
Minimum Spanning Trees
CSCI 532

Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a…

Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a…

✓ 
Tree if it is connected and acyclic.

Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a…

✓ 

Spanning tree if it is a tree and
includes all vertices in the graph.

Tree if it is connected and acyclic.

Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a…

✓ 

100

1

1

1

1
100

1
1

Spanning tree if it is a tree and
includes all vertices in the graph.

Minimum spanning tree if it is a
spanning tree whose sum of edge
costs is the minimum possible value.

Tree if it is connected and acyclic.

MST Problem

1
1 4

3 3

5
2

7 3

2

Goal: Given a connected, edge weighted
graph, find its Minimum Spanning Tree.

MST Problem

1
1 4

3 3

5
2

7 3

2

• Make the choice that best helps some objective.

• Do not look ahead, plan, or revisit past decisions.

• Hope that optimal local choices lead to optimal global solutions.

Greedy Algorithms:

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

• Make the choice that best helps some objective.

• Do not look ahead, plan, or revisit past decisions.

• Hope that optimal local choices lead to optimal global solutions.

Greedy Algorithms:

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

What are some questions we may have about the algorithm?

1. Is the solution valid? (Does it actually find a spanning tree?)
2. What is the running time?
3. Is the solution optimal?

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: ?

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges
resulting from Kruskal’s algorithm.

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges
resulting from Kruskal’s algorithm.

 What do we need to show?

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges
resulting from Kruskal’s algorithm.

𝑇 is a tree because it is connected (otherwise we could have added more edges without
creating cycles) and there are no cycles.

1 1 4

3 3

52
7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges
resulting from Kruskal’s algorithm.

𝑇 is a tree because it is connected (otherwise we could have added more edges without
creating cycles) and there are no cycles.

𝑇 spans 𝐺 because if it did not, we could have added more edges to connected
unreached nodes without creating cycles.

1 1 4

3 3

52
7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges
resulting from Kruskal’s algorithm.

𝑇 is a tree because it is connected (otherwise we could have added more edges without
creating cycles) and there are no cycles.

𝑇 spans 𝐺 because if it did not, we could have added more edges to connected
unreached nodes without creating cycles.

∴ 𝑇 is a spanning tree of 𝐺

1 1 4

3 3

52
7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

What are some questions we may have about the algorithm?

1. Is the solution valid? (Does it actually find a spanning tree?)
2. What is the running time?
3. Is the solution optimal?

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMST(G=(V,E)) {
 T = ∅
 sort(E) //smallest to largest weight
 for (e in E) {
 if (T U {e} is acyclic) {
 T = T U {e}
 }
 }
 return T
}

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMST(G=(V,E)) {
 T = ∅
 sort(E) //smallest to largest weight
 for (e in E) {
 if (T U {e} is acyclic) {
 T = T U {e}
 }
 }
 return T
}

𝑶(𝑬 𝐥𝐨𝐠(𝑬))

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMST(G=(V,E)) {
 T = ∅
 sort(E) //smallest to largest weight
 for (e in E) {
 if (T U {e} is acyclic) {
 T = T U {e}
 }
 }
 return T
}

𝑶(𝑬 𝐥𝐨𝐠(𝑬))

𝑶(𝑬)

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMST(G=(V,E)) {
 T = ∅
 sort(E) //smallest to largest weight
 for (e in E) {
 if (T U {e} is acyclic) {
 T = T U {e}
 }
 }
 return T
}

𝑶(𝑬 𝐥𝐨𝐠(𝑬))

𝑶(𝑬)
𝑶(𝑽 + 𝑬) using BFS

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMST(G=(V,E)) {
 T = ∅
 sort(E) //smallest to largest weight
 for (e in E) {
 if (T U {e} is acyclic) {
 T = T U {e}
 }
 }
 return T
}

𝑶(𝑬 𝐥𝐨𝐠(𝑬))

𝑶(𝑬)
𝑶(𝑽 + 𝑬) using BFS

Running time

 ∈ 𝑶 𝑬 𝐥𝐨𝐠 𝑬 + 𝑬 𝑽 + 𝑬

 ∈ 𝑶 |𝑬|𝟐 + 𝑬 𝑽

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMST(G=(V,E)) {
 T = ∅
 sort(E) //smallest to largest weight
 for (e in E) {
 if (T U {e} is acyclic) {
 T = T U {e}
 }
 }
 return T
}

𝑶(𝑬 𝐥𝐨𝐠(𝑬))

𝑶(𝑬)
𝑶(𝑽 + 𝑬) using BFS

Running time

 ∈ 𝑶 𝑬 𝐥𝐨𝐠 𝑬 + 𝑬 𝑽 + 𝑬

 ∈ 𝑶 |𝑬|𝟐 + 𝑬 𝑽

Can be improved to 𝑶 𝟏 ,
thus 𝑶(𝑬 𝐥𝐨𝐠(𝑬)) overall

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

What are some questions we may have about the algorithm?

1. Is the solution valid? (Does it actually find a spanning tree?)
2. What is the running time?
3. Is the solution optimal?

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: 𝑇 is an MST, because???

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof:

Assume unique
edge costs.

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof:

𝑺

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof:

𝑺
𝑽\𝑺

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

𝑺
𝑽\𝑺

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

𝒆

𝒆′

𝑺
𝑽\𝑺

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is the MST that does not include 𝒆.

𝒆

𝒆′

𝑺
𝑽\𝑺

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is the MST that does not include 𝒆. Then:
1. 𝑻 ∪ {𝒆} must have a cycle. Because?

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is the MST that does not include 𝒆. Then:
1. 𝑻 ∪ {𝒆} must have a cycle. (Since spanning tree 𝑻 already has a

path between 𝑢 and 𝑣, adding 𝒆 will create a cycle.)

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is the MST that does not include 𝒆. Then:
1. 𝑻 ∪ {𝒆} must have a cycle. (Since spanning tree 𝑻 already has a

path between 𝑢 and 𝑣, adding 𝒆 will create a cycle.)

2. That cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.
(Since there must be a path from 𝑢 ∈ 𝑆 to 𝑣 ∈ 𝑉\𝑆 in 𝑻)

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is the MST that does not include 𝒆. Then:
1. 𝑻 ∪ {𝒆} must have a cycle. (Since spanning tree 𝑻 already has a

path between 𝑢 and 𝑣, adding 𝒆 will create a cycle.)

2. That cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.
(Since there must be a path from 𝑢 ∈ 𝑆 to 𝑣 ∈ 𝑉\𝑆 in 𝑻)

Need to make sure we pick an edge
between 𝑺 and 𝑽\𝑺 on the cycle!

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

𝒇

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is the MST that does not include 𝒆. Then:
1. 𝑻 ∪ {𝒆} must have a cycle. (Since spanning tree 𝑻 already has a

path between 𝑢 and 𝑣, adding 𝒆 will create a cycle.)

2. That cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.
(Since there must be a path from 𝑢 ∈ 𝑆 to 𝑣 ∈ 𝑉\𝑆 in 𝑻)

Need to make sure we pick an edge
between 𝑺 and 𝑽\𝑺 on the cycle!

(Which one doesn’t matter.)

𝒆𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is the MST that does not include 𝒆. Then:
1. 𝑻 ∪ {𝒆} must have a cycle. (Since spanning tree 𝑻 already has a

path between 𝑢 and 𝑣, adding 𝒆 will create a cycle.)

2. That cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.
(Since there must be a path from 𝑢 ∈ 𝑆 to 𝑣 ∈ 𝑉\𝑆 in 𝑻)

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is the MST that does not include 𝒆. 𝑻 ∪ {𝒆} must have a cycle and that cycle
must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝑒 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑇 is the MST that does not include 𝑒. 𝑇 ∪ {𝑒} must have a cycle and that cycle
must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.

Remove 𝑒′ to form 𝑻′ = 𝑇 ∪ {𝑒}\{𝑒′}.

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝑒 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑇 is the MST that does not include 𝑒. 𝑇 ∪ {𝑒} must have a cycle and that cycle
must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.

Remove 𝑒′ to form 𝑻′ = 𝑇 ∪ {𝑒}\{𝑒′}.

𝑻′ is a cheaper spanning tree because:

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝑒 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑇 is the MST that does not include 𝑒. 𝑇 ∪ {𝑒} must have a cycle and that cycle
must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.

Remove 𝑒′ to form 𝑻′ = 𝑇 ∪ {𝑒}\{𝑒′}.

𝑻′ is a cheaper spanning tree because:
• 𝑻′ is a tree (breaking cycle doesn’t disconnect graph)

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝑒 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑇 is the MST that does not include 𝑒. 𝑇 ∪ {𝑒} must have a cycle and that cycle
must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.

Remove 𝑒′ to form 𝑻′ = 𝑇 ∪ {𝑒}\{𝑒′}.

𝑻′ is a cheaper spanning tree because:
• 𝑻′ is a tree (breaking cycle doesn’t disconnect graph)
• 𝑻′ spans 𝑉 (same number of edges as spanning tree 𝑇)

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝑒 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑇 is the MST that does not include 𝑒. 𝑇 ∪ {𝑒} must have a cycle and that cycle
must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.

Remove 𝑒′ to form 𝑻′ = 𝑇 ∪ {𝑒}\{𝑒′}.

𝑻′ is a cheaper spanning tree because:
• 𝑻′ is a tree (breaking cycle doesn’t disconnect graph)
• 𝑻′ spans 𝑉 (same number of edges as spanning tree 𝑇)
• cost(𝑻′) < cost(𝑇) since 𝑒′ was replaced by the cheaper 𝑒.

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝑒 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑇 is the MST that does not include 𝑒. 𝑇 ∪ {𝑒} must have a cycle and that cycle
must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.

Remove 𝑒′ to form 𝑻′ = 𝑇 ∪ {𝑒}\{𝑒′}.

𝑻′ is a cheaper spanning tree because:
• 𝑻′ is a tree (breaking cycle doesn’t disconnect graph)
• 𝑻′ spans 𝑉 (same number of edges as spanning tree 𝑇)
• cost(𝑻′) < cost(𝑇) since 𝑒′ was replaced by the cheaper 𝑒.

Thus, 𝑻′ is a cheaper spanning tree
𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a spanning tree).

Let 𝑒 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑇 is the MST that does not include 𝑒. 𝑇 ∪ {𝑒} must have a cycle and that cycle
must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.

Remove 𝑒′ to form 𝑻′ = 𝑇 ∪ {𝑒}\{𝑒′}.

𝑻′ is a cheaper spanning tree because:
• 𝑻′ is a tree (breaking cycle doesn’t disconnect graph)
• 𝑻′ spans 𝑉 (same number of edges as spanning tree 𝑇)
• cost(𝑻′) < cost(𝑇) since 𝑒′ was replaced by the cheaper 𝑒.

Thus, 𝑻′ is a cheaper spanning tree

⇒ The MST must include 𝑒.

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from
Kruskal’s algorithm.

Lemma: The cheapest
edge between 𝑆 ⊆ 𝑉 and
𝑉\𝑆 is part of the MST.

How do we use the Cut Property
to show that Kruskal’s is optimal?

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm.

1 1 4

3 3

5
2

7 3

2

𝑢

𝑣

Lemma: The cheapest
edge between 𝑆 ⊆ 𝑉 and
𝑉\𝑆 is part of the MST.

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm. Let 𝑺
be the set of 𝑢 and all nodes already connected to 𝑢. (or 𝑣 and all nodes connected to 𝑣)

1 1 4

3 3

5
2

7 3

2

𝑢

𝑣

𝑺

Lemma: The cheapest
edge between 𝑆 ⊆ 𝑉 and
𝑉\𝑆 is part of the MST.

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm. Let 𝑺
be the set of 𝑢 and all nodes already connected to 𝑢. Clearly 𝑢 ∈ 𝑺 and 𝑣 ∈ 𝑽\𝑺
(otherwise adding 𝒆 would have created a cycle).

1 1 4

3 3

5
2

7 3

2

𝑢

𝑣

𝑽\𝑺𝑺

Lemma: The cheapest
edge between 𝑆 ⊆ 𝑉 and
𝑉\𝑆 is part of the MST.

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm. Let 𝑺
be the set of 𝑢 and all nodes already connected to 𝑢. Clearly 𝑢 ∈ 𝑺 and 𝑣 ∈ 𝑽\𝑺
(otherwise adding 𝒆 would have created a cycle). We are picking the cheapest edge that
crosses the cut (otherwise the cheaper edge would have been selected since it would
not have created a cycle either).

1 1 4

3 3

5
2

7 3

2

𝑢

𝑣

𝑽\𝑺𝑺

Lemma: The cheapest
edge between 𝑆 ⊆ 𝑉 and
𝑉\𝑆 is part of the MST.

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm. Let 𝑺
be the set of 𝑢 and all nodes already connected to 𝑢. Clearly 𝑢 ∈ 𝑺 and 𝑣 ∈ 𝑽\𝑺
(otherwise adding 𝒆 would have created a cycle). We are picking the cheapest edge that
crosses the cut (otherwise the cheaper edge would have been selected since it would
not have created a cycle either). By the cut property lemma, this edge must be part of
the MST.

1 1 4

3 3

5
2

7 3

2

𝑢

𝑣

𝑽\𝑺𝑺

Lemma: The cheapest
edge between 𝑆 ⊆ 𝑉 and
𝑉\𝑆 is part of the MST.

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm. Let 𝑺
be the set of 𝑢 and all nodes already connected to 𝑢. Clearly 𝑢 ∈ 𝑺 and 𝑣 ∈ 𝑽\𝑺
(otherwise adding 𝒆 would have created a cycle). We are picking the cheapest edge that
crosses the cut (otherwise the cheaper edge would have been selected since it would
not have created a cycle either). By the cut property lemma, this edge must be part of
the MST.

1 1 4

3 3

5
2

7 3

2

𝑢

𝑣

𝑽\𝑺𝑺
Thus, every edge found by
Kruskal’s algorithm is part
of the MST, and since the
edges found form a
spanning tree, it is the MST.

Lemma: The cheapest
edge between 𝑆 ⊆ 𝑉 and
𝑉\𝑆 is part of the MST.

Prim’s MST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

1
1 4

3 3

5
2

7 3

2

Prim’s MST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

1
1 4

3 3

5
2

7 3

2

Prim’s MST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

1
1 4

3 3

5
2

7 3

2

Prim’s MST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

1
1 4

3 3

5
2

7 3

2

Prim’s MST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

1
1 4

3 3

5
2

7 3

2

Prim’s MST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

1
1 4

3 3

5
2

7 3

2

Prim’s MST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

1
1 4

3 3

5
2

7 3

2

Prim’s MST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

1
1 4

3 3

5
2

7 3

2

Prim’s MST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

1
1 4

3 3

5
2

7 3

2

Homework Questions:

1. Is the solution valid? (Does it actually find a spanning tree?)
2. Is the solution optimal?

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

𝑺
𝑽\𝑺

	Slide 1: Minimum Spanning Trees CSCI 532
	Slide 2: Minimum Spanning Tree (MST)
	Slide 3: Minimum Spanning Tree (MST)
	Slide 4: Minimum Spanning Tree (MST)
	Slide 5: Minimum Spanning Tree (MST)
	Slide 6: MST Problem
	Slide 7: MST Problem
	Slide 8: Kruskal’s MST Algorithm
	Slide 9: Kruskal’s MST Algorithm
	Slide 10: Kruskal’s MST Algorithm
	Slide 11: Kruskal’s MST Algorithm
	Slide 12: Kruskal’s MST Algorithm
	Slide 13: Kruskal’s MST Algorithm
	Slide 14: Kruskal’s MST Algorithm
	Slide 15: Kruskal’s MST Algorithm
	Slide 16: Kruskal’s MST Algorithm
	Slide 17: Kruskal’s MST Algorithm
	Slide 18: Kruskal’s MST Algorithm
	Slide 19: Kruskal’s MST Algorithm
	Slide 20: Kruskal’s MST Algorithm
	Slide 21: Kruskal’s MST Algorithm
	Slide 22: Kruskal’s MST Algorithm
	Slide 23: Kruskal’s MST Algorithm
	Slide 24: Kruskal’s MST Algorithm
	Slide 25: Kruskal’s MST Algorithm
	Slide 26: Kruskal’s MST Algorithm
	Slide 27: Kruskal’s MST Algorithm
	Slide 28: Kruskal’s MST Algorithm
	Slide 29: Kruskal’s MST Algorithm
	Slide 30: Kruskal’s MST Algorithm
	Slide 31: Kruskal’s MST Algorithm
	Slide 32: MST Cut Property
	Slide 33: MST Cut Property
	Slide 34: MST Cut Property
	Slide 35: MST Cut Property
	Slide 36: MST Cut Property
	Slide 37: MST Cut Property
	Slide 38: MST Cut Property
	Slide 39: MST Cut Property
	Slide 40: MST Cut Property
	Slide 41: MST Cut Property
	Slide 42: MST Cut Property
	Slide 43: MST Cut Property
	Slide 44: MST Cut Property
	Slide 45: MST Cut Property
	Slide 46: MST Cut Property
	Slide 47: MST Cut Property
	Slide 48: MST Cut Property
	Slide 49: MST Cut Property
	Slide 50: MST Cut Property
	Slide 51: MST Cut Property
	Slide 52: Kruskal’s MST Algorithm
	Slide 53: Kruskal’s MST Algorithm
	Slide 54: Kruskal’s MST Algorithm
	Slide 55: Kruskal’s MST Algorithm
	Slide 56: Kruskal’s MST Algorithm
	Slide 57: Kruskal’s MST Algorithm
	Slide 58: Kruskal’s MST Algorithm
	Slide 59: Prim’s MST Algorithm
	Slide 60: Prim’s MST Algorithm
	Slide 61: Prim’s MST Algorithm
	Slide 62: Prim’s MST Algorithm
	Slide 63: Prim’s MST Algorithm
	Slide 64: Prim’s MST Algorithm
	Slide 65: Prim’s MST Algorithm
	Slide 66: Prim’s MST Algorithm
	Slide 67: Prim’s MST Algorithm
	Slide 68: MST Cut Property

