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Tree if it is connected and acyclic.

O

Given a connected graph, a subset of edges is a...
Spanning tree if it is a tree and

includes all vertices in the graph.

Minimum spanning tree if it is a 1
spanning tree whose sum of edge Q’ |

costs is the minimum possible value.
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MST Problem

Goal: Given a connected, edge weighted
graph, find its Minimum Spanning Tree.
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Greedy Algorithms:

 Make the choice that best helps some objective.
Do not look ahead, plan, or revisit past decisions.

* Hope that optimal local choices lead to optimal global solutions.
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Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let ¢ = (V, E) be the connected graph, and T € E be the set of edges
resulting from Kruskal’s algorithm.

T is a tree because it is connected (otherwise we could have added more edges without
creating cycles) and there are no cycles.

T spans G because if it did not, we could have added more edges to connected
unreached nodes without creating cycles.

~ T is a spanning tree of G
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Running Time:

findvsT(G=(V,E)) {
T=20
sort(E) //smallest to largest weight <+— O(|E|log(|E|))
for (e 1n E) { «— O(|E))
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Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

Can be improved to 0(1),

findmMsT(G=(V,E)) { thus O(|E| log(|E|)) overall

T =20

sort(E) //smallest to largest weight <«— O(|E|log(|E|))

for
1f (T U {e} 1s acyclic)
T=TU {e}

<+— O(|V| + | E]) using BFS

Runnjing time
} € O(|E|log(IED) + |EI(IV] + |ED)
return T € O(|E|? + |EIIV])

}
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What are some questions we may have about the algorithm?
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3. Is the solution optimal?



Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: T is an MST, because???
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Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between S and V\S.

Suppose T is the MST that does not include e. T U {e} must have a cycle and that cycle
must have another edge e’ between S and V\S.

Remove e toform T' =T U {e}\{e'}.

T' is a cheaper spanning tree because: e
e T'isatree (breaking cycle doesn’t disconnect graph)
* T'spansV (same number of edges as spanning tree T)
e cost(T’) < cost(T) since e’ was replaced by the cheaper e.

Thus, T' is a cheaper spanning tree
= The MST must include e.



Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E),and T € E be the set of edges resulting from
Kruskal’s algorithm.

How do we use the Cut Property
to show that Kruskal’s is optimal

Lemma: The cheapest
edge between S € V and
V\S is part of the MST.
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Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E),and T € E be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge e = (u, v) is added by Kruskal’s algorithm. Let §
be the set of u and all nodes already connected to u. Clearlyu € S and v €

(otherwise adding e would have created a cycle). We are picking the cheapest edge that
crosses the cut (otherwise the cheaper edge would have been selected since it would
not have created a cycle either). By the cut property lemma, this edge must be part of
the MST.

Thus, every edge found by
Kruskal’s algorithm is part

Lemma: The cheapest
edge between S € V and
V\S is part of the MST.

of the MST, and since the
edges found form a
spanning tree, it is the MST.




Prim’s MIST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.
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Prim’s MIST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

Homework Questions:

1. Is the solution valid? (Does it actually find a spanning tree?)
2. Is the solution optimal?



MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e

between S and V\S is part of every MST.

V\S
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