Swap Sy ¢l k] for Spprlk])
c; is compatible with previous courses in S, pr since Sy ¢lil = Spprlil = Soprl[i], foralli < k

c; is compatible with subsequent courses in S/ p7 since f; < fj- Otherwise, the greedy
algorithm would have selected c; instead of c;.

So S, pr is a valid schedule with the same number of courses as Sypr, S0 S, pr is also optimal.

We can then proceed inductively and show that each course in S5pr can be replaced by the
corresponding course in S4;; Without violating compatibility.

Single Room Scheduling

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let C be the set of courses, S, € C be the greedy algorithm’s selection,
and Spopr € C be an optimal selection, all sorted by increasing finish time.

Suppose Sy glil = Sopr[i], foralli < kand Sa.6lk] = ¢; # ¢; = Soprlk].

Create the revised schedule S)pr = Sppr \ {cj} U{c;}. (l.e., Swap Sy ¢l k] for Spprlk])
c; is compatible with previous courses in S, pr since Sy ¢lil = Spprlil = Soprl[i], foralli < k

c; is compatible with subsequent courses in S/ p7 since f; < fj- Otherwise, the greedy
algorithm would have selected c; instead of c;.

So S, pr is a valid schedule with the same number of courses as Sypr, S0 S, pr is also optimal.

We can then proceed inductively and show that each course in S5pr can be replaced by the
corresponding course in S4; ¢ Without violating compatibility. Since replacing every course in
Sopr With the coursesin Sy, keeps the solution optimal, S4; . must be optimal. (i.e., we
translated Syp into S4; ¢ at no extra cost).

Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Room Minimization

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.

Room Minimization

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.

Goal: Compatibly schedule all courses with the min number of rooms.
Algorithm Ideal?

Room Minimization

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.
Goal: Compatibly schedule all courses with the min number of rooms.
Algorithm Idea?

Assign as much as possible to room 1,
then as much as possible to room 2,...

Optimal?

	Slide 1: Greedy Algorithms CSCI 532
	Slide 2: Single Room Scheduling
	Slide 3: Single Room Scheduling
	Slide 4: Single Room Scheduling
	Slide 5: Single Room Scheduling
	Slide 6: Single Room Scheduling
	Slide 7: Single Room Scheduling
	Slide 8: Single Room Scheduling
	Slide 9: Single Room Scheduling
	Slide 10: Single Room Scheduling
	Slide 11: Single Room Scheduling
	Slide 12: Single Room Scheduling
	Slide 13: Single Room Scheduling
	Slide 14: Single Room Scheduling
	Slide 15: Single Room Scheduling
	Slide 16: Single Room Scheduling
	Slide 17: Single Room Scheduling
	Slide 18: Single Room Scheduling
	Slide 19: Single Room Scheduling
	Slide 20: Single Room Scheduling
	Slide 21: Single Room Scheduling
	Slide 22: Single Room Scheduling
	Slide 23: Single Room Scheduling
	Slide 24: Single Room Scheduling
	Slide 25: Single Room Scheduling
	Slide 26: Single Room Scheduling
	Slide 27: Single Room Scheduling
	Slide 28: Single Room Scheduling
	Slide 29: Single Room Scheduling
	Slide 30: Single Room Scheduling
	Slide 31: Single Room Scheduling
	Slide 32: Single Room Scheduling
	Slide 33: Single Room Scheduling
	Slide 34: Single Room Scheduling
	Slide 35: Single Room Scheduling
	Slide 36: Single Room Scheduling
	Slide 37: Single Room Scheduling
	Slide 38: Single Room Scheduling
	Slide 39: Single Room Scheduling
	Slide 40: Room Minimization
	Slide 41: Room Minimization
	Slide 42: Room Minimization

