Minimum Spanning Trees
CSCI 532

Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a...

Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a...

v

Tree if it is connected and acyclic. O | O Cﬁ

Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a...

Tree if it is connected and acyclic. O | O Cﬁ

Spanning tree if it is a tree and /O O
includes all vertices in the graph.

O

Minimum Spanning Tree (MST)

Tree if it is connected and acyclic.

O

Given a connected graph, a subset of edges is a...
Spanning tree if it is a tree and

includes all vertices in the graph.

Minimum spanning tree if it is a 1
spanning tree whose sum of edge Q’ |

costs is the minimum possible value.

MZI\

MST Problem

Goal: Given a connected, edge weighted
graph, find its Minimum Spanning Tree.

MST Problem

% 1
1 2 4
D
e
Greedy Algorithms:

 Make the choice that best helps some objective.
Do not look ahead, plan, or revisit past decisions.

* Hope that optimal local choices lead to optimal global solutions.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

L 1
1 2 4
D
e
Greedy Algorithms:

 Make the choice that best helps some objective.
Do not look ahead, plan, or revisit past decisions.

* Hope that optimal local choices lead to optimal global solutions.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

What are some questions we may have about the algorithm?

1. Is the solution valid? (Does it actually find a spanning tree?)
2. What is the running time?
3. Is the solution optimal?

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: ?

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let ¢ = (V, E) be the connected graph, and T € E be the set of edges
resulting from Kruskal’s algorithm.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let ¢ = (V, E) be the connected graph, and T € E be the set of edges
resulting from Kruskal’s algorithm.

What do we need to show?

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let ¢ = (V, E) be the connected graph, and T € E be the set of edges
resulting from Kruskal’s algorithm.

T is a tree because it is connected (otherwise we could have added more edges without
creating cycles) and there are no cycles.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let ¢ = (V, E) be the connected graph, and T € E be the set of edges
resulting from Kruskal’s algorithm.

T is a tree because it is connected (otherwise we could have added more edges without
creating cycles) and there are no cycles.

T spans G because if it did not, we could have added more edges to connected
unreached nodes without creating cycles.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let ¢ = (V, E) be the connected graph, and T € E be the set of edges
resulting from Kruskal’s algorithm.

T is a tree because it is connected (otherwise we could have added more edges without
creating cycles) and there are no cycles.

T spans G because if it did not, we could have added more edges to connected
unreached nodes without creating cycles.

~ T is a spanning tree of G

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

What are some questions we may have about the algorithm?

L s e el . £ d : 2
2. What is the running time?
3. Is the solution optimal?

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findvsT(G=(V,E)) {

T=20
sort(E) //smallest to largest weight
for (e 1n E) {

1f (T U {e} 1s acyclic) {

T=TU {e}

}

}

return T

}

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findvsT(G=(V,E)) {
T=20
sort(E) //smallest to largest weight <— O(|E|log(|E|))
for (e 1n E) {
1f (T U {e} 1s acyclic) {
T=TU {e}
}
}

return T

}

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMST(G=(V,E)) {
T=20
sort(E) //smallest to largest weight <— O(|E|log(|E|))
for (e 1n E) { «— O(|E))
1f (T U {e} 1s acyclic) {
T=TU {e}
}
}

return T

}

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findvsT(G=(V,E)) {
T=20
sort(E) //smallest to largest weight €«— O(|E|log(|E|))
for (e 1n E) { «— O(|E))
1f (T U {e} 1s acyclic) { <«— o0(|V| + |E]|) using BFS
T=TU {e}
}

¥

return T

}

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findvsT(G=(V,E)) {
T=20
sort(E) //smallest to largest weight <+— O(|E|log(|E|))
for (e 1n E) { «— O(|E))
1f (T U {e} 1s acyclic) { <«— o0(|V| + |E]|) using BFS

T=TU {e}
} Running time
} e O(|E|1og(|E]) + |EI(IV] + |ED))
return T € O(|E|? + |EIIV])

}

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

Can be improved to 0(1),

findmMsT(G=(V,E)) { thus O(|E| log(|E|)) overall

T =20

sort(E) //smallest to largest weight <«— O(|E|log(|E|))

for
1f (T U {e} 1s acyclic)
T=TU {e}

<+— O(|V| + | E]) using BFS

Runnjing time
} € O(|E|log(IED) + |EI(IV] + |ED)
return T € O(|E|? + |EIIV])

}

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

What are some questions we may have about the algorithm?

L s e e . £ d . 2

3. Is the solution optimal?

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: T is an MST, because???

edge costs.

MST Cut Property (Assume unique

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e

between S and V\S is part of the MST.

Proof:

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e

between S and V\S is part of the MST.

Proof:

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e

between S and V\S is part of the MST.

Proof:

V\S

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e

between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

V\S

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e

between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not

be a spanning tree).
Let e be the cheapest edge between § and IV\S.

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between § and V\S.
Suppose T is the MST that does not include e.

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between § and IV\S.

Suppose T is the MST that does not include e. Then:
1. T U {e} must have a cycle. Because?

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between § and IV\S.

Suppose T is the MST that does not include e. Then:
1. T U {e} must have a cycle. (Since spanning tree T already has a
path between u and v, adding e will create a cycle.)

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between § and IV\S.

Suppose T is the MST that does not include e. Then:
1. T U {e} must have a cycle. (Since spanning tree T already has a
path between u and v, adding e will create a cycle.)

2. That cycle must have another edge e’ between S and V\S. e’
(Since there must be a pathfromu € Stov € V\SinT)

MST Cut Property

Lemma: Suppose that S is a subset of nodes from ¢ = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between § and V\S.

Suppose T is the MST that does not include e. Then:
1. T U {e} must have a cycle. (Since spanning tree T already has a
path between u and v, adding e will create a cycle.)

2. That cycle must have another edge e’ between S and V\S.
(Since there must be a pathfromu € Stov € V\SinT)

Need to make sure we pick an edge
between S and V\ S on the cycle!

MST Cut Property

Lemma: Suppose that S is a subset of nodes from ¢ = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between § and V\S.

Suppose T is the MST that does not include e. Then:
1. T U {e} must have a cycle. (Since spanning tree T already has a
path between u and v, adding e will create a cycle.)

2. That cycle must have another edge e’ between S and V\S.
(Since there must be a pathfromu € Stov € V\SinT)

Need to make sure we pick an edge

between S and V\ S on the cycle!
(Which one doesn’t matter.) V\S

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between § and IV\S.

Suppose T is the MST that does not include e. Then:
1. T U {e} must have a cycle. (Since spanning tree T already has a
path between u and v, adding e will create a cycle.)

2. That cycle must have another edge e’ between S and V\S. e’
(Since there must be a pathfromu € Stov € V\SinT)

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between § and IV\S.

Suppose T is the MST that does not include e. T U {e} must have a cycle and that cycle
must have another edge e’ between S and V\S.

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between S and V\S.

Suppose T is the MST that does not include e. T U {e} must have a cycle and that cycle
must have another edge e’ between S and V\S.

Remove e toform T' =T U {e}\{e'}.

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between S and V\S.

Suppose T is the MST that does not include e. T U {e} must have a cycle and that cycle
must have another edge e’ between S and V\S.

Remove e toform T' =T U {e}\{e'}.
T' is a cheaper spanning tree because: e

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between S and V\S.

Suppose T is the MST that does not include e. T U {e} must have a cycle and that cycle
must have another edge e’ between S and V\S.

Remove e toform T' =T U {e}\{e'}.

T' is a cheaper spanning tree because: e
e T'isatree (breaking cycle doesn’t disconnect graph)

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between S and V\S.

Suppose T is the MST that does not include e. T U {e} must have a cycle and that cycle
must have another edge e’ between S and V\S.

Remove e toform T' =T U {e}\{e'}.

T' is a cheaper spanning tree because: e
e T'isatree (breaking cycle doesn’t disconnect graph)
* T'spansV (same number of edges as spanning tree T)

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between S and V\S.

Suppose T is the MST that does not include e. T U {e} must have a cycle and that cycle
must have another edge e’ between S and V\S.

Remove e toform T' =T U {e}\{e'}.

T' is a cheaper spanning tree because: e
e T'isatree (breaking cycle doesn’t disconnect graph)
* T'spansV (same number of edges as spanning tree T)
e cost(T’) < cost(T) since e’ was replaced by the cheaper e.

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between S and V\S.

Suppose T is the MST that does not include e. T U {e} must have a cycle and that cycle
must have another edge e’ between S and V\S.

Remove e toform T' =T U {e}\{e'}.

T' is a cheaper spanning tree because: e
e T'isatree (breaking cycle doesn’t disconnect graph)
* T'spansV (same number of edges as spanning tree T)
e cost(T’) < cost(T) since e’ was replaced by the cheaper e.

Thus, T' is a cheaper spanning tree

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of the MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a spanning tree).

Let e be the cheapest edge between S and V\S.

Suppose T is the MST that does not include e. T U {e} must have a cycle and that cycle
must have another edge e’ between S and V\S.

Remove e toform T' =T U {e}\{e'}.

T' is a cheaper spanning tree because: e
e T'isatree (breaking cycle doesn’t disconnect graph)
* T'spansV (same number of edges as spanning tree T)
e cost(T’) < cost(T) since e’ was replaced by the cheaper e.

Thus, T' is a cheaper spanning tree
= The MST must include e.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E),and T € E be the set of edges resulting from
Kruskal’s algorithm.

How do we use the Cut Property
to show that Kruskal’s is optimal

Lemma: The cheapest
edge between S € V and
V\S is part of the MST.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E),and T € E be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge e = (u, v) is added by Kruskal’s algorithm.

Lemma: The cheapest
edge between S € V and
V\S is part of the MST.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E),and T € E be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge e = (u, v) is added by Kruskal’s algorithm. Let §
be the set of u and all nodes already connected to u. (or v and all nodes connected to v)

Lemma: The cheapest
edge between S € V and
V\S is part of the MST.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E),and T € E be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge e = (u, v) is added by Kruskal’s algorithm. Let §
be the set of u and all nodes already connected to u. Clearlyu € S and v €
(otherwise adding e would have created a cycle).

Lemma: The cheapest
edge between S € V and
V\S is part of the MST.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E),and T € E be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge e = (u, v) is added by Kruskal’s algorithm. Let §
be the set of u and all nodes already connected to u. Clearlyu € S and v €

(otherwise adding e would have created a cycle). We are picking the cheapest edge that
crosses the cut (otherwise the cheaper edge would have been selected since it would
not have created a cycle either).

Lemma: The cheapest
edge between S € V and
V\S is part of the MST.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E),and T € E be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge e = (u, v) is added by Kruskal’s algorithm. Let §
be the set of u and all nodes already connected to u. Clearlyu € S and v €

(otherwise adding e would have created a cycle). We are picking the cheapest edge that
crosses the cut (otherwise the cheaper edge would have been selected since it would

not have created a cycle either). By the cut property lemma, this edge must be part of
the MST.

Lemma: The cheapest
edge between S € V and
V\S is part of the MST.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E),and T € E be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge e = (u, v) is added by Kruskal’s algorithm. Let §
be the set of u and all nodes already connected to u. Clearlyu € S and v €

(otherwise adding e would have created a cycle). We are picking the cheapest edge that
crosses the cut (otherwise the cheaper edge would have been selected since it would
not have created a cycle either). By the cut property lemma, this edge must be part of
the MST.

Thus, every edge found by
Kruskal’s algorithm is part

Lemma: The cheapest
edge between S € V and
V\S is part of the MST.

of the MST, and since the
edges found form a
spanning tree, it is the MST.

Prim’s MIST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

O—I— 20

Prim’s MIST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

7 3
@2 ® 9
1 > [, 4

. —0

3

Prim’s MIST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

Prim’s MIST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

Prim’s MIST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

Prim’s MIST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

Prim’s MIST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

Prim’s MIST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

Prim’s MIST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight
between a connected node and one that is not. Mark both endpoints as connected.

Homework Questions:

1. Is the solution valid? (Does it actually find a spanning tree?)
2. Is the solution optimal?

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e

between S and V\S is part of every MST.

V\S

	Slide 1: Minimum Spanning Trees CSCI 532
	Slide 2: Minimum Spanning Tree (MST)
	Slide 3: Minimum Spanning Tree (MST)
	Slide 4: Minimum Spanning Tree (MST)
	Slide 5: Minimum Spanning Tree (MST)
	Slide 6: MST Problem
	Slide 7: MST Problem
	Slide 8: Kruskal’s MST Algorithm
	Slide 9: Kruskal’s MST Algorithm
	Slide 10: Kruskal’s MST Algorithm
	Slide 11: Kruskal’s MST Algorithm
	Slide 12: Kruskal’s MST Algorithm
	Slide 13: Kruskal’s MST Algorithm
	Slide 14: Kruskal’s MST Algorithm
	Slide 15: Kruskal’s MST Algorithm
	Slide 16: Kruskal’s MST Algorithm
	Slide 17: Kruskal’s MST Algorithm
	Slide 18: Kruskal’s MST Algorithm
	Slide 19: Kruskal’s MST Algorithm
	Slide 20: Kruskal’s MST Algorithm
	Slide 21: Kruskal’s MST Algorithm
	Slide 22: Kruskal’s MST Algorithm
	Slide 23: Kruskal’s MST Algorithm
	Slide 24: Kruskal’s MST Algorithm
	Slide 25: Kruskal’s MST Algorithm
	Slide 26: Kruskal’s MST Algorithm
	Slide 27: Kruskal’s MST Algorithm
	Slide 28: Kruskal’s MST Algorithm
	Slide 29: Kruskal’s MST Algorithm
	Slide 30: Kruskal’s MST Algorithm
	Slide 31: Kruskal’s MST Algorithm
	Slide 32: MST Cut Property
	Slide 33: MST Cut Property
	Slide 34: MST Cut Property
	Slide 35: MST Cut Property
	Slide 36: MST Cut Property
	Slide 37: MST Cut Property
	Slide 38: MST Cut Property
	Slide 39: MST Cut Property
	Slide 40: MST Cut Property
	Slide 41: MST Cut Property
	Slide 42: MST Cut Property
	Slide 43: MST Cut Property
	Slide 44: MST Cut Property
	Slide 45: MST Cut Property
	Slide 46: MST Cut Property
	Slide 47: MST Cut Property
	Slide 48: MST Cut Property
	Slide 49: MST Cut Property
	Slide 50: MST Cut Property
	Slide 51: MST Cut Property
	Slide 52: Kruskal’s MST Algorithm
	Slide 53: Kruskal’s MST Algorithm
	Slide 54: Kruskal’s MST Algorithm
	Slide 55: Kruskal’s MST Algorithm
	Slide 56: Kruskal’s MST Algorithm
	Slide 57: Kruskal’s MST Algorithm
	Slide 58: Kruskal’s MST Algorithm
	Slide 59: Prim’s MST Algorithm
	Slide 60: Prim’s MST Algorithm
	Slide 61: Prim’s MST Algorithm
	Slide 62: Prim’s MST Algorithm
	Slide 63: Prim’s MST Algorithm
	Slide 64: Prim’s MST Algorithm
	Slide 65: Prim’s MST Algorithm
	Slide 66: Prim’s MST Algorithm
	Slide 67: Prim’s MST Algorithm
	Slide 68: MST Cut Property

