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Techniques to handle NP-Complete problems:
1. Brute Force (i.e. Exponential Time).
2. Heuristics.
3. Approximation Algorithms.
4. Fixed-parameter Tractable Algorithms. 

NP Complete
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ALG ≤ α OPT

Cost (size) of 
algorithm’s solution.

Cost (size) of 
optimal solution.

Approximation 
Ratio

1.12

Example:
• Suppose I know my algorithm is a 1.12-approximation algorithm.
• Suppose my algorithm returns a solution of cost 746.125.

Then, I know that 746.125 ≤ 1.12 OPT 
⇒ !"#.%&'

%.%&
=	666.183	≤ OPT ≤ 746.125
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while uncovered edge exists
select both of its vertices

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there 
a relationship between the minimum vertex cover and |𝐸’|?

|𝐸’| ≤ OPT
Size of actual smallest vertex cover.

If we selected fewer than one vertex per 
edge, we would not have a vertex cover, 
because that edge would not be covered!
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Vertex Cover

while uncovered edge exists
select both of its vertices

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there 
a relationship between the minimum vertex cover and |𝐸’|?

|𝐸’| ≤ OPT

Does the size of the algorithm’s output relate to a set of edges that 
do not share vertices?

ALG = 2 |𝐸’|

⟹ ALG = 2 |𝐸’| ≤ 2 OPT ⟹ ALG ≤ 2 OPT

We cannot find optimal vertex covers in 
poly time unless 𝑃 = 𝑁𝑃, but this 
algorithm is at worst 2-times optimal.
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Approximability Hierarchy

- Optimization versions of problems in NP.
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NPO

Approximability Hierarchy

- Approximable within 
a constant factor.

ALG ≤ α OPT
constant
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Set Cover

Set Cover: Given a set of elements (the universe), and sets 
containing those elements, find the smallest number of sets so that 
every element of the universe is included.

Example:
𝑈 = 1, 4, 7, 8, 10

𝑆 = 1, 7, 8 , 1, 4, 7 , 7, 8 , 4, 8, 10

1, 7, 8 , 4, 8, 10 1, 4, 7 , 7, 8
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Set Cover

Set Cover: Given a set of elements (the universe), and sets 
containing those elements, find the smallest number of sets so that 
every element of the universe is included.

Greedy Algorithm:

while element of universe not included
select Si with largest number of excluded elements.
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Set Cover

Suppose the universe contains 𝑛 elements.

𝐴𝐿𝐺 = # sets selected by the 
algorithm to cover all 𝑛 elements.
𝑂𝑃𝑇 = # sets in an optimal 
solution to cover all 𝑛 elements.

𝐴𝐿𝐺 ≤ α 𝑂𝑃𝑇
Game Plan: 

Bound the maximum number of sets in 𝐴𝐿𝐺 by…
Bounding the maximum number of iterations of the 
algorithm by...

Bounding the size of each set added by the algorithm.
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At each iteration, we cover the largest 
number of uncovered elements, and all the 
elements are uncovered in the first iteration. 
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𝑂𝑃𝑇 = # sets in an optimal 
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do better than this.
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Set Cover

Suppose the universe contains 𝑛 elements.

𝐴𝐿𝐺 = # sets selected by the 
algorithm to cover all 𝑛 elements.
𝑂𝑃𝑇 = # sets in an optimal 
solution to cover all 𝑛 elements.

What can we say about the first set selected?
It’s the biggest!

What if each set had fewer than (
)*+

elements in it?

Then 𝑂𝑃𝑇 of those sets would cover fewer than 𝑛 elements:

𝒏
𝑶𝑷𝑻

≤ |Biggest Set|


