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NP Complete

NP — Problems in NP whose algorithms
C lot can solve any other problem in
omptete NP with polynomial extra time.

Techniques to handle NP-Complete problems:
1. Brute Force (i.e. Exponential Time).
2. Heuristics.
3. Approximation Algorithms.
4. Fixed-parameter Tractable Algorithms.
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ALG < a OPT
Cost (size) of Approximation Cost (size) of
algorithm’s solution. Ratio optimal solution.

Example:
e Suppose | know my algorithm is a 1.12-approximation algorithm.
e Suppose my algorithm returns a solution of cost 746.125.

Then, | know that 746.125 < 1.12 OPT
20125 — 666.183 < OPT < 746.125
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Vertex Cover

while uncovered edge exists
select both of 1ts vertices

Consider a set of edges, E' C E, that do not share vertices. Is there
a relationship between the minimum vertex cover and |E’|?

|E'| < OPT
~ Size of actual smallest vertex cover.

If we selected fewer than one vertex per
edge, we would not have a vertex cover,
because that edge would not be covered!
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while uncovered edge exists
select both of 1ts vertices

Consider a set of edges, E' C E, that do not share vertices. Is there
a relationship between the minimum vertex cover and |E’|?

|E’| < OPT

Does the size of the algorithm’s output relate to a set of edges that
do not share vertices?

ALG =2 |E]
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Vertex Cover

while uncovered edge exists
select both of 1ts vertices

Considpu—a—asa S ' -
a relat{ We cannot find optlmal vertex covers in

poly time unless P = NP, but this

Does tlalgorithm is at worst 2-times optimal.
do not Share Vertices:

ALG =2 |E]
— ALG =2 |E’| < 2 OPT = ALG < 2 OPT
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NPO - Optimization versions of problems in NP.
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NPO

APX - Approximable within
a constant factor.

ALG < a OPT

K constant
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Set Cover

Set Cover: Given a set of elements (the universe), and sets
containing those elements, find the smallest number of sets so that
every element of the universe is included.

Example:
U=1{1,4,7238 10}

S=1{{1,7,8}{1,4,7},{7,8},{4,8,10}}

{{1,7,8},{4,8,10}}  {{1,4,7},{7,8}}

v x
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Set Cover

Set Cover: Given a set of elements (the universe), and sets
containing those elements, find the smallest number of sets so that
every element of the universe is included.

Greedy Algorithm:

while element of universe not included
select S; with largest number of excluded elements.



Set Cover

Suppose the universe contains n elements.
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ALG = # sets selected by the

SEt Cove r algorithm to cover all n elements.

OPT = # sets in an optimal
solution to cover all n elements.

Suppose the universe contains n elements.

ALG <o OPT

Game Plan:

Bound the maximum number of sets in ALG by...

Bounding the maximum number of iterations of the
algorithm by...

Bounding the size of each set added by the algorithm.
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What can we say about the first set selected?

It’s the biggest!

At each iteration, we cover the largest

number of uncovered elements, and all the
elements are uncovered in the first iteration.
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Which do we care about?
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Guarantee we do Guarantee we don’t
at least this good. do better than this.
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ALG = # sets selected by the

SEt Cove r algorithm to cover all n elements.

OPT = # sets in an optimal
solution to cover all n elements.

Suppose the universe contains n elements.

What can we say about the first set selected?

It’s the biggest!

n

OPT < |Biggest Set|

What if each set had fewer than Onﬁ elements in it?

Then OPT of those sets would cover fewer than n elements:



