
Approximation Algorithms
CSCI 532

Problems in NP whose algorithms
can solve any other problem in
NP with polynomial extra time.

𝑃
𝑁𝑃

𝑁𝑃 −
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒

NP Complete

Problems in NP whose algorithms
can solve any other problem in
NP with polynomial extra time.

𝑃
𝑁𝑃

𝑁𝑃 −
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒

Techniques to handle NP-Complete problems:
1. Brute Force (i.e. Exponential Time).
2. Heuristics.
3. Approximation Algorithms.
4. Fixed-parameter Tractable Algorithms.

NP Complete

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

if problem is a maximization problem, ALG ≥ !α OPT

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

Example:

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

1.12

Example:
• Suppose I know my algorithm is a 1.12-approximation algorithm.

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

1.12

Example:
• Suppose I know my algorithm is a 1.12-approximation algorithm.
• Suppose my algorithm returns a solution of cost 746.125.

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

1.12

Example:
• Suppose I know my algorithm is a 1.12-approximation algorithm.
• Suppose my algorithm returns a solution of cost 746.125.

Then, I know that 746.125 ≤ 1.12 OPT

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

1.12

Example:
• Suppose I know my algorithm is a 1.12-approximation algorithm.
• Suppose my algorithm returns a solution of cost 746.125.

Then, I know that 746.125 ≤ 1.12 OPT
⇒ !"#.%&'

%.%&
=	666.183	≤ OPT ≤ 746.125

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

ü û

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
select both of its vertices

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
select both of its vertices

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
select both of its vertices

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
select both of its vertices

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
select both of its vertices

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
select both of its vertices

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
select both of its vertices

Vertex Cover

while uncovered edge exists
select both of its vertices

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices.

Vertex Cover

while uncovered edge exists
select both of its vertices

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there
a relationship between the minimum vertex cover and |𝐸’|?

Vertex Cover

while uncovered edge exists
select both of its vertices

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there
a relationship between the minimum vertex cover and |𝐸’|?

|𝐸’| ≤ OPT
Size of actual smallest vertex cover.

If we selected fewer than one vertex per
edge, we would not have a vertex cover,
because that edge would not be covered!

Vertex Cover

while uncovered edge exists
select both of its vertices

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there
a relationship between the minimum vertex cover and |𝐸’|?

|𝐸’| ≤ OPT

Does the size of the algorithm’s output relate to a set of edges that
do not share vertices?

Vertex Cover

while uncovered edge exists
select both of its vertices

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there
a relationship between the minimum vertex cover and |𝐸’|?

|𝐸’| ≤ OPT

Does the size of the algorithm’s output relate to a set of edges that
do not share vertices?

ALG = 2 |𝐸’|

Vertex Cover

while uncovered edge exists
select both of its vertices

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there
a relationship between the minimum vertex cover and |𝐸’|?

|𝐸’| ≤ OPT

Does the size of the algorithm’s output relate to a set of edges that
do not share vertices?

ALG = 2 |𝐸’|

⟹ ALG = 2 |𝐸’| ≤ 2 OPT ⟹ ALG ≤ 2 OPT

Vertex Cover

while uncovered edge exists
select both of its vertices

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there
a relationship between the minimum vertex cover and |𝐸’|?

|𝐸’| ≤ OPT

Does the size of the algorithm’s output relate to a set of edges that
do not share vertices?

ALG = 2 |𝐸’|

⟹ ALG = 2 |𝐸’| ≤ 2 OPT ⟹ ALG ≤ 2 OPT

We cannot find optimal vertex covers in
poly time unless 𝑃 = 𝑁𝑃, but this
algorithm is at worst 2-times optimal.

Computability Hierarchy

Complexity Hierarchy

Approximability Hierarchy

NPO

Approximability Hierarchy

- Optimization versions of problems in NP.

APX

NPO

Approximability Hierarchy

- Approximable within
a constant factor.

ALG ≤ α OPT
constant

APX

VC

NPO

Approximability Hierarchy

Set Cover

Set Cover: Given a set of elements (the universe), and sets
containing those elements, find the smallest number of sets so that
every element of the universe is included.

Example:

Set Cover

Set Cover: Given a set of elements (the universe), and sets
containing those elements, find the smallest number of sets so that
every element of the universe is included.

Example:
𝑈 = 1, 4, 7, 8, 10

𝑆 = 1, 7, 8 , 1, 4, 7 , 7, 8 , 4, 8, 10

Set Cover

Set Cover: Given a set of elements (the universe), and sets
containing those elements, find the smallest number of sets so that
every element of the universe is included.

Example:
𝑈 = 1, 4, 7, 8, 10

𝑆 = 1, 7, 8 , 1, 4, 7 , 7, 8 , 4, 8, 10

1, 7, 8 , 4, 8, 10 1, 4, 7 , 7, 8

ü û

Set Cover

Set Cover: Given a set of elements (the universe), and sets
containing those elements, find the smallest number of sets so that
every element of the universe is included.

Example:

Set Cover

Set Cover: Given a set of elements (the universe), and sets
containing those elements, find the smallest number of sets so that
every element of the universe is included.

Algorithm:

?

Set Cover

Set Cover: Given a set of elements (the universe), and sets
containing those elements, find the smallest number of sets so that
every element of the universe is included.

Greedy Algorithm:

while element of universe not included
select Si with largest number of excluded elements.

Set Cover

Suppose the universe contains 𝑛 elements.

Set Cover

Suppose the universe contains 𝑛 elements.

𝐴𝐿𝐺 = # sets selected by the
algorithm to cover all 𝑛 elements.
𝑂𝑃𝑇 = # sets in an optimal
solution to cover all 𝑛 elements.

Set Cover

Suppose the universe contains 𝑛 elements.

𝐴𝐿𝐺 = # sets selected by the
algorithm to cover all 𝑛 elements.
𝑂𝑃𝑇 = # sets in an optimal
solution to cover all 𝑛 elements.

𝐴𝐿𝐺 ≤ α 𝑂𝑃𝑇

Set Cover

Suppose the universe contains 𝑛 elements.

𝐴𝐿𝐺 = # sets selected by the
algorithm to cover all 𝑛 elements.
𝑂𝑃𝑇 = # sets in an optimal
solution to cover all 𝑛 elements.

𝐴𝐿𝐺 ≤ α 𝑂𝑃𝑇
Game Plan:

Bound the maximum number of sets in 𝐴𝐿𝐺 by…
Bounding the maximum number of iterations of the
algorithm by...

Bounding the size of each set added by the algorithm.

Set Cover

Suppose the universe contains 𝑛 elements.

𝐴𝐿𝐺 = # sets selected by the
algorithm to cover all 𝑛 elements.
𝑂𝑃𝑇 = # sets in an optimal
solution to cover all 𝑛 elements.

What can we say about the first set selected?

Set Cover

Suppose the universe contains 𝑛 elements.

𝐴𝐿𝐺 = # sets selected by the
algorithm to cover all 𝑛 elements.
𝑂𝑃𝑇 = # sets in an optimal
solution to cover all 𝑛 elements.

What can we say about the first set selected?
It’s the biggest!

At each iteration, we cover the largest
number of uncovered elements, and all the
elements are uncovered in the first iteration.

Set Cover

Suppose the universe contains 𝑛 elements.

𝐴𝐿𝐺 = # sets selected by the
algorithm to cover all 𝑛 elements.
𝑂𝑃𝑇 = # sets in an optimal
solution to cover all 𝑛 elements.

What can we say about the first set selected?
It’s the biggest!

? ≤ |Biggest Set| ≤ ?

Set Cover

Suppose the universe contains 𝑛 elements.

𝐴𝐿𝐺 = # sets selected by the
algorithm to cover all 𝑛 elements.
𝑂𝑃𝑇 = # sets in an optimal
solution to cover all 𝑛 elements.

What can we say about the first set selected?
It’s the biggest!

? ≤ |Biggest Set| ≤ ?

Which do we care about?

Set Cover

Suppose the universe contains 𝑛 elements.

𝐴𝐿𝐺 = # sets selected by the
algorithm to cover all 𝑛 elements.
𝑂𝑃𝑇 = # sets in an optimal
solution to cover all 𝑛 elements.

What can we say about the first set selected?
It’s the biggest!

? ≤ |Biggest Set| ≤ ?

Guarantee we do
at least this good.

Guarantee we don’t
do better than this.

Set Cover

Suppose the universe contains 𝑛 elements.

𝐴𝐿𝐺 = # sets selected by the
algorithm to cover all 𝑛 elements.
𝑂𝑃𝑇 = # sets in an optimal
solution to cover all 𝑛 elements.

What can we say about the first set selected?
It’s the biggest!

𝒏
𝑶𝑷𝑻

≤ |Biggest Set|

Why?

Set Cover

Suppose the universe contains 𝑛 elements.

𝐴𝐿𝐺 = # sets selected by the
algorithm to cover all 𝑛 elements.
𝑂𝑃𝑇 = # sets in an optimal
solution to cover all 𝑛 elements.

What can we say about the first set selected?
It’s the biggest!

What if each set had fewer than (
)*+

elements in it?

Then 𝑂𝑃𝑇 of those sets would cover fewer than 𝑛 elements:

𝒏
𝑶𝑷𝑻

≤ |Biggest Set|

