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Spanning tree if it is a tree and 
includes all vertices in the graph.

Minimum spanning tree if it is a 
spanning tree whose sum of edge 
costs is the minimum possible value.

Tree if it is connected and acyclic.
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Goal: Given a connected, edge weighted 
graph, find its Minimum Spanning Tree.
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• Make the choice that best helps some objective. 

• Do not look ahead, plan, or revisit past decisions.

• Hope that optimal local choices lead to optimal global solutions.

Greedy Algorithms:



Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.
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What are some questions we may have about the algorithm?

1. Is the solution valid? (Does it actually find a spanning tree?)
2. What is the running time?
3. Is the solution optimal?
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   What do we need to show?
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Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges 
resulting from Kruskal’s algorithm.

𝑇 is a tree because it is connected (otherwise we could have added more edges without 
creating cycles) and there are no cycles.
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resulting from Kruskal’s algorithm.
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Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges 
resulting from Kruskal’s algorithm.

𝑇 is a tree because it is connected (otherwise we could have added more edges without 
creating cycles) and there are no cycles.

𝑇 spans 𝐺 because if it did not, we could have added more edges to connected 
unreached nodes without creating cycles.

∴ 𝑇 is a spanning tree of 𝐺
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  T = ∅
  sort(E) //smallest to largest weight
  for (e in E) {
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    }
  }
  return T
}

𝑶( 𝑬  𝐥𝐨𝐠( 𝑬 ))

𝑶( 𝑬 )
𝑶( 𝑽 + 𝑬 ) using BFS

Running time 

       ∈ 𝑶 𝑬 𝐥𝐨𝐠 𝑬 + 𝑬 𝑽 + 𝑬

       ∈ 𝑶 |𝑬|𝟐 + 𝑬 𝑽

Can be improved to 𝑶 𝟏 , 
thus 𝑶( 𝑬  𝐥𝐨𝐠( 𝑬 )) overall



Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

What are some questions we may have about the algorithm?
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Proof of optimality: 𝑇 is an MST, because???



MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒 
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof:

Assume unique 
edge costs.
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must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆. 

Remove 𝑒′ to form 𝑻′ = 𝑇 ∪ {𝑒}\{𝑒′}.

𝑻′ is a cheaper spanning tree because:
•  𝑻′ is a tree (breaking cycle doesn’t disconnect graph) 
•  𝑻′ spans 𝑉 (same number of edges as spanning tree 𝑇)
•  cost(𝑻′) < cost(𝑇) since 𝑒′ was replaced by the cheaper 𝑒.

Thus, 𝑻′ is a cheaper spanning tree
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MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒 
between 𝑆 and 𝑉\𝑆 is part of the MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not 
be a spanning tree).

Let 𝑒 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑇 is the MST that does not include 𝑒. 𝑇 ∪ {𝑒} must have a cycle and that cycle 
must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆. 

Remove 𝑒′ to form 𝑻′ = 𝑇 ∪ {𝑒}\{𝑒′}.

𝑻′ is a cheaper spanning tree because:
•  𝑻′ is a tree (breaking cycle doesn’t disconnect graph) 
•  𝑻′ spans 𝑉 (same number of edges as spanning tree 𝑇)
•  cost(𝑻′) < cost(𝑇) since 𝑒′ was replaced by the cheaper 𝑒.

Thus, 𝑻′ is a cheaper spanning tree

⇒ The MST must include 𝑒.
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Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from 
Kruskal’s algorithm.

    

Lemma: The cheapest 
edge between 𝑆 ⊆ 𝑉 and 
𝑉\𝑆 is part of the MST.

How do we use the Cut Property 
to show that Kruskal’s is optimal?



Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from 
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm. 
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Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from 
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm. Let 𝑺 
be the set of 𝑢 and all nodes already connected to 𝑢. (or 𝑣 and all nodes connected to 𝑣)
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Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from 
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm. Let 𝑺 
be the set of 𝑢 and all nodes already connected to 𝑢. Clearly 𝑢 ∈ 𝑺 and 𝑣 ∈ 𝑽\𝑺 
(otherwise adding 𝒆 would have created a cycle). 
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Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from 
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm. Let 𝑺 
be the set of 𝑢 and all nodes already connected to 𝑢. Clearly 𝑢 ∈ 𝑺 and 𝑣 ∈ 𝑽\𝑺 
(otherwise adding 𝒆 would have created a cycle). We are picking the cheapest edge that 
crosses the cut (otherwise the cheaper edge would have been selected since it would 
not have created a cycle either). 

1 1 4

3 3

5
2

7 3

2

𝑢

𝑣

𝑽\𝑺𝑺

Lemma: The cheapest 
edge between 𝑆 ⊆ 𝑉 and 
𝑉\𝑆 is part of the MST.



Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from 
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm. Let 𝑺 
be the set of 𝑢 and all nodes already connected to 𝑢. Clearly 𝑢 ∈ 𝑺 and 𝑣 ∈ 𝑽\𝑺 
(otherwise adding 𝒆 would have created a cycle). We are picking the cheapest edge that 
crosses the cut (otherwise the cheaper edge would have been selected since it would 
not have created a cycle either). By the cut property lemma, this edge must be part of 
the MST.
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Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from 
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm. Let 𝑺 
be the set of 𝑢 and all nodes already connected to 𝑢. Clearly 𝑢 ∈ 𝑺 and 𝑣 ∈ 𝑽\𝑺 
(otherwise adding 𝒆 would have created a cycle). We are picking the cheapest edge that 
crosses the cut (otherwise the cheaper edge would have been selected since it would 
not have created a cycle either). By the cut property lemma, this edge must be part of 
the MST.
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Thus, every edge found by 
Kruskal’s algorithm is part 
of the MST, and since the 
edges found form a 
spanning tree, it is the MST.

Lemma: The cheapest 
edge between 𝑆 ⊆ 𝑉 and 
𝑉\𝑆 is part of the MST.



Prim’s MST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight 
between a connected node and one that is not. Mark both endpoints as connected.
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Prim’s MST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight 
between a connected node and one that is not. Mark both endpoints as connected.
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Prim’s MST Algorithm

Algorithm: Mark a random node as connected. Find the edge with smallest weight 
between a connected node and one that is not. Mark both endpoints as connected.
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Homework Questions:

1. Is the solution valid? (Does it actually find a spanning tree?)
2. Is the solution optimal?



MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒 
between 𝑆 and 𝑉\𝑆 is part of every MST.
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