Greedy Algorithms
CSCI 532



Single Room Scheduling

Goal: Assign courses to a single classroom.
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Input:
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Greedy selection criteria?
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In each iteration, pick the course

that overlaps with the smallest
number of other courses.
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Running Time?

Single Room Scheduling
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Input:

Valid? Selected compatible courses.

Running Time?

Performance?

* C =1{cq,Cy,..,C }—set of courses
* ¢; = |s;, fi) —start and finish time!

Rules:
* ¢; and ¢; are compatible if [s;, f;) ¢

Implementation Plan:

1. Sort by increasing finish
times.

2. Select first course.

3. lterate through list looking

Goal: Select a maximum sized subset of for first compatible course.
- 4. Repeat.
—__Qgreeaqgy serecuort criteridr
[ ] Earliest compatible finish.
- - In each iteration, pick the course
- - that ends earliest and is compatible

with existing schedule.



Single Room Scheduling

Input:

Valid? Selected compatible courses.
Running Time? O(nlogn)

Performance?

* C =1{cq,Cy,..,C }—set of courses
* ¢; = |s;, fi) —start and finish time!

Rules:
* ¢; and ¢; are compatible if [s;, f;) ¢

Goal: Select a maximum sized subset of for first compatible course.

Implementation Plan:

1. Sort by increasing finish
times.

2. Select first course.

3. lterate through list looking

4. Repeat.
—__Qgreeaqgy serecuort criteridr
Earliest compatible finish.
In each iteration, pick the course

that ends earliest and is compatible
with existing schedule.



Single Room Scheduling

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality:

Plan: Turn a hypothetical optimal solution into the
algorithm’s solution without changing the cost (i.e., number
of courses) and without violating course compatibility.
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Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let C be the set of courses, S, € C be the greedy algorithm’s selection,
and Spopr € C be an optimal selection, all sorted by increasing finish time.

Suppose SALG[i] — SOPT[i]I foralli < k and SALG[k] = C; F Cj — SOPT[k]'

Suppose S 45 and Sypr schedule the
same courses up until course k.

Plan: Turn a hypothetical optimal solution into the
algorithm’s solution without changing the cost (i.e., number
of courses) and without violating course compatibility.
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SaLc:
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Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let C be the set of courses, S, € C be the greedy algorithm’s selection,
and Spopr € C be an optimal selection, all sorted by increasing finish time.

SUppOse SALG[i] = SOPT[i]I foralli < k and SALG[k] = C; F Cj = SOPT[k]'

Create the revised schedule S)pr = Sppr \ {cj} U{c;}. (l.e., Swap Sy ¢l k] for Spprlk])

Will S/, pr be valid?
Need to check and see if ¢;
messed up any compatibilities.
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Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let C be the set of courses, S, € C be the greedy algorithm’s selection,
and Spopr € C be an optimal selection, all sorted by increasing finish time.
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Create the revised schedule S)pr = Sppr \ {cj} U{c;}. (l.e., Swap Sy ¢l k] for Spprlk])

c; is compatible with previous courses in S, pr since Sy ¢lil = Spprlil = Soprl[i], foralli < k

c; is compatible with S 4;, and Sypr and
S, pr share the same courses before c;.
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Single Room Scheduling

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let C be the set of courses, S, € C be the greedy algorithm’s selection,
and Spopr € C be an optimal selection, all sorted by increasing finish time.

Suppose Sy glil = Sopr[i], foralli < kand Sa.6lk] = ¢; # ¢; = Soprlk].

Create the revised schedule S)pr = Sppr \ {cj} U{c;}. (l.e., Swap Sy ¢l k] for Spprlk])
c; is compatible with previous courses in S, pr since Sy ¢lil = Spprlil = Soprl[i], foralli < k

c; is compatible with subsequent courses in S/ p7 since f; < fj- Otherwise, the greedy
algorithm would have selected c; instead of c;.

So S, pr is a valid schedule with the same number of courses as Sypr, S0 S, pr is also optimal.

We can then proceed inductively and show that each course in S5pr can be replaced by the
corresponding course in S4; ¢ Without violating compatibility. Since replacing every course in
Sopr With the coursesin Sy, keeps the solution optimal, S4; . must be optimal. (i.e., we
translated Syp into S4; ¢ at no extra cost).



Single Room Scheduling

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.

Goal: Select a maximum sized subset of compatible courses.
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Goal: Compatibly schedule all courses with the min number of rooms.
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Input:
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Goal: Compatibly schedule all courses with the min number of rooms.
Algorithm Ideal?



Room Minimization

Input:
* C =1{cq,Cy,..,C,}—set of courses that need rooms.
* ¢; = |s;, fi) —start and finish times for each course.

Rules:
* ¢; and cj are compatible if |s;, f;) and [Sj,fj) do not overlap.
Goal: Compatibly schedule all courses with the min number of rooms.
Algorithm Idea?

Assign as much as possible to room 1,
then as much as possible to room 2,...

Optimal?
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