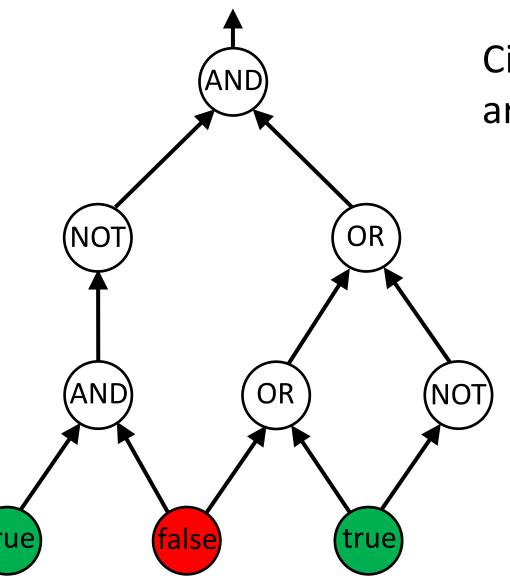
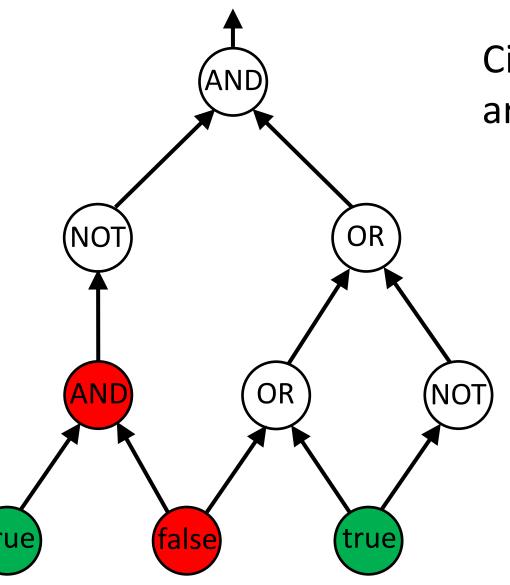
Linear Programming CSCI 532

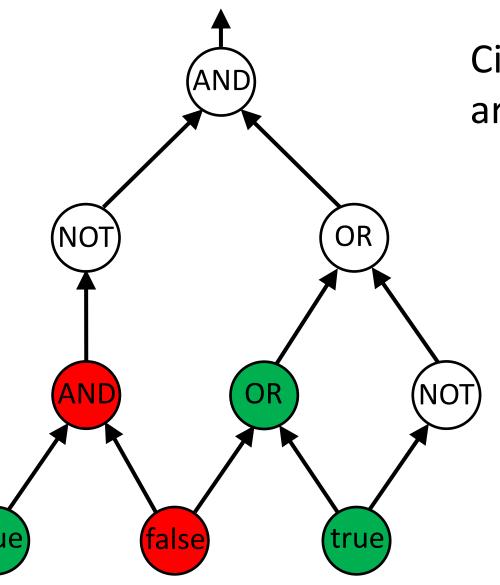
Test 2 Logistics

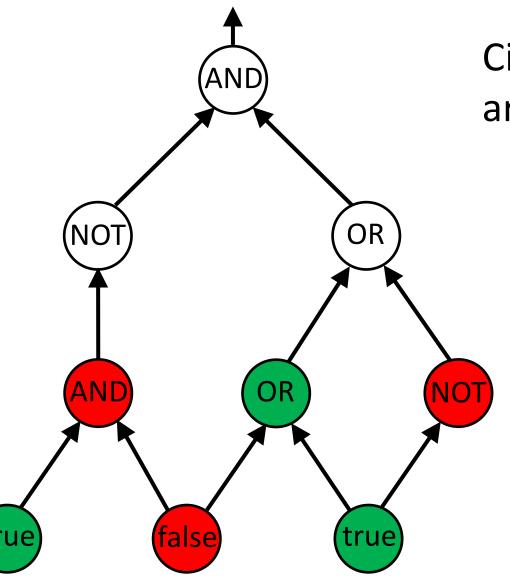
- 1. During class on Thursday 10/23.
- 2. You can bring your book and any notes you would like, but no electronic devices.
- 3. You may assume anything proven in class or on homework.
- 4. Three questions (13 points + 1 bonus):
 - 1) Integer optimal solutions (3 points).
 - 2) Duality (5 points).
 - 3) Solve a problem (5 points).
 - 4) Bonus (1 point).

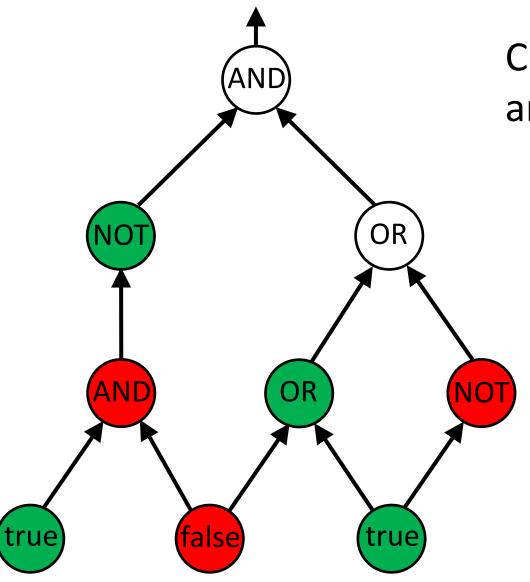


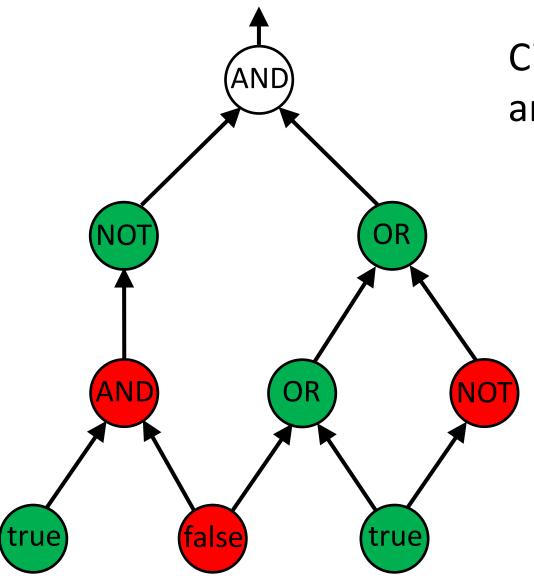


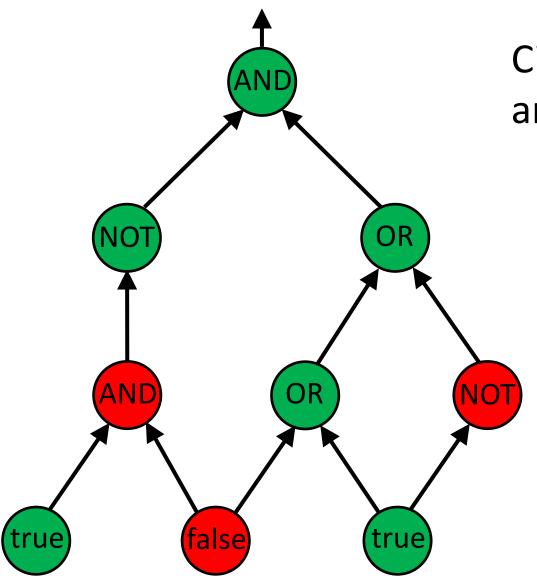


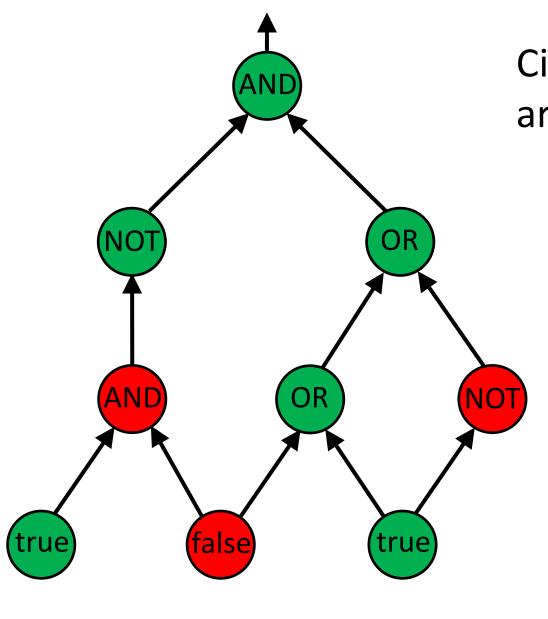






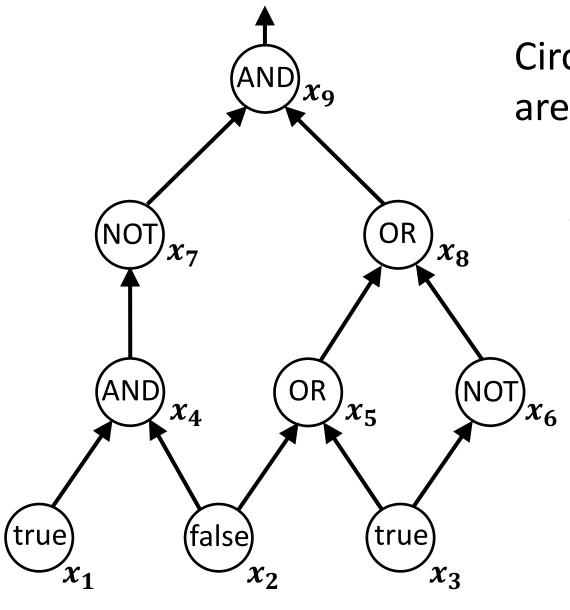




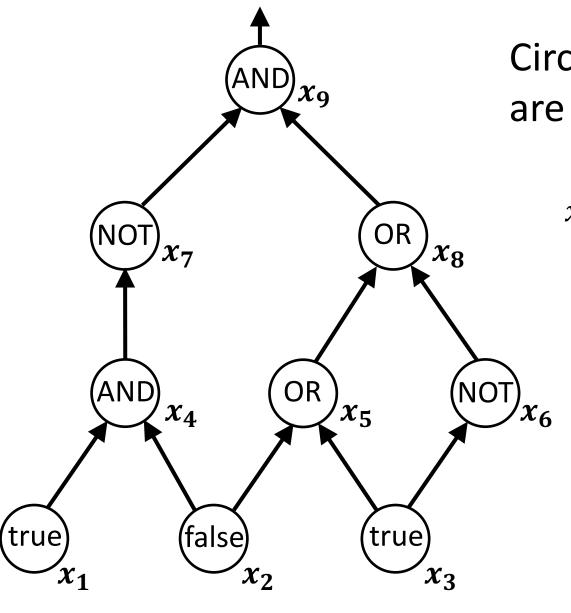


Given a circuit schematic, what is the answer?

Can we make a Linear Program that solves this?

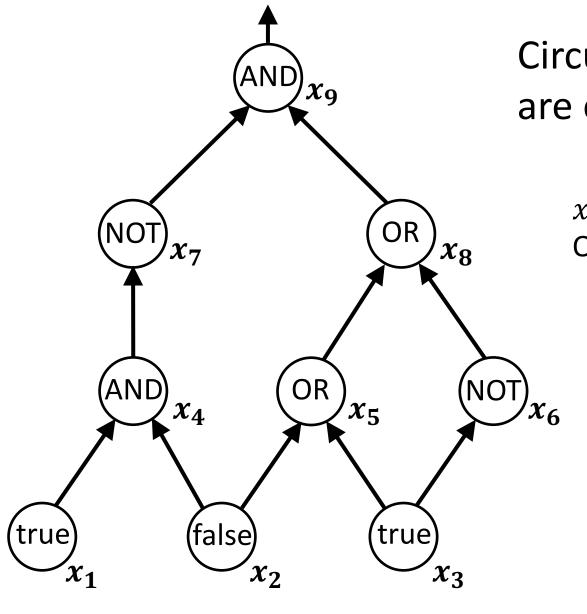


 $x_i = \text{gate's evaluated value}$

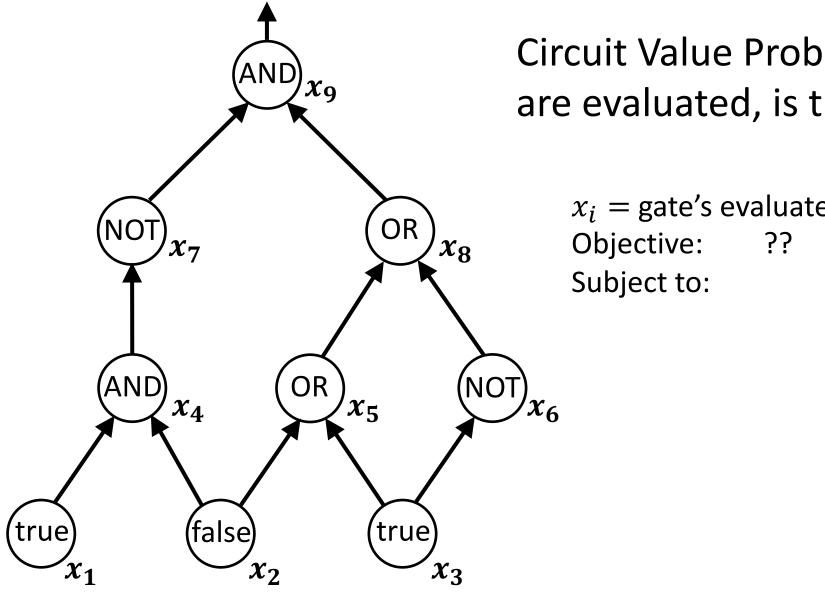


 $x_i = \text{gate's evaluated value}$

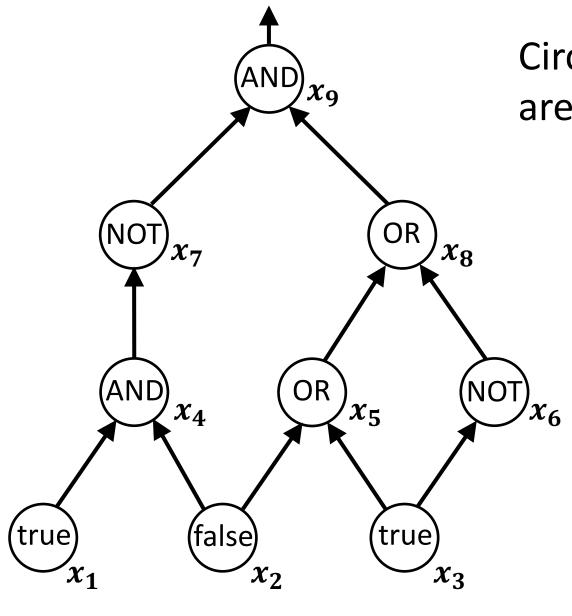
What is x_9 's value?



 x_i = gate's evaluated value Objective: ??

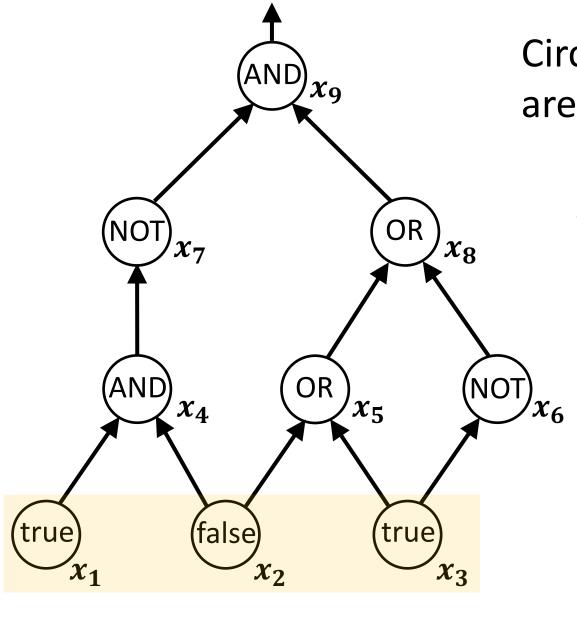


 $x_i = \text{gate's evaluated value}$



 $x_i = \text{gate's evaluated value}$

Objective: ??



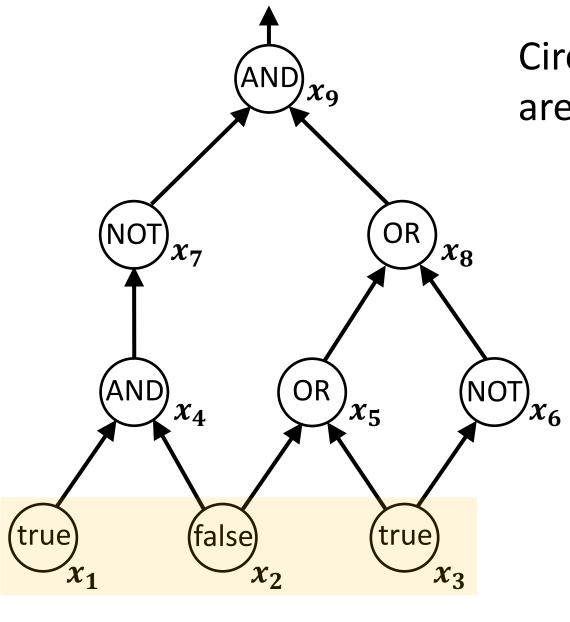
 $x_i = \text{gate's evaluated value}$

Objective: ??

$$x_1 = ?$$

$$x_2 = ?$$

$$x_3 = ?$$



 $x_i = \text{gate's evaluated value}$

Objective: ??

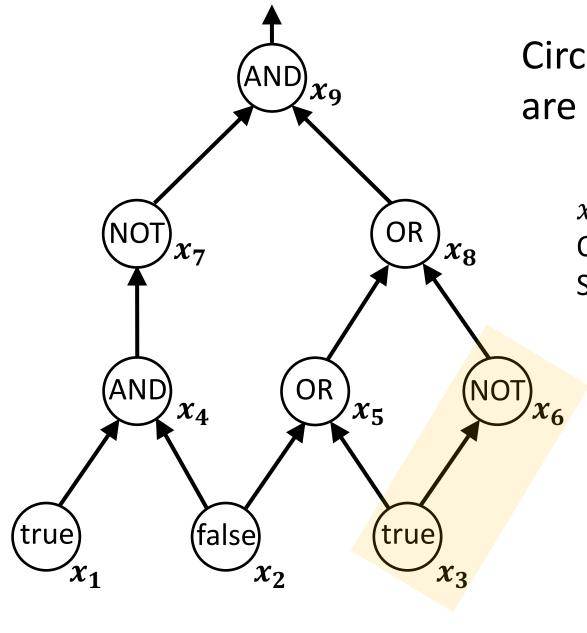
Subject to: $x_i \in \{0,1\}, \forall i$

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

In general, if gate i is initialized to true (or false), make $x_i = 1$ (or 0).



 $x_i = \text{gate's evaluated value}$

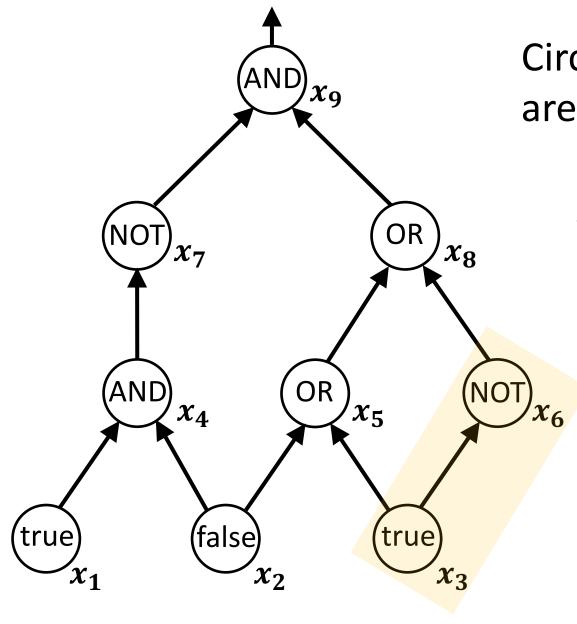
Objective: ??

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = ??$$



 $x_i = \text{gate's evaluated value}$

Objective: ??

Subject to: $x_i \in \{0,1\}, \forall i$

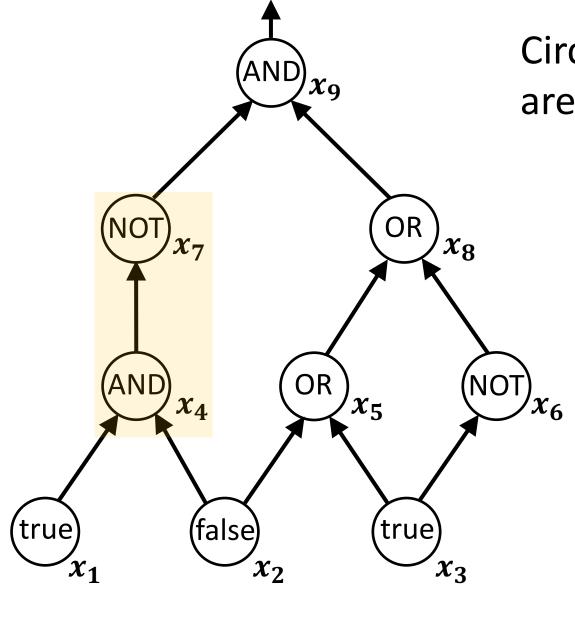
$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = 1 - x_3$$

In general, if gate i is NOT gate j, make $x_i = 1 - x_j$



 $x_i = \text{gate's evaluated value}$

Objective: ??

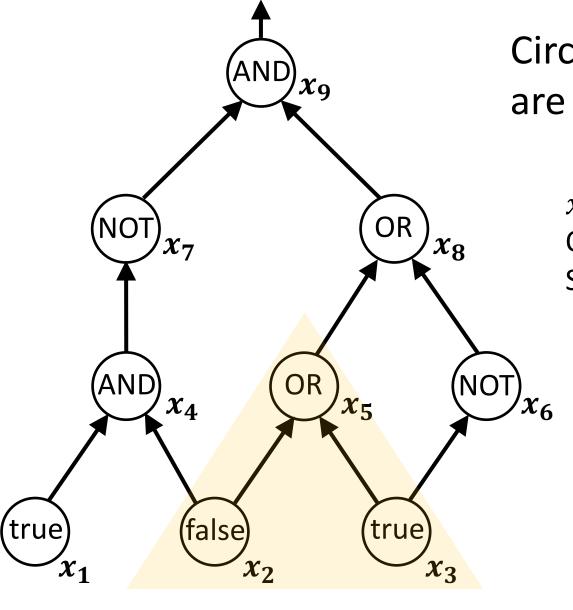
$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = 1 - x_3$$

$$x_7 = 1 - x_4$$



 $x_i = \text{gate's evaluated value}$

Objective: ??

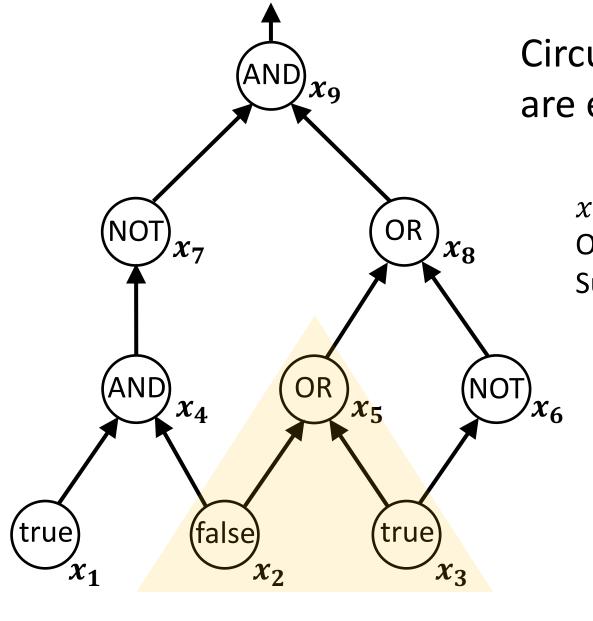
$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = 1 - x_3$$

$$x_7 = 1 - x_4$$



 $x_i = \text{gate's evaluated value}$

Objective: ??

$$x_1 = 1$$

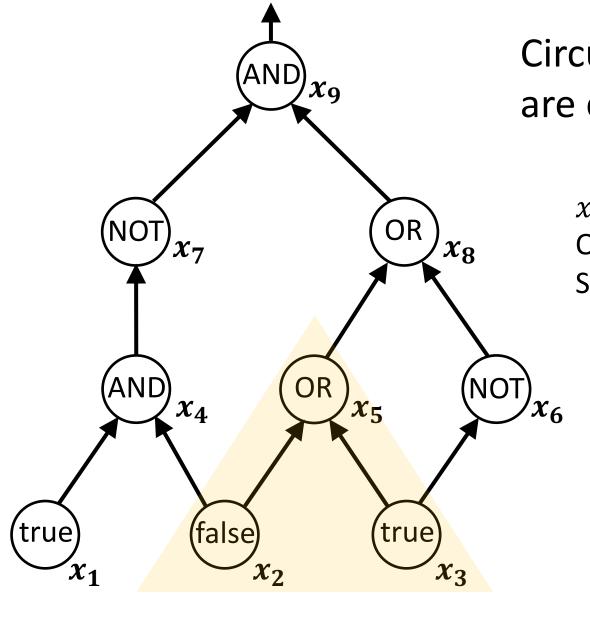
$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = 1 - x_3$$

$$x_7 = 1 - x_4$$

x_j	x_k	$x_i = x_j \text{ OR } x_k$
0	0	0
1	0	1
0	1	1
1	1	1



 $x_i = \text{gate's evaluated value}$

Objective:

??

$$x_1 = 1$$

$$x_2 = 0$$

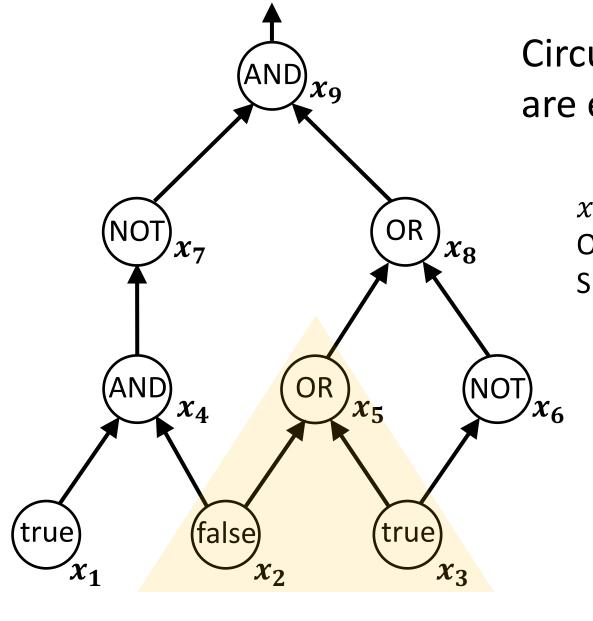
$$x_3 = 1$$

$$x_6 = 1 - x_3$$

$$x_7 = 1 - x_4$$

$$x_5 \ge x_2$$

x_j	x_k	$x_i = x_j \text{ OR } x_k$
0	0	0
1	0	1
0	1	1
1	1	1



 $x_i = \text{gate's evaluated value}$

Objective: ??

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

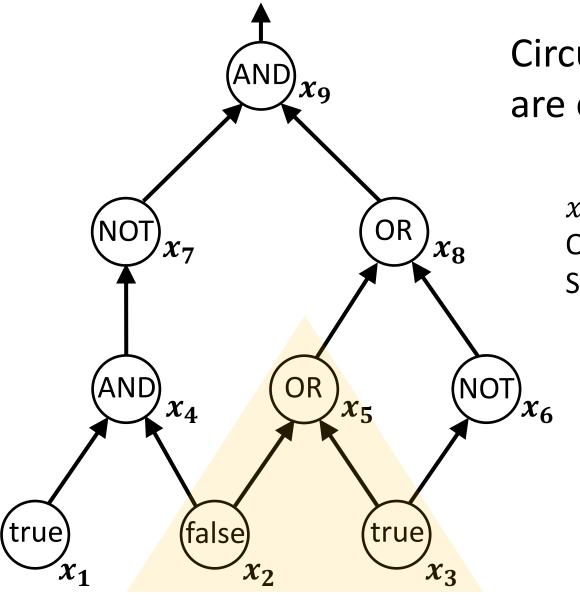
$$x_6 = 1 - x_3$$

$$x_7 = 1 - x_4$$

$$x_5 \ge x_2$$

$$x_5 \ge x_3$$

x_j	x_k	$x_i = x_j \text{ OR } x_k$
0	0	0
1	0	1
0	1	1
1	1	1



 $x_i = \text{gate's evaluated value}$

Objective: ??

Subject to: $x_i \in \{0,1\}, \forall i$

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = 1 - x_3$$

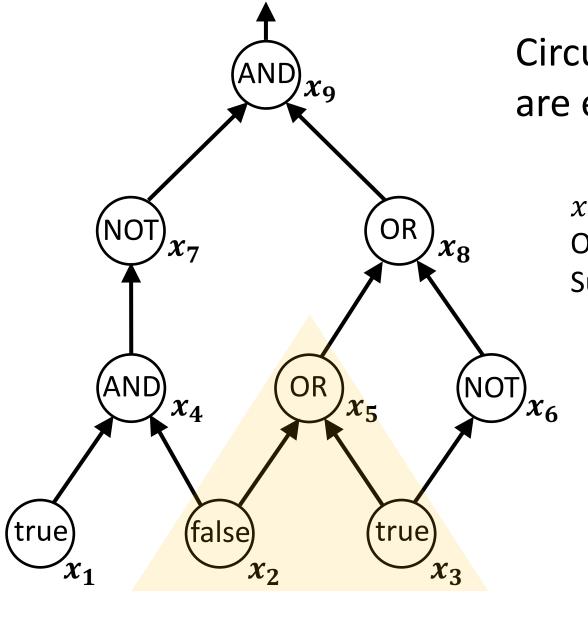
$$x_7 = 1 - x_4$$

$$x_5 \ge x_2$$

$$x_5 \ge x_3$$

x_j	x_k	$x_i = x_j \text{ OR } x_k$
0	0	0
1	0	1
0	1	1
1	1	1

Is that enough?



 $x_i = \text{gate's evaluated value}$

Objective: ??

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = 1 - x_3$$

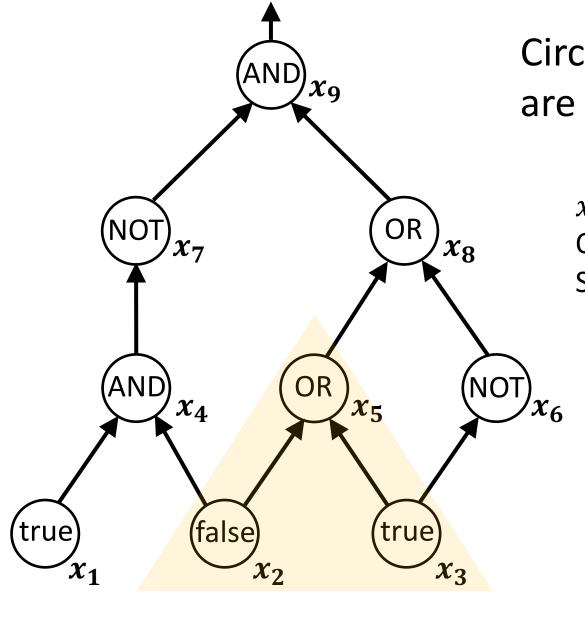
$$x_7 = 1 - x_4$$

$$x_5 \ge x_2$$

$$x_5 \ge x_3$$

$$x_5 \le x_2 + x_3$$

x_j	x_k	$x_i = x_j \text{ OR } x_k$
0	0	0
1	0	1
0	1	1
1	1	1



 $x_i = \text{gate's evaluated value}$

Objective: ??

Subject to: $x_i \in \{0,1\}, \forall i$

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = 1 - x_3$$

$$x_7 = 1 - x_4$$

$$x_5 \ge x_2$$

$$x_5 \ge x_3$$

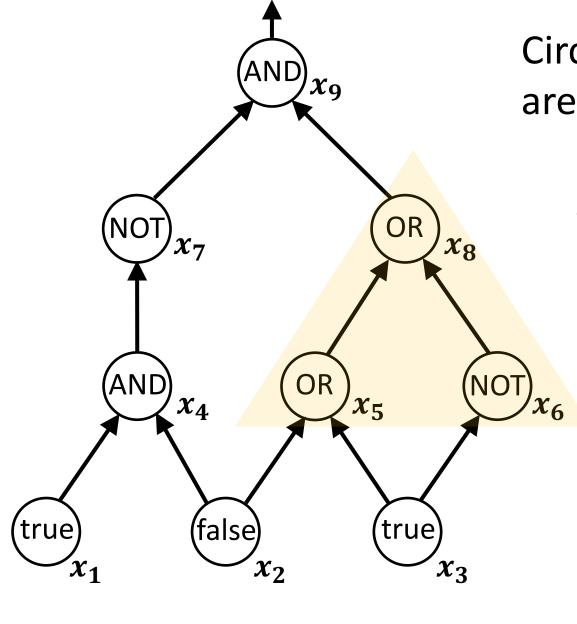
$$x_5 \le x_2 + x_3$$

In general, if gate *i* is OR gates *j*, *k*:

$$x_i \geq x_j$$

$$x_i \geq x_k$$

$$x_i \leq x_j + x_k$$



 $x_i = \text{gate's evaluated value}$

Objective: ??

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = 1 - x_3$$

$$x_7 = 1 - x_4$$

$$x_5 \ge x_2$$

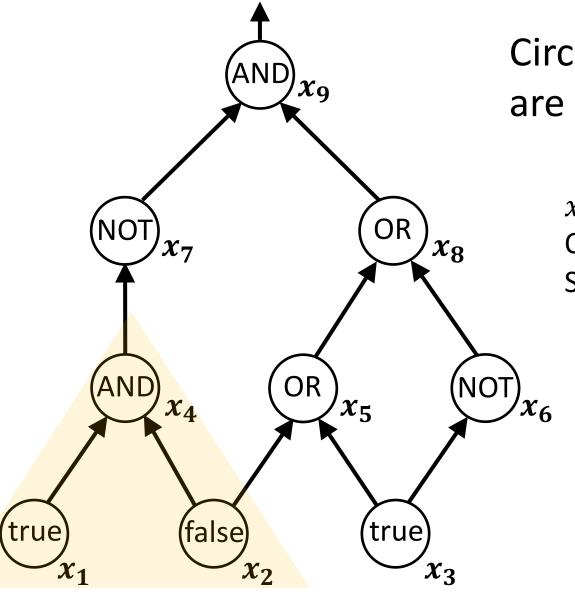
$$x_5 \ge x_3$$

$$x_5 \le x_2 + x_3$$

$$x_8 \ge x_5$$

$$x_8 \ge x_6$$

$$x_8 \le x_5 + x_6$$



 $x_i = \text{gate's evaluated value}$

Objective: 55

Subject to:
$$x_i \in \{0,1\}, \forall i$$

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = 1 - x_3$$

$$x_7 = 1 - x_4$$

$$x_5 \ge x_2$$

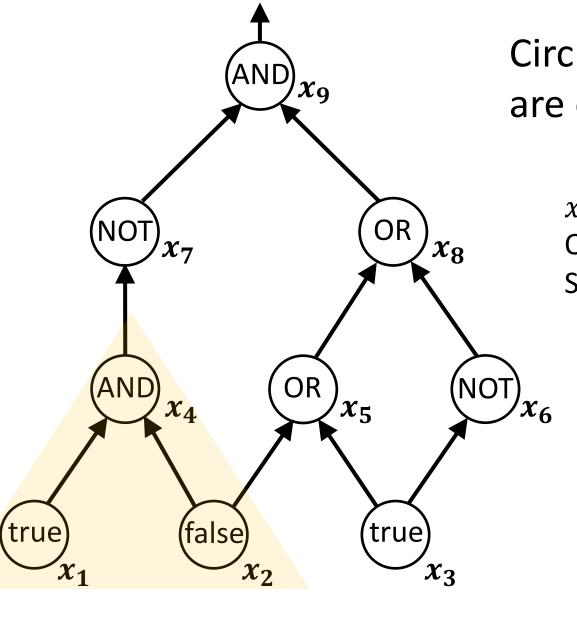
$$x_5 \ge x_3$$

$$x_5 \le x_2 + x_3$$

$$x_8 \ge x_5$$

$$x_8 \ge x_6$$

$$x_8 \le x_5 + x_6$$



 $x_i = \text{gate's evaluated value}$

Objective: ??

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = 1 - x_3$$

$$x_7 = 1 - x_4$$

$$x_5 \ge x_2$$

$$x_5 \ge x_3$$

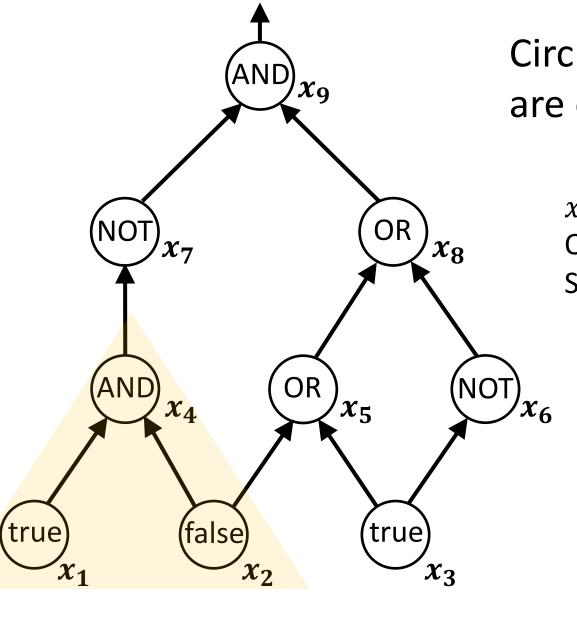
$$x_5 \le x_2 + x_3$$

$$x_8 \ge x_5$$

$$x_8 \ge x_6$$

$$x_8 \le x_5 + x_6$$

$$x_4 \leq x_1$$



 $x_i = \text{gate's evaluated value}$

Objective: ??

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = 1 - x_3$$

$$x_7 = 1 - x_4$$

$$x_5 \ge x_2$$

$$x_5 \ge x_3$$

$$x_5 \le x_2 + x_3$$

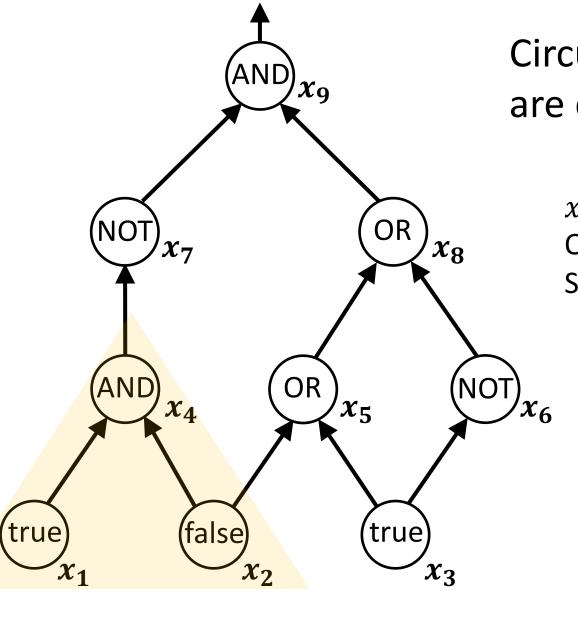
$$x_8 \ge x_5$$

$$x_8 \ge x_6$$

$$x_8 \le x_5 + x_6$$

$$x_4 \le x_1$$

$$x_4 \le x_2$$



 $x_i = \text{gate's evaluated value}$

Objective: ??

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = 1 - x_3$$

$$x_7 = 1 - x_4$$

$$x_5 \ge x_2$$

$$x_5 \ge x_3$$

$$x_5 \le x_2 + x_3$$

$$x_8 \ge x_5$$

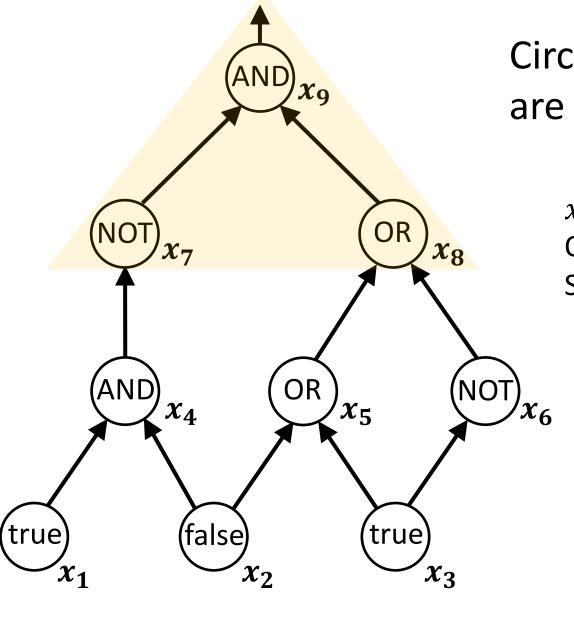
$$x_8 \ge x_6$$

$$x_8 \le x_5 + x_6$$

$$x_4 \le x_1$$

$$x_4 \le x_2$$

$$x_4 \ge x_1 + x_2 - 1$$



 $x_i = \text{gate's evaluated value}$

Objective: ??

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = 1 - x_3$$

$$x_7 = 1 - x_4$$

$$x_5 \ge x_2$$

$$x_5 \ge x_3$$

$$x_5 \le x_2 + x_3$$

$$x_8 \ge x_5$$

$$x_8 \ge x_6$$

$$x_8 \le x_5 + x_6$$

$$x_4 \le x_1$$

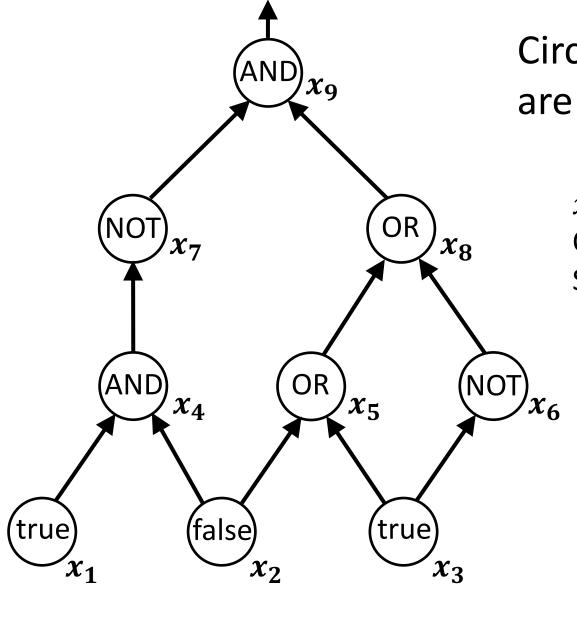
$$x_4 \le x_2$$

$$x_4 \ge x_1 + x_2 - 1$$

$$x_9 \le x_7$$

$$x_9 \le x_8$$

$$x_9 \ge x_7 + x_8 - 1$$



 $x_i = \text{gate's evaluated value}$

Objective:

Subject to:

$$x_i \in \{0,1\}, \forall i$$

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = 1 - x_3$$

$$x_7 = 1 - x_4$$

$$x_5 \ge x_2$$

$$x_5 \ge x_3$$

$$x_5 \le x_2 + x_3$$

$$x_8 \ge x_5$$

$$x_8 \ge x_6$$

$$x_8 \le x_5 + x_6$$

$$x_4 \le x_1$$

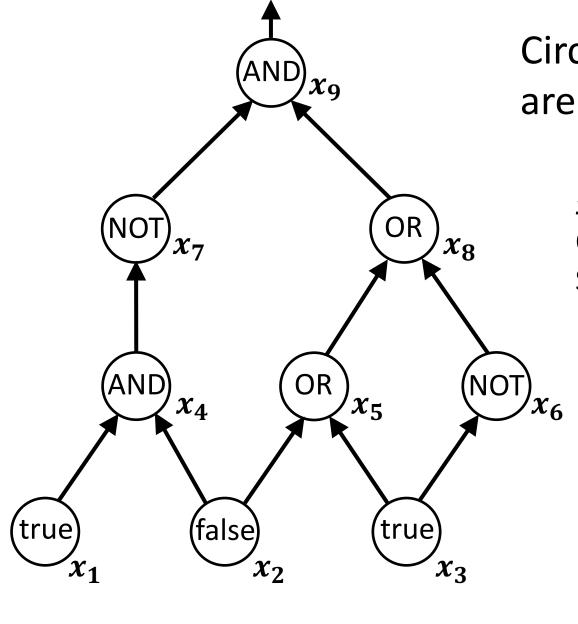
$$x_4 \le x_2$$

$$x_4 \ge x_1 + x_2 - 1$$

$$x_9 \leq x_7$$

$$x_9 \leq x_8$$

$$x_9 \ge x_7 + x_8 - 1$$



 $x_i = \text{gate's evaluated value}$

Objective: min 0

$$x_i \in \{0.1\}, \forall i$$

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_6 = 1 - x_3$$

$$x_7 = 1 - x_4$$

$$x_5 \ge x_2$$

$$x_5 \ge x_3$$

$$x_5 \le x_2 + x_3$$

$$x_8 \ge x_5$$

$$x_8 \ge x_6$$

$$x_8 \le x_5 + x_6$$

$$x_4 \le x_1$$

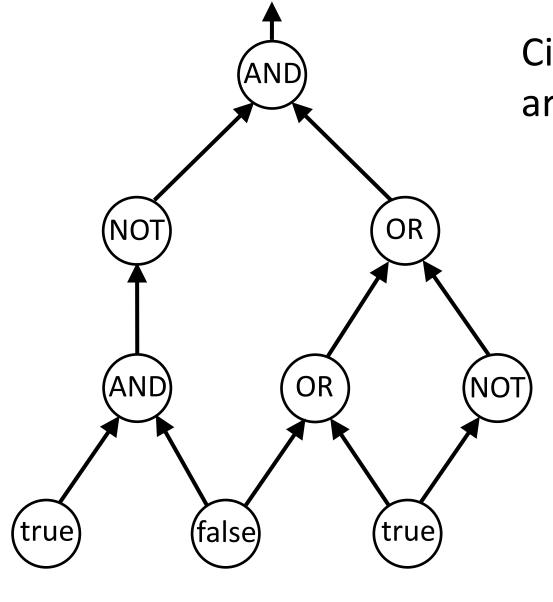
$$x_4 \le x_2$$

$$x_4 \ge x_1 + x_2 - 1$$

$$x_9 \leq x_7$$

$$x_9 \leq x_8$$

$$x_9 \ge x_7 + x_8 - 1$$



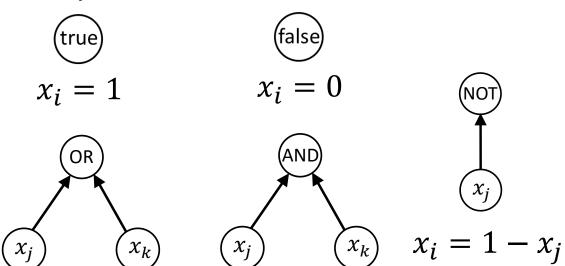
Circuit Value Problem: When the gates are evaluated, is the output true?

 $x_i = \text{gate's evaluated value}$

Objective:

min 0

Subject to: $x_i \in \{0,1\}$



$$x_i \ge x_j$$

$$x_i \ge x_k$$

$$x_i \leq x_j + x_l$$

$$x_i \leq x_j$$

$$x_i \ge x_k$$
 $x_i \le x_k$

$$x_i \le x_i + x_k \qquad x_i \ge x_j + x_k - 1$$

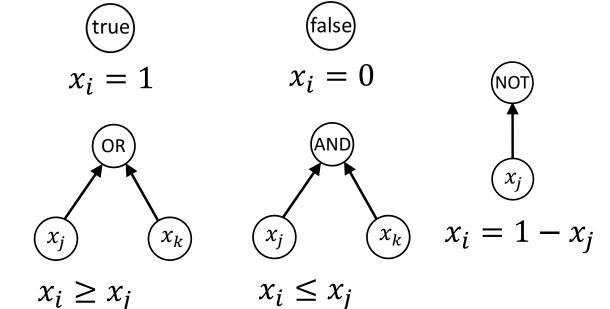
AND OR AND OR (false) true true Will answer be an integer

Circuit Value Problem: When the gates are evaluated, is the output true?

 $x_i = \text{gate's evaluated value}$

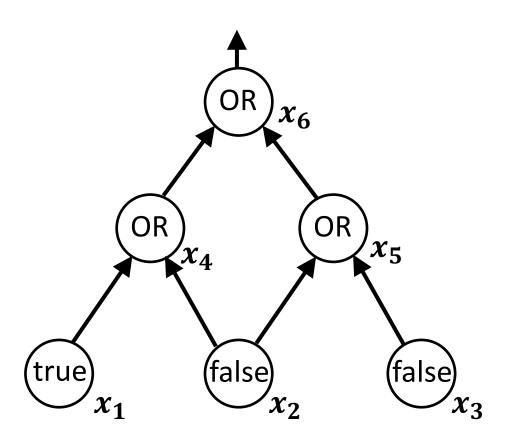
Objective: min 0

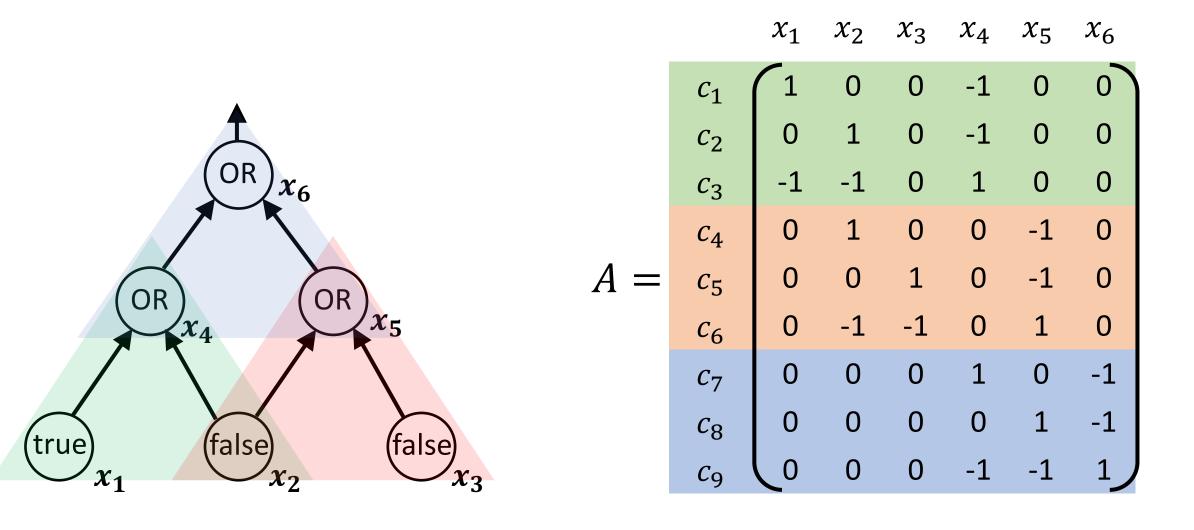
Subject to: $x_i \in [0,1]$

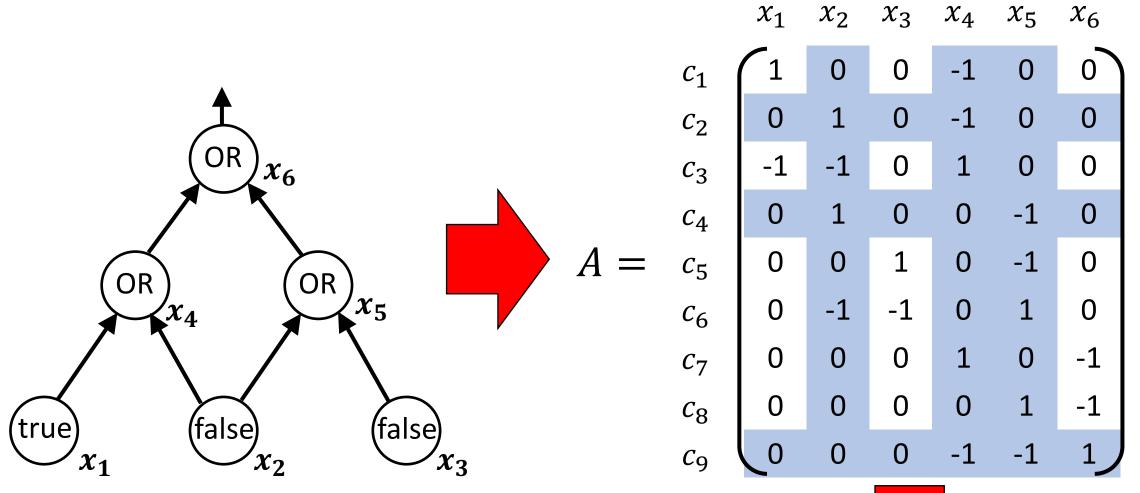


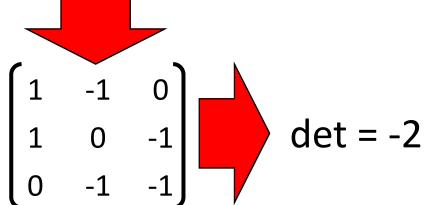
 $x_i \ge x_k$ $x_i \le x_k$

 $x_i \le x_i + x_k \qquad x_i \ge x_i + x_k - 1$









AND OR AND OR (false) true true

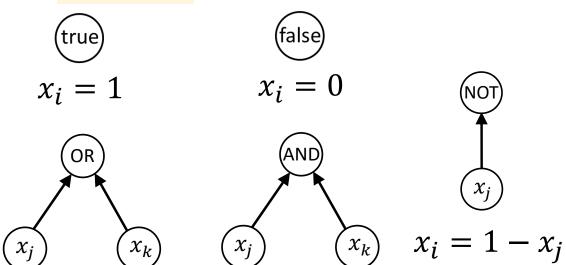
Will answer be an integer?

Circuit Value Problem: When the gates are evaluated, is the output true?

 $x_i = \text{gate's evaluated value}$

Objective: min 0

Subject to: $x_i \in [0,1]$



$$x_i \ge x_j$$

$$x_i \geq x_k$$

$$x_i \leq x_j + x$$

$$x_i \leq x_j$$

$$x_i \ge x_k$$
 $x_i \le x_k$

$$x_i \le x_i + x_k \qquad x_i \ge x_i + x_k - 1$$

AND OR AND OR (false) true true

Will answer be an integer?

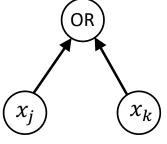
Yes! Input are integers and constraints keep them integers.

Circuit Value Problem: When the gates are evaluated, is the output true?

 $x_i = \text{gate's evaluated value}$

Objective: min 0

Subject to: $x_i \in [0,1]$

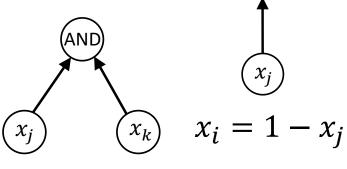


$$x_i \ge x_j \qquad x_i \le x_j$$

$$x_i \ge x_k \qquad x_i \le x_k$$

$$x_i \le x_k$$

$$x_i \leq x_j + x_i$$

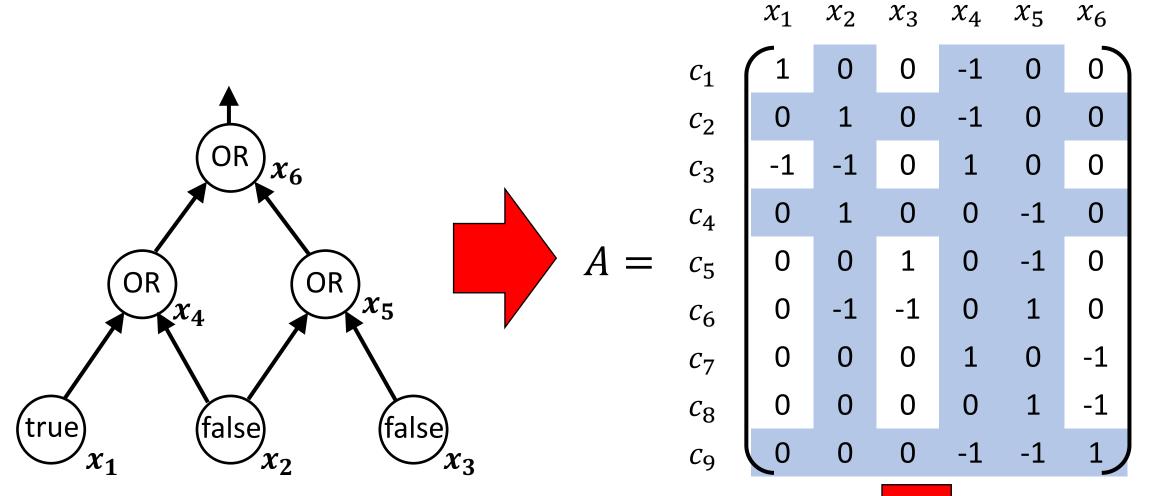


(false)

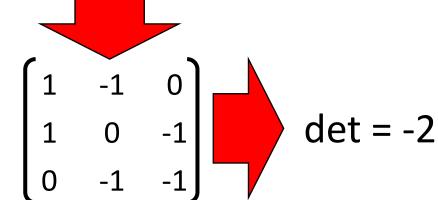
$$x_i \ge x_j \qquad x_i \le x_j$$

$$x_i \ge x_k \qquad x_i \le x_k$$

$$x_i \le x_j + x_k \qquad x_i \ge x_j + x_k - 1$$



Total unimodularity is not the only path to integer solutions.



AND OR AND OR (false) true (true

Anything that can run on a computer in poly time can be solved with an LP in poly time!

Circuit Value Problem: When the gates are evaluated, is the output true?

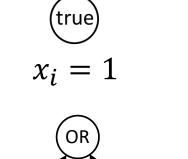
 $x_i = \text{gate's evaluated value}$

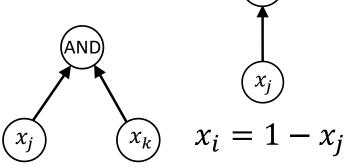
Objective: min 0

Subject to: $x_i \in [0,1]$

$$x_i \in [0,1]$$

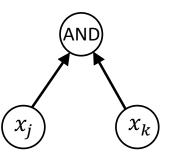
 x_k





(false)

 $x_i = 0$



$$x_i \leq x_j$$

$$x_i \ge x_k$$

 (x_j)

$$x_i \le x_i + x$$

 $x_i \geq x_i$

$$x_i \ge x_k$$
 $x_i \le x_k$

$$x_i \le x_j + x_k \qquad x_i \ge x_j + x_k - 1$$

P is the set of problems that are solvable by an algorithm whose running time is polynomial time.

P is the set of problems that are solvable by an algorithm whose running time is polynomial time.

NP Set of problems that are verifiable in polynomial time.

Claim: $SUBSET - SUM = \{\langle S, t \rangle : S = \{x_1, ..., x_n\}$, and there exists some $\{y_1, ..., y_m\} \subseteq S$ such that $\sum y_i = t\} \in NP$.

Example:

 $\langle \{4, 11, 16, 21, 27\}, 25 \rangle \in SUBSET - SUM \text{ since } 4 + 21 = 25$

 $\langle \{1, 2, 3\}, 10 \rangle \notin SUBSET - SUM$, since no subsets sum to 10.

Claim: $SUBSET - SUM = \{\langle S, t \rangle : S = \{x_1, ..., x_n\}$, and there exists some $\{y_1, ..., y_m\} \subseteq S$ such that $\sum y_i = t\} \in NP$.

Proof:

Solver: Is $\langle S, t \rangle \in SUBSET - SUM$?

Verifier: Is $\langle S, t \rangle \in SUBSET - SUM$, given a candidate solution?

Set of numbers.

Claim: $SUBSET - SUM = \{\langle S, t \rangle : S = \{x_1, ..., x_n\}$, and there exists some $\{y_1, ..., y_m\} \subseteq S$ such that $\sum y_i = t\} \in NP$.

Proof: Build a polynomial time verifier.

Claim: $SUBSET - SUM = \{\langle S, t \rangle : S = \{x_1, ..., x_n\}$, and there exists some $\{y_1, ..., y_m\} \subseteq S$ such that $\sum y_i = t\} \in NP$.

Proof: Build a polynomial time verifier.

On input $\langle \langle S, t \rangle, C \rangle$, where C is a collection of numbers

- 1. Test if every element from *C* is in *S*.
- 2. Test if the sum of *C* is *t*.
- 3. If both pass, <u>accept</u>. Otherwise, <u>reject</u>.

Claim: $SUBSET - SUM = \{\langle S, t \rangle : S = \{x_1, ..., x_n\}$, and there exists some $\{y_1, ..., y_m\} \subseteq S$ such that $\sum y_i = t\} \in NP$.

Proof: Build a polynomial time verifier.

On input $\langle \langle S, t \rangle, C \rangle$, where C is a collection of numbers

- 1. Test if every element from *C* is in *S*.
- 2. Test if the sum of *C* is *t*.
- 3. If both pass, <u>accept</u>. Otherwise, <u>reject</u>.

Verified in O(n) time, therefore $SUBSET - SUM \in NP$.

P vs NP

P is the set of problems that are solvable by an algorithm whose running time is polynomial time.

NP Set of problems that are verifiable in polynomial time.

P vs NP

P is the set of problems that are solvable by an algorithm whose running time is polynomial time.

NP Set of problems that are verifiable in polynomial time.

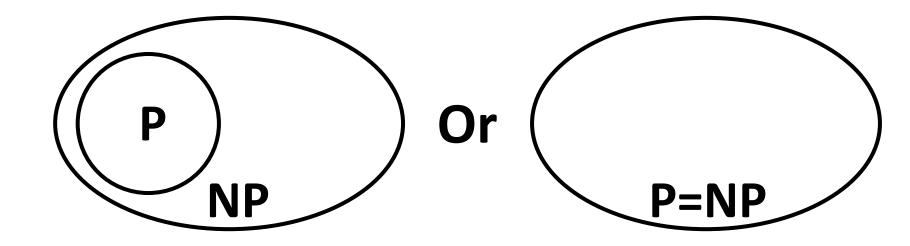
How does P relate to NP?

P vs NP

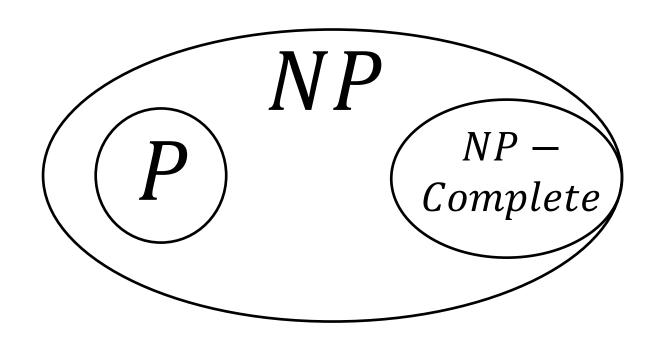
P is the set of problems that are solvable by an algorithm whose running time is polynomial time.

NP Set of problems that are verifiable in polynomial time.

How does P relate to NP?



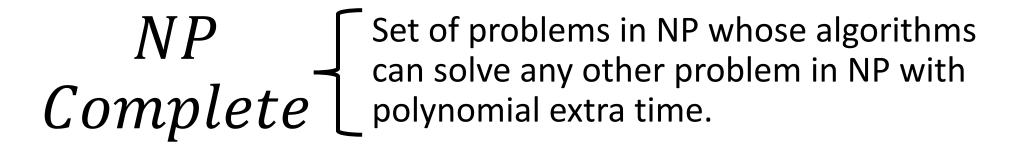
NP CompleteSet of problems in NP whose algorithms can solve any other problem in NP with polynomial extra time. Set of problems in NP whose algorithms



$NP \ Complete$ Set of problems in NP whose algorithms can solve any other problem in NP with polynomial extra time.

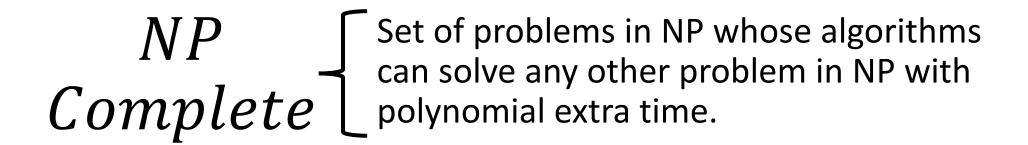
Problem A: An NP - Complete problem.

Problem B: Some random problem in NP.

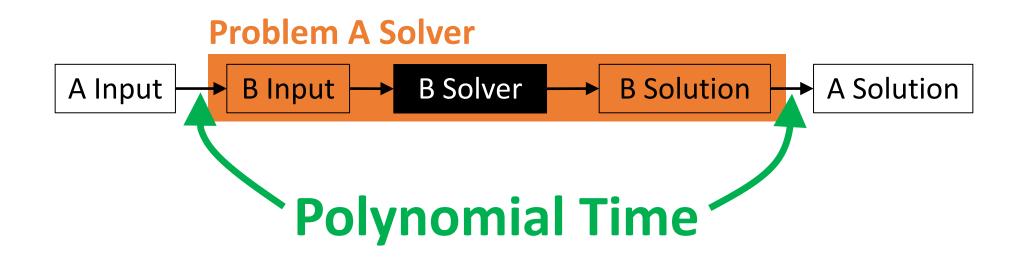


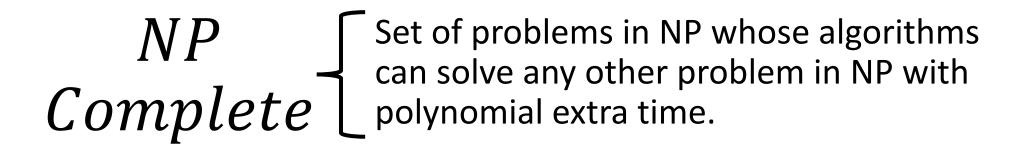
Problem B: Some random problem in NP.

Problem A Solver

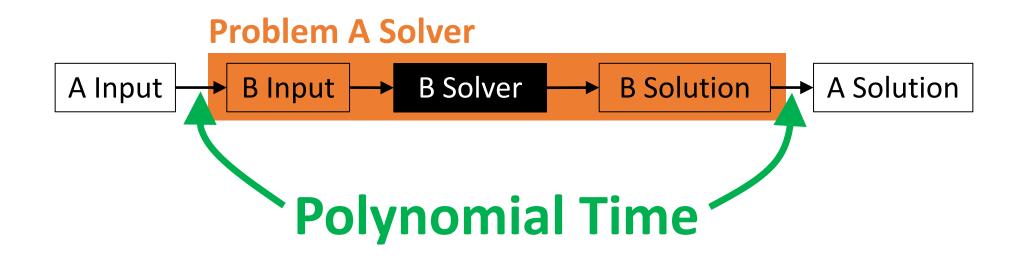


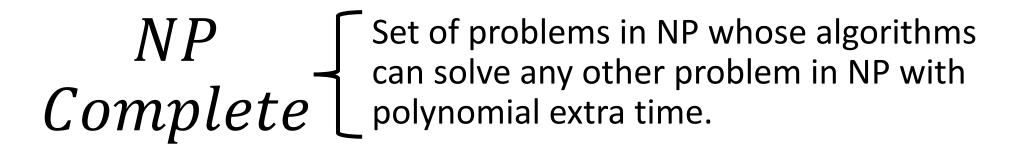
Problem B: Some random problem in NP.





Problem B: Some random problem in NP. An NP-Complete problem.





Problem B: Some random problem in NP. An NP - Complete problem.

Consequences:

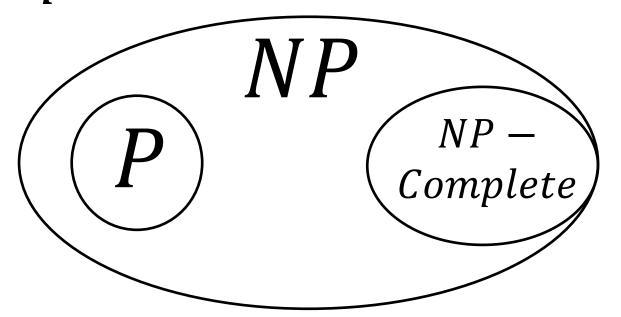
- A polynomial time algorithm for any NP Complete problem gives a polynomial time algorithm for every problem in NP.
- The thing that (possibly) makes one NP-C problem unsolvable in polynomial time is the exact same thing that makes every other NP-C problem unsolvable in polynomial time.

Polynomial Time Reductions

Problem A Solver

A <u>reduces to</u> B if A can be solved with a solver for B.

NP – Complete



B is in NP-Complete if it satisfies two conditions:

- $1. B \in NP.$
- 2. For every $A \in NP$, $A \leq_P B$.

B is in NP-Complete if it satisfies two conditions:

- $1. B \in NP.$
- 2. For some NP C problem C, $C \leq_P B$.

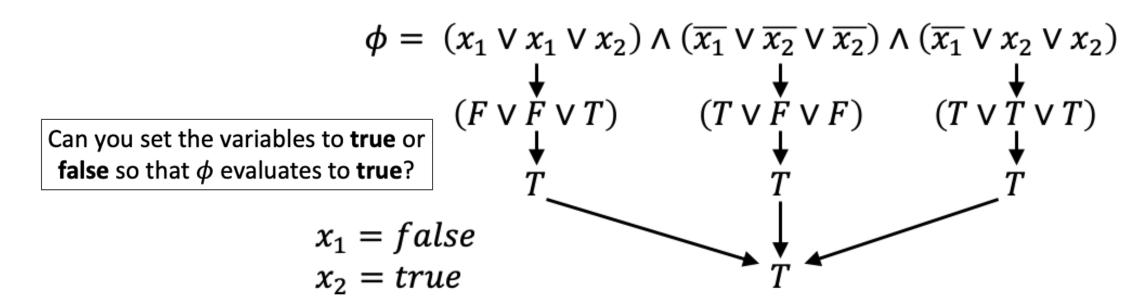
NP – Complete

B is in NP-Complete if it satisfies two conditions:

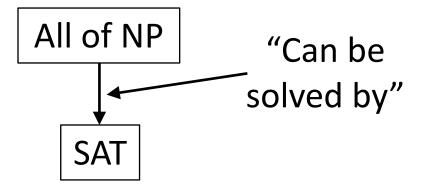
- $1. B \in NP.$
- 2. For some NP C problem A, $A \leq_P B$.

Cook-Levin Theorem:

The Boolean Satisfiability problem (SAT) is in NP-C.



Cook-Levin Theorem



NP-C

