Integer Linear Programming CSCI 532

```
x_1, x_2 \in \mathbb{Z}
```

Objective: $\min x_1 + x_2$

Subject to: $x_1 \le 1$

 $x_2 \le 1$
 $x_1, x_2 \ge 0$

```
x_1, x_2 \in \mathbb{Z}
```

Objective: $\min x_1 - x_2$

Subject to: $x_1 \le 1$

 $x_2 \le 1$
 $x_1, x_2 \ge 0$

```
x_1, x_2 \in \mathbb{Z}
```

Objective: $\min -x_1 - x_2$

Subject to: $x_1 \le 1$

 $x_2 \le 1$
 $x_1, x_2 \ge 0$

$$x_1, x_2 \in \mathbb{Z}$$
Objective: $\min -\frac{\pi}{\sqrt{2}}x_1 + \frac{\log 2}{e}x_2 + \frac{32}{17}$
Subject to: $x_1 \le 1$
 $x_2 \le 1$
 $x_1, x_2 \ge 0$

$$x_1, x_2 \in \mathbb{Z}$$

Objective:
$$\min -\frac{\pi}{\sqrt{2}}x_1 + \frac{\log 2}{e}x_2 + \frac{32}{17}$$

Subject to:
$$x_1 \le 1$$

$$x_2 \leq 1$$

$$x_1, x_2 \ge 0$$

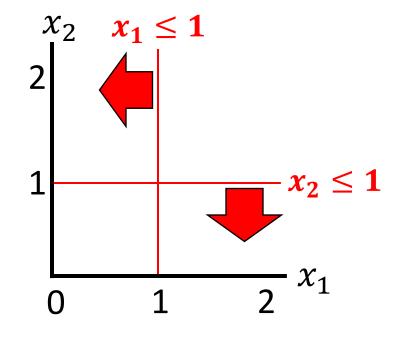
$$x_1, x_2 \in \mathbb{Z}$$

Objective:
$$\min -\frac{\pi}{\sqrt{2}}x_1 + \frac{\log 2}{e}x_2 + \frac{32}{17}$$

Subject to: $x_1 \le 1$

$$x_2 \leq 1$$

$$x_1, x_2 \ge 0$$



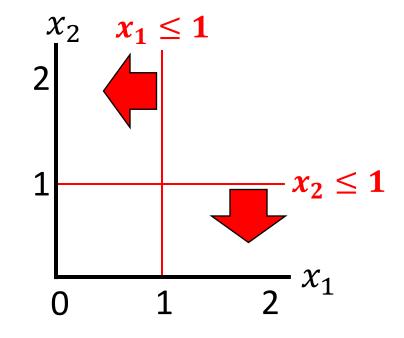
$$x_1, x_2 \in \mathbb{Z}$$
Objective: $\min -\frac{\pi}{-}x_1 + \frac{\pi}{-}$

Objective:
$$\min -\frac{\pi}{\sqrt{2}}x_1 + \frac{\log 2}{e}x_2 + \frac{32}{17}$$

Subject to: $x_1 \le 1$

$$x_2 \leq 1$$

$$x_1, x_2 \ge 0$$



Can we optimally solve this ILP? Why?

If all feasible region vertices are integer-valued, an optimal solution is integer-valued, regardless of the objective function.

 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

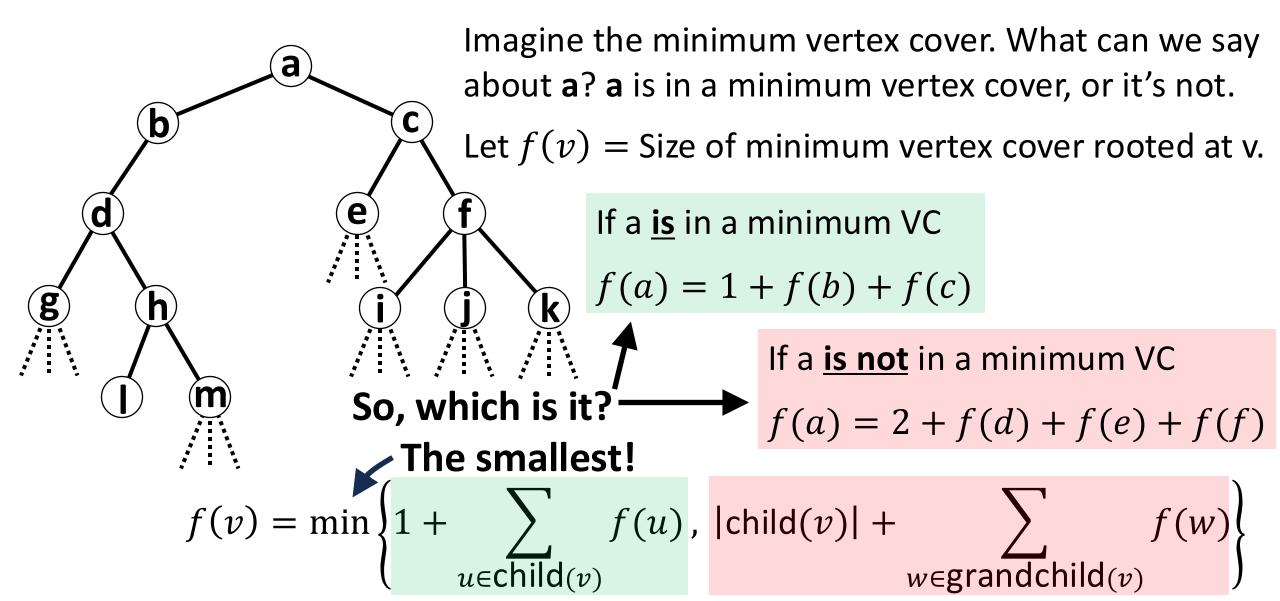
 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

General Graphs: NP-Hard

Vertex Cover in Trees



 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

General Graphs: NP-Hard

Trees: O(n)

```
x_i \in \{0,1\} = Indicates if vertex i is selected.
```

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

But they all use the same ILP!

General Graphs: NP-Hard

Trees: O(n)

```
x_i \in \{0,1\} = Indicates if vertex i is selected.
```

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Goal: Find some property of special ILPs that give them integer-vertexed feasible regions.

Definition: A matrix is <u>totally unimodular</u> if the determinant of any square submatrix of it is 0, 1, or -1.

Definition: A matrix is <u>totally unimodular</u> if the determinant of any square submatrix of it is 0, 1, or -1.

This implies that totally unimodular matrices are composed of only 0's, 1's, and -1's, since single elements are square submatrices.

Definition: A matrix is <u>totally unimodular</u> if the determinant of any square submatrix of it is 0, 1, or -1.

This implies that totally unimodular matrices are composed of only 0's, 1's, and -1's, since single elements are square submatrices.

It also means that if A is totally unimodular, A^{T} is too, since $\det(B) = \det(B^{\mathsf{T}})$.

Definition: A matrix is <u>totally unimodular</u> if the determinant of any square submatrix of it is 0, 1, or -1.

Theorem (Hoffman-Kruskal, 1956):

 $A \in \mathbb{R}^{m \times n}$ is totally unimodular

The feasible region:

 $\{x \in \mathbb{R}^n | Ax \le b, x \ge 0\}$ has integer vertices $\forall b \in \mathbb{Z}^m$.

Definition: A matrix is totally unimodular if the determinant of any square submatrix of it is 0, 1, or -1.

Theorem (Hoffman-Kruskal, 1956):

 $A \in \mathbb{R}^{m \times n}$ is totally unimodular

The feasible region: \Leftrightarrow $\{x \in \mathbb{R}^n | Ax \le b, x \ge 0\}$ has integer vertices $\forall b \in \mathbb{Z}^m$.

Objective: max c^T x

Subject to: $A \times \leq b$

 $x \ge 0$

If A is totally unimodular, the ILP can be solved in polynomial time!

Definition: A matrix is totally unimodular if the determinant of any square submatrix of it is 0, 1, or -1.

Theorem (Hoffman-Kruskal, 1956):

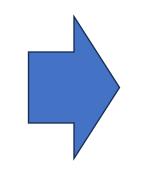
$$A \in \mathbb{R}^{m \times n}$$
 is totally unimodular

The feasible region:

 $A \in \mathbb{K}'''^{n}$ is totally unimodular $\iff \{x \in \mathbb{R}^{n} | Ax \leq b, x \geq 0\}$ has integer vertices $\forall b \in \mathbb{Z}^m$.

$$\begin{pmatrix}
4 & 5 & 7 & 3 & 0 & 1 \\
1 & 2 & 8 & 4 & 6 & 5 \\
9 & 9 & 1 & 5 & 7 & 3 \\
9 & 5 & 6 & 6 & 8 & 2 \\
1 & 1 & 0 & 1 & 2 & 7
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 8 \\
9 & 1
\end{pmatrix}
\begin{pmatrix}
6 & 8 \\
0 & 2
\end{pmatrix}
\begin{pmatrix}
3 & 1 \\
5 & 3
\end{pmatrix}$$



Definition: A matrix is totally unimodular if the determinant of any square submatrix of it is 0, 1, or -1.

Theorem (Hoffman-Kruskal, 1956):

 $A \in \mathbb{R}^{m \times n}$ is

The feasible region:

totally unimodular $\iff \{x \in \mathbb{R}^n | Ax \leq b, x \geq 0\}$ has integer vertices $\forall b \in \mathbb{Z}^m$.

Theorem (Ghouila-Houri, 1962):

$$A \in \mathbb{R}^{m \times n}$$
 is \leftarrow totally unimodular

For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in P} A_{ij} - \sum_{i \in P} A_{ij} \in \{-1,0,1\}$$

 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Objective: $max c^T x$

Subject to: $A x \le b$

 $x \ge 0$

Theorem (Ghouila-Houri, 1962):

$$A \in \mathbb{R}^{m \times n}$$
 is totally unimodular

For every subset of rows R, there is a partition

$$R = R_1 \cup R_2$$
 such that for every column j ,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

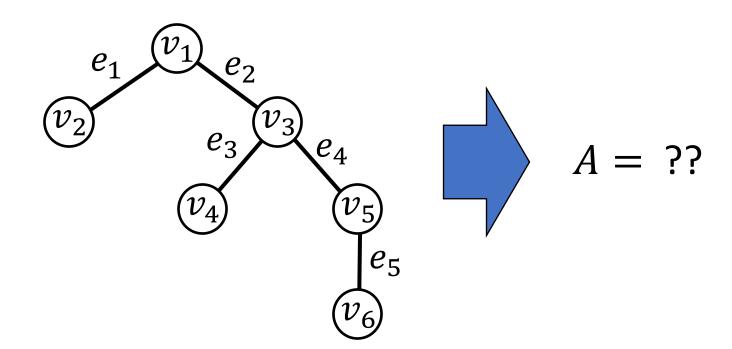
 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Objective: $max c^T x$

Subject to: $A x \le b$



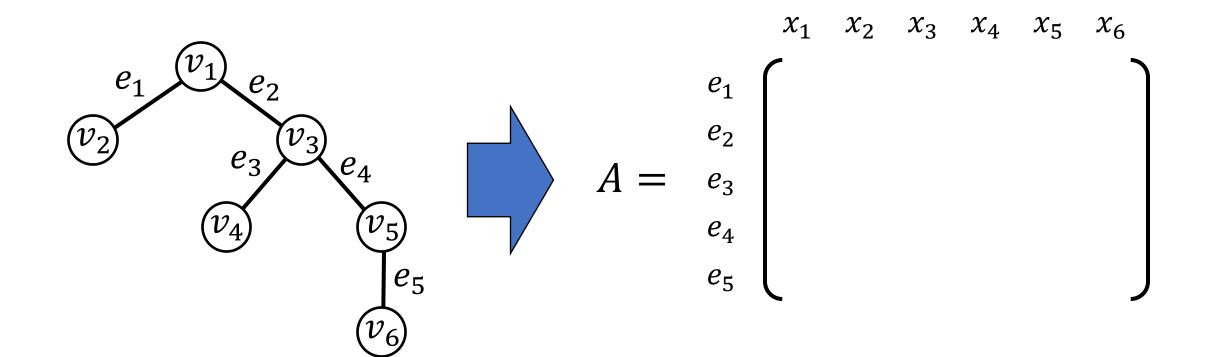
 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Objective: $max c^T x$

Subject to: $A x \le b$



 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Objective: $max c^T x$

Subject to: $A x \le b$



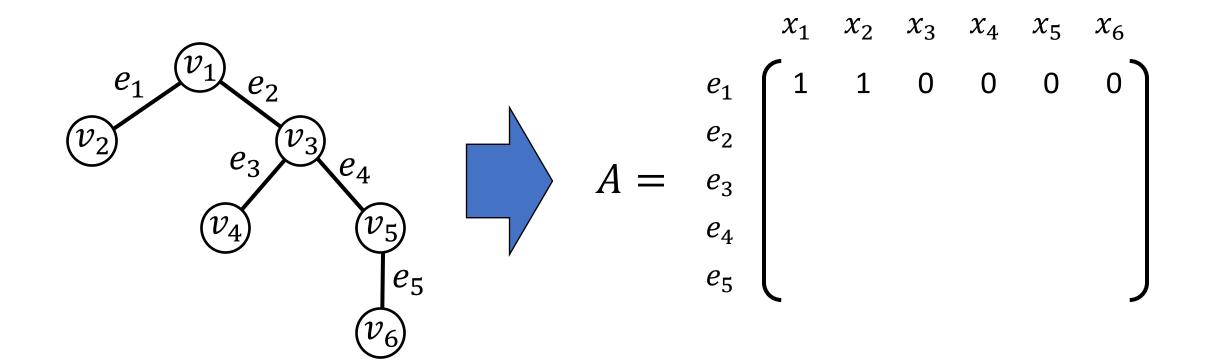
 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Objective: $max c^T x$

Subject to: $A x \le b$



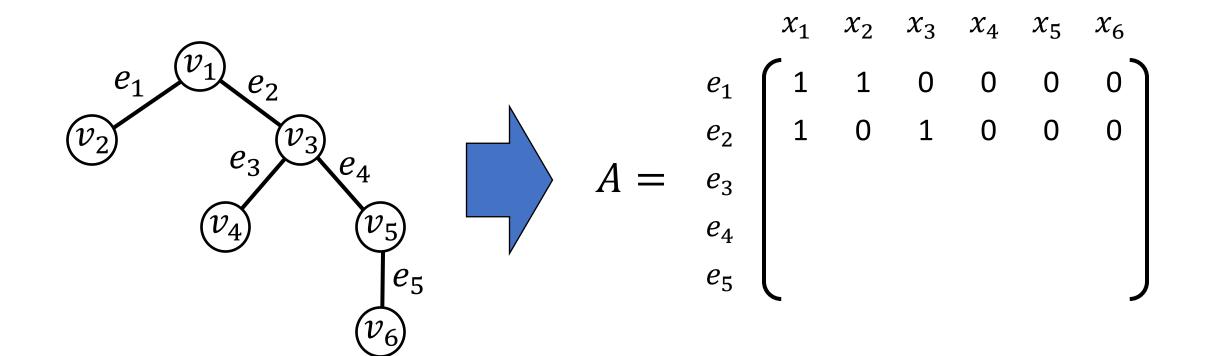
 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Objective: $max c^T x$

Subject to: $A x \le b$



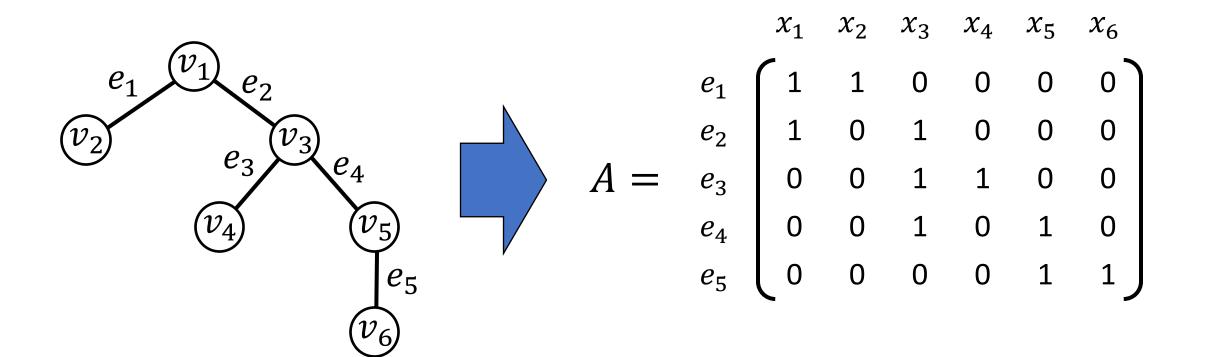
 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Objective: $max c^T x$

Subject to: $A x \leq b$



Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Definition: A matrix is <u>totally unimodular</u> if the determinant of any square submatrix of it is 0, 1, or -1.

This implies that totally unimodular matrices are composed of only 0's, 1's, and -1's, since single elements are square submatrices.

It also means that if A is totally unimodular, A^{T} is too, since $\det(B) = \det(B^{\mathsf{T}})$.

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

$$A = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ e_1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ x_5 & 0 & 0 & 0 & 1 & 1 \\ x_6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

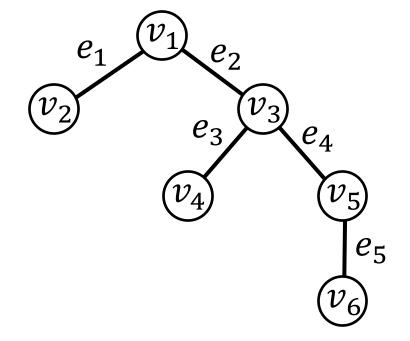
$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ x_5 & 0 & 0 & 0 & 1 & 1 \\ x_6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G.

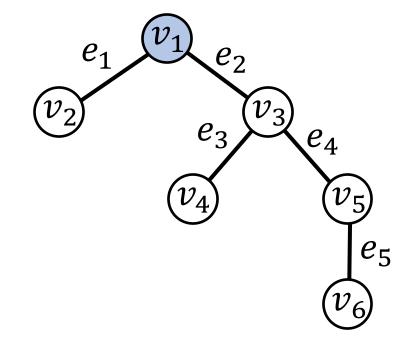


$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 \\ x_3 & 0 & 1 & 1 & 1 & 0 \\ x_4 & 0 & 0 & 1 & 0 & 0 \\ x_5 & 0 & 0 & 0 & 1 & 1 \\ x_6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G.

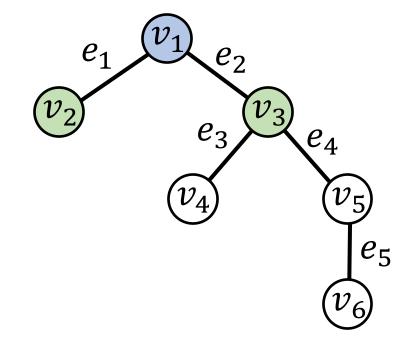


$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ x_3 & 0 & 1 & 1 & 1 & 0 \\ x_4 & 0 & 0 & 1 & 0 & 0 \\ x_5 & 0 & 0 & 0 & 1 & 1 \\ x_6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G.

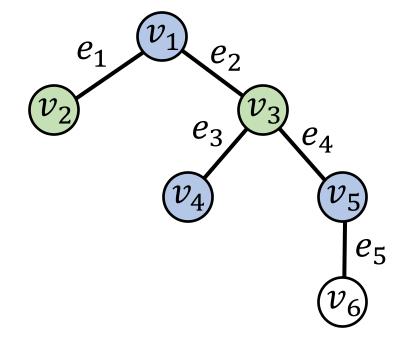


$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ x_3 & 0 & 1 & 1 & 1 & 0 \\ x_4 & 0 & 0 & 1 & 1 & 1 \\ x_5 & x_6 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G.

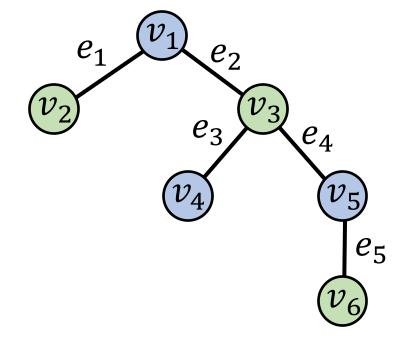


$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ x_3 & 0 & 1 & 1 & 1 & 0 \\ x_4 & 0 & 0 & 1 & 1 & 0 \\ x_5 & 0 & 0 & 0 & 1 & 1 \\ x_6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G.

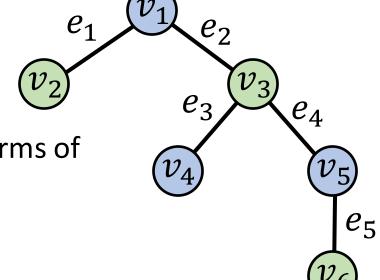


	e_1	e_2	e_3	e_4	e_5
x_1	1	1	0	0	0
x_2	1	0	0	0	0
$A^{T} = \frac{x_3}{x_4}$	0	1	1	1	0
	. 0	0	1	0	0
x_5	0	0	0	1	1
x_6	0	0	0	0	1

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G.



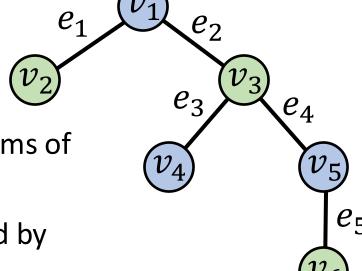
What can we observe about a single column in terms of 0/1 values and B/G labels?

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ x_5 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G.



What can we observe about a single column in terms of 0/1 values and B/G labels?

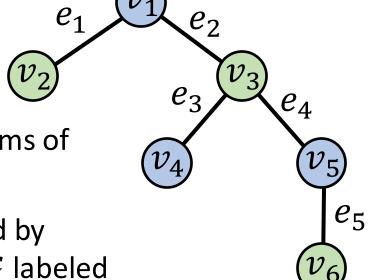
Each column has exactly two 1's (edges are formed by exactly two vertices)

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ x_5 & 0 & 0 & 0 & 1 & 1 \\ x_6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G.



What can we observe about a single column in terms of 0/1 values and B/G labels?

Each column has exactly two 1's (edges are formed by exactly two vertices) with exactly one B and one G labeled vertex (generations don't overlap).

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ x_5 & 0 & 0 & 0 & 1 & 1 \\ x_6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G.

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ x_5 & x_6 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} .

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ x_5 & x_6 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} .

We need to partition *R* such that it is roughly 'balanced'.

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ x_5 & 0 & 0 & 0 & 1 & 1 \\ x_6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} .

We need to partition R such that it is roughly 'balanced'.

How?

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ x_5 & x_6 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} .

We need to partition R such that it is roughly 'balanced'.

How?

All we need is for the B vertices to go on one side of the partition and for the G vertices to go on the other.

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ x_5 & x_6 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} .

Each column has exactly two 1's (edges are formed by exactly two vertices) with exactly one B and one G labeled vertex (generations don't overlap).

We need to partition R such that it is roughly 'balanced'.

How?

All we need is for the B vertices to go on one side of the partition and for the G vertices to go on the other.

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ x_3 & x_4 & 0 & 0 & 1 & 1 & 0 \\ x_5 & 0 & 0 & 0 & 1 & 1 \\ x_6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} . Partition R into $R_1 = R \cap B$ and $R_2 = R \cap G$.

We need to partition R such that it is roughly 'balanced'.

How?

All we need is for the B vertices to go on one side of the partition and for the G vertices to go on the other.

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ x_5 & 0 & 0 & 0 & 1 & 1 \\ x_6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} . Partition R into $R_1 = R \cap B$ and $R_2 = R \cap G$.

For any column of A^{T} , which corresponds to an edge e,

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ x_5 & 0 & 0 & 0 & 1 & 1 \\ x_6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} . Partition R into $R_1 = R \cap B$ and $R_2 = R \cap G$.

For any column of A^{T} , which corresponds to an edge e,

$$\sum_{v \in R} A_{ve} =$$

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ x_5 & x_6 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} . Partition R into $R_1 = R \cap B$ and $R_2 = R \cap G$.

For any column of A^{T} , which corresponds to an edge e,

$$\sum_{v \in R} A_{ve} = 3$$

For a fixed column *e*, how many *B* labeled vertices are there?

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ x_5 & x_6 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} . Partition R into $R_1 = R \cap B$ and $R_2 = R \cap G$.

For any column of A^{T} , which corresponds to an edge e,

$$\sum_{v \in R_1} A_{ve} \in \{0,1\}$$

For a fixed column *e*, how many *B* labeled vertices are there?

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ x_5 & x_6 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} . Partition R into $R_1 = R \cap B$ and $R_2 = R \cap G$.

For any column of A^{T} , which corresponds to an edge e,

$$\sum_{v \in R_1} A_{ve} \in \{0,1\} \text{ and } \sum_{v \in R_2} A_{ve} = ?$$

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ x_5 & x_6 & 0 & 0 & 0 & 1 & 1 \\ x_6 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} . Partition R into $R_1 = R \cap B$ and $R_2 = R \cap G$.

For any column of A^{T} , which corresponds to an edge e,

$$\sum_{v \in R_1} A_{ve} \in \{0,1\} \text{ and } \sum_{v \in R_2} A_{ve} = ?$$

For a fixed column *e*, how many *G* labeled vertices are there?

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ x_5 & 0 & 0 & 0 & 1 & 1 \\ x_6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} . Partition R into $R_1 = R \cap B$ and $R_2 = R \cap G$.

For any column of A^{T} , which corresponds to an edge e,

$$\sum_{v \in R_1} A_{ve} \in \{0,1\} \text{ and } \sum_{v \in R_2} A_{ve} \in \{0,1\}$$

For a fixed column *e*, how many *G* labeled vertices are there?

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ x_5 & x_6 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} . Partition R into $R_1 = R \cap B$ and $R_2 = R \cap G$.

For any column of A^{T} , which corresponds to an edge e,

$$\sum_{v \in R_1} A_{ve} \in \{0,1\} \text{ and } \sum_{v \in R_2} A_{ve} \in \{0,1\} \quad \Rightarrow \sum_{v \in R_1} A_{ve} - \sum_{v \in R_2} A_{ve} = ?$$

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ x_5 & x_6 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} . Partition R into $R_1 = R \cap B$ and $R_2 = R \cap G$.

For any column of A^{T} , which corresponds to an edge e,

$$\sum_{v \in R_1} A_{ve} \in \{0,1\} \text{ and } \sum_{v \in R_2} A_{ve} \in \{0,1\} \quad \Rightarrow \sum_{v \in R_1} A_{ve} - \sum_{v \in R_2} A_{ve} \in \{-1,0,1\}$$

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ x_5 & 0 & 0 & 0 & 1 & 1 \\ x_6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} . Partition R into $R_1 = R \cap B$ and $R_2 = R \cap G$.

For any column of A^{T} , which corresponds to an edge e,

$$\sum_{v \in R_1} A_{ve} \in \{0,1\} \text{ and } \sum_{v \in R_2} A_{ve} \in \{0,1\} \Rightarrow \sum_{v \in R_1} A_{ve} - \sum_{v \in R_2} A_{ve} \in \{-1,0,1\} \text{ and } A \text{ are total unimodular.}$$

Therefore, A^{T} and A are totally unimodular.

 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Objective: $max c^T x$

Subject to: $A x \le b$

 $x \ge 0$

Theorem (Hoffman-Kruskal, 1956):

 $A \in \mathbb{R}^{m \times n}$ is totally unimodular

The feasible region:

 $\{x \in \mathbb{R}^n | Ax \le b, x \ge 0\}$ has integer vertices $\forall b \in \mathbb{Z}^m$.

∴ The Vertex Cover ILP will be solved in polynomial time when the graph is a tree.

$$A^{\mathsf{T}} = \begin{bmatrix} x_1 & e_2 & e_3 & e_4 & e_5 \\ x_2 & 1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ x_5 & 0 & 0 & 0 & 1 & 1 \\ x_6 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} . Partition R into $R_1 = R \cap$ B and $R_2 = R \cap G$.

For any column of A^{I} , which corresponds to an edge e,

$$\sum_{v \in R_1} A_{ve} \in \{0,1\} \text{ and } \sum_{v \in R_2} A_{ve} \in \{0,1\} \Rightarrow \sum_{v \in R_1} A_{ve} - \sum_{v \in R_2} A_{ve} \in \{-1,0,1\}$$
 for any other special graphs beyond trees.

Does this work

	e_1	e_2	e_3	e_4	e_5
x_1	1	1	0	0	0
x_2	1	0	0	0	0
x_3	0	1	1	1	0
x_4	0	0	1	0	0
x_5	0	0	0	1	1
x_6	0	0	0	0	1
	x_{2} x_{3} x_{4} x_{5}	$ \begin{array}{c cccc} x_1 & 1 & 1 \\ x_2 & 1 & 0 \\ x_3 & 0 & 0 \\ x_4 & 0 & 0 \\ x_5 & 0 & 0 \end{array} $	$ \begin{array}{c cccc} x_1 & 1 & 1 \\ x_2 & 1 & 0 \\ x_3 & 0 & 1 \\ x_4 & 0 & 0 \\ x_5 & 0 & 0 \end{array} $	x_1 x_2 x_2 x_3 x_4 x_5 x_5 x_5 x_6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

Bipartitie!

Label alternating generations of vertices into two sets B and G. Consider a subset of rows of A^{T} . Partition R into $R_1 = R \cap$ B and $R_2 = R \cap G$.

For any column of A^{I} , which corresponds to an edge e,

$$\sum_{v \in R_1} A_{ve} \in \{0,1\} \text{ and } \sum_{v \in R_2} A_{ve} \in \{0,1\} \Rightarrow \sum_{v \in R_1} A_{ve} - \sum_{v \in R_2} A_{ve} \in \{-1,0,1\} \text{ for any other special graphs beyond trees?}$$

Does this work

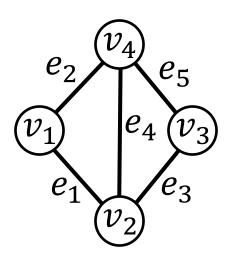
```
x_i \in \{0,1\} = Indicates if vertex i is selected.
```

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

But they all use $\begin{cases} \begin{cases} \begin{case$

Bipartite: Polynomial

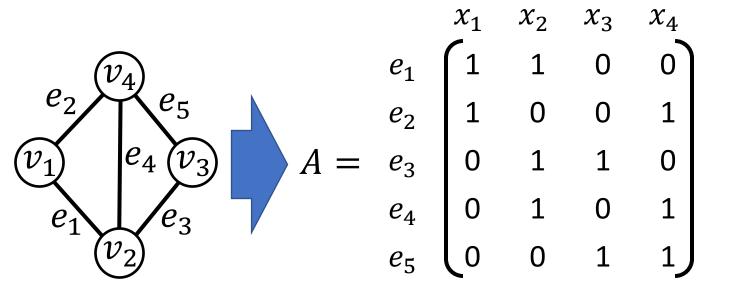


Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

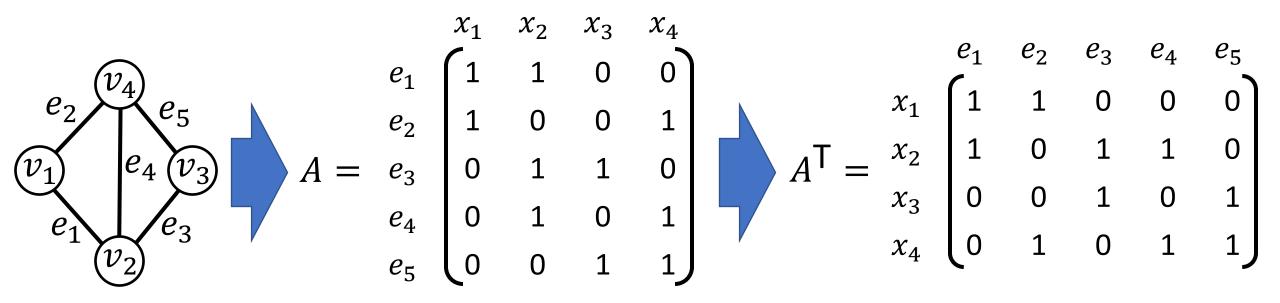
Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$



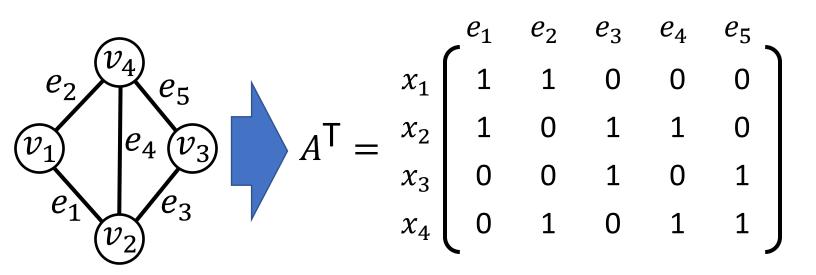
Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1, 0, 1\}$$



Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

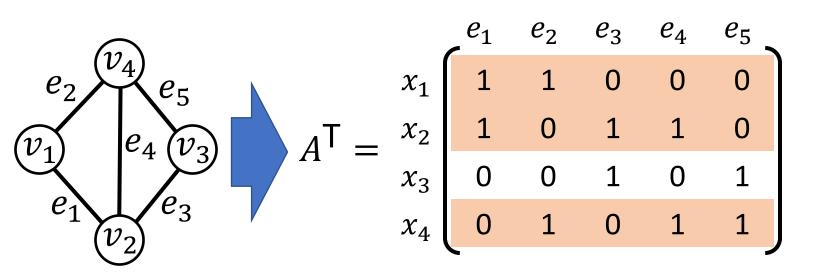
$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$



Where is the contradiction with Ghouila-Houri?

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

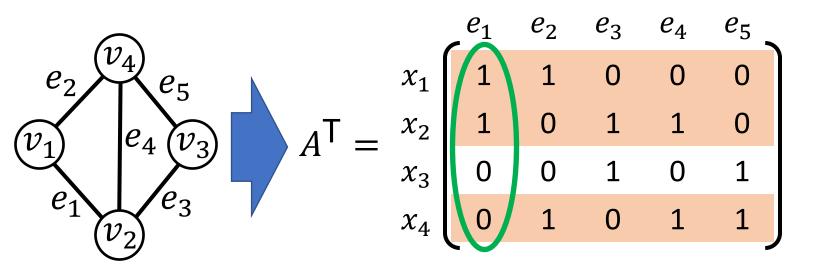
$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$



Where is the contradiction with Ghouila-Houri?

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

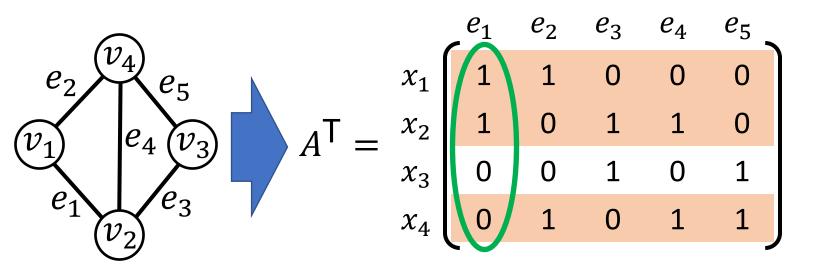
$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1, 0, 1\}$$



Where is the contradiction with Ghouila-Houri?

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$



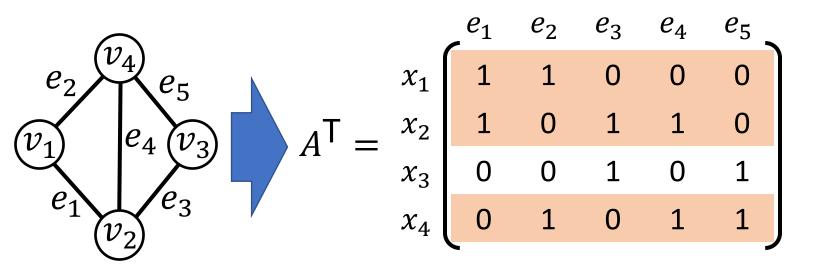
Where is the contradiction with Ghouila-Houri?

$$R_1 = \{x_1\}$$

$$R_2 = \{x_2\}$$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

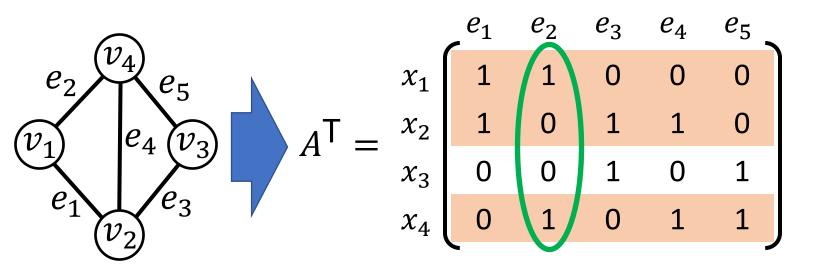


Where is the contradiction with Ghouila-Houri?

$$R_1 = \{x_1, x_4\}$$
 $R_1 = \{x_1\}$ $R_2 = \{x_2\}$ $R_2 = \{x_2, x_4\}$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$

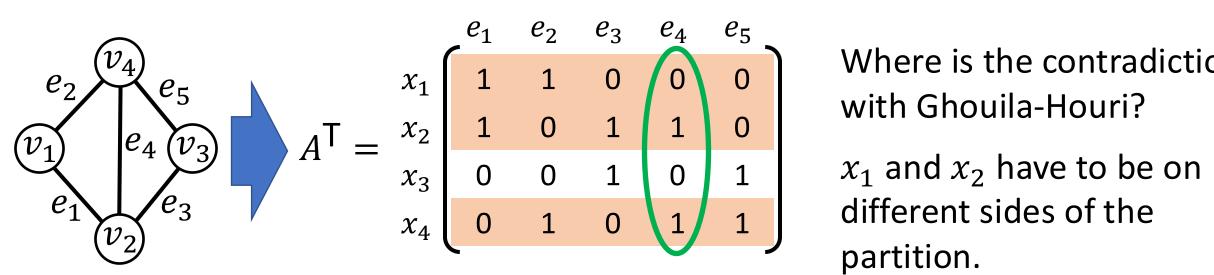


Where is the contradiction with Ghouila-Houri?

$$R_1 = \{x_1, x_4\}$$
 Column e_2 $R_1 = \{x_1\}$ $R_2 = \{x_2\}$ sums to 2. $R_2 = \{x_2, x_4\}$

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$



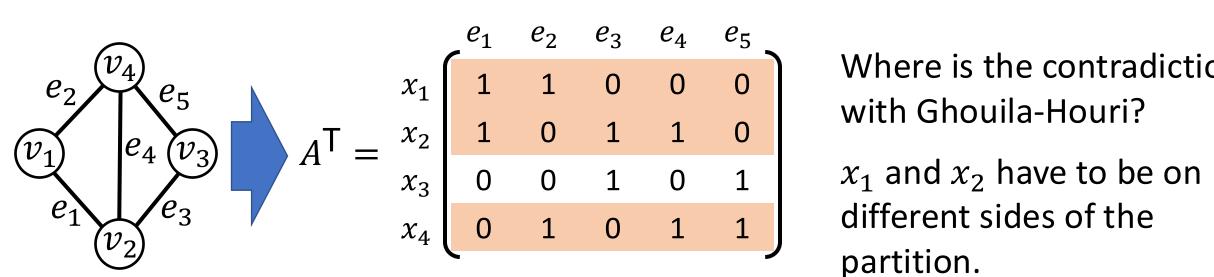
Where is the contradiction

partition.

$$R_1 = \{x_1, x_4\}$$
 Column e_2 $R_1 = \{x_1\}$ Column e_4 $R_2 = \{x_2\}$ sums to 2. $R_2 = \{x_2, x_4\}$ sums to -2.

Theorem (Ghouila-Houri, 1962): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow For every subset of rows R, there is a partition $R = R_1 \cup R_2$ such that for every column j,

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1,0,1\}$$



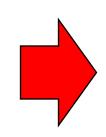
Where is the contradiction

partition.

$$R_1 = \{x_1, x_4\}$$

$$R_2 = \{x_2\}$$

$$R_1 = \{x_1, x_4\}$$
 Column e_2 $R_1 = \{x_1\}$ Column e_4 exists, so A^T and $R_2 = \{x_2\}$ sums to 2. $R_2 = \{x_2, x_4\}$ sums to -2.



No such partition exists, so A^{T} and unimodular.

Theorem (Hoffman-Kruskal, 1956): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow The feasible region: $\{x \in \mathbb{R}^n | Ax \leq b, x \geq 0\}$ has integer vertices $\forall b \in \mathbb{Z}^m$.

Theorem (Hoffman-Kruskal, 1956): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow The feasible region: $\{x \in \mathbb{R}^n | Ax \leq b, x \geq 0\}$ has integer vertices $\forall b \in \mathbb{Z}^m$.

$$x_1, x_2 \in \mathbb{Z}$$

Objective: $\min x_1 + x_2$

Subject to: $x_1 + x_2 \le 1$

 $x_1 - x_2 \le 1$

 $x_1, x_2 \ge 0$

Theorem (Hoffman-Kruskal, 1956): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow The feasible region: $\{x \in \mathbb{R}^n | Ax \leq b, x \geq 0\}$ has integer vertices $\forall b \in \mathbb{Z}^m$.

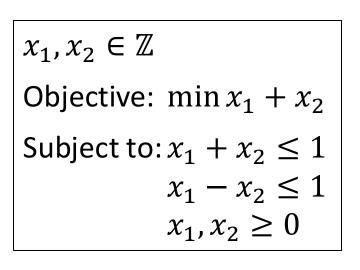
$$\begin{array}{c} x_{1}, x_{2} \in \mathbb{Z} \\ \text{Objective: } \min x_{1} + x_{2} \\ \text{Subject to: } x_{1} + x_{2} \leq 1 \\ x_{1} - x_{2} \leq 1 \\ x_{1}, x_{2} \geq 0 \end{array} \qquad A = \begin{array}{c} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{array} \begin{array}{c} 1 & 1 \\ 1 & -1 \\ -1 & 0 \\ 0 & -1 \end{array} \right]$$

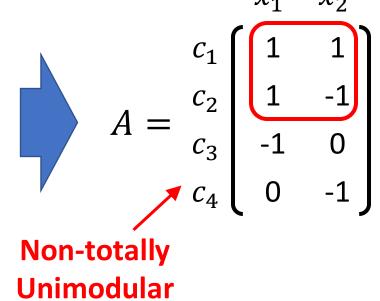
Theorem (Hoffman-Kruskal, 1956): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow The feasible region: $\{x \in \mathbb{R}^n | Ax \leq b, x \geq 0\}$ has integer vertices $\forall b \in \mathbb{Z}^m$.

$$\begin{array}{c} x_1, x_2 \in \mathbb{Z} \\ \text{Objective: } \min x_1 + x_2 \\ \text{Subject to: } x_1 + x_2 \leq 1 \\ x_1 - x_2 \leq 1 \\ x_1, x_2 \geq 0 \end{array} \qquad A = \begin{array}{c} c_1 \\ c_2 \\ c_3 \\ c_4 \end{array} \begin{array}{c} 1 & 1 \\ 1 & -1 \\ -1 & 0 \\ 0 & -1 \end{array}$$

determinant = -2

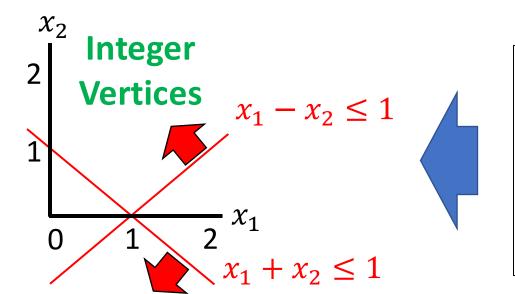
Theorem (Hoffman-Kruskal, 1956): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow The feasible region: $\{x \in \mathbb{R}^n | Ax \leq b, x \geq 0\}$ has integer vertices $\forall b \in \mathbb{Z}^m$.



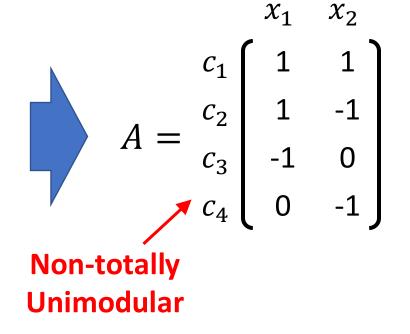


determinant = -2

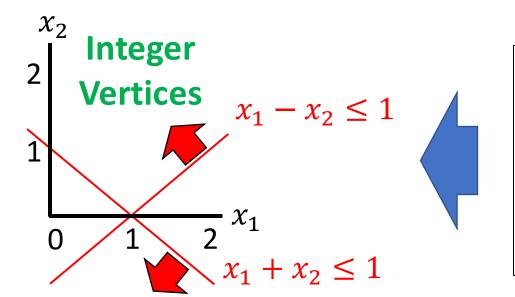
Theorem (Hoffman-Kruskal, 1956): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow The feasible region: $\{x \in \mathbb{R}^n | Ax \leq b, x \geq 0\}$ has integer vertices $\forall b \in \mathbb{Z}^m$.



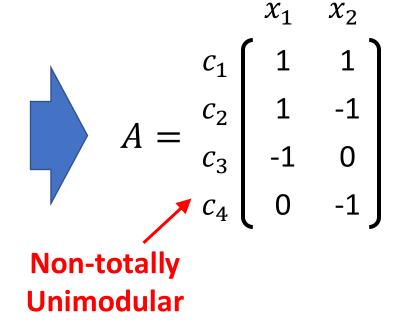
$$x_1, x_2 \in \mathbb{Z}$$
Objective: $\min x_1 + x_2$
Subject to: $x_1 + x_2 \le 1$
 $x_1 - x_2 \le 1$
 $x_1, x_2 \ge 0$

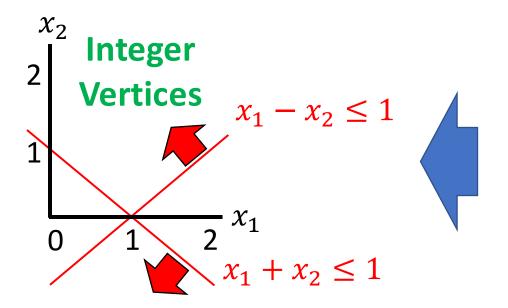


Theorem (Hoffman-Kruskal, 1956): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow The feasible region: $\{x \in \mathbb{R}^n | Ax \leq b, x \geq 0\}$ has integer vertices $\forall b \in \mathbb{Z}^m$.

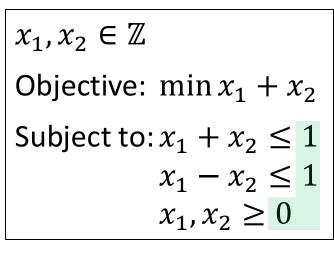


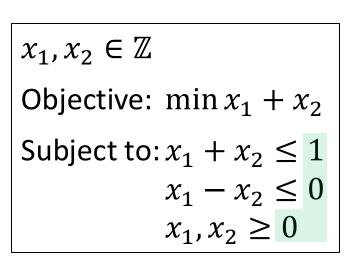
 $x_1, x_2 \in \mathbb{Z}$ Objective: $\min x_1 + x_2$ Subject to: $x_1 + x_2 \le 1$ $x_1 - x_2 \le 1$ $x_1, x_2 \ge 0$

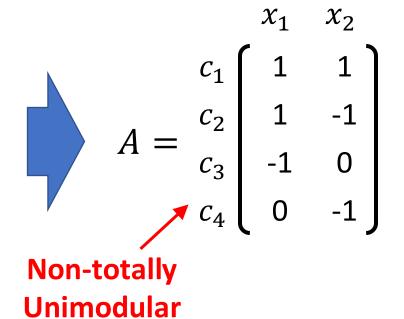




Theorem (Hoffman-Kruskal, 1956): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow The feasible region: $\{x \in \mathbb{R}^n | Ax \leq b, x \geq 0\}$ has integer vertices $\forall b \in \mathbb{Z}^m$.

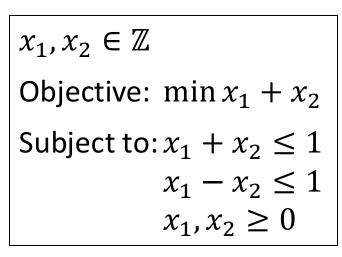


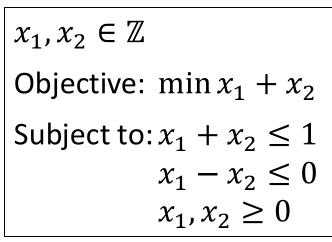


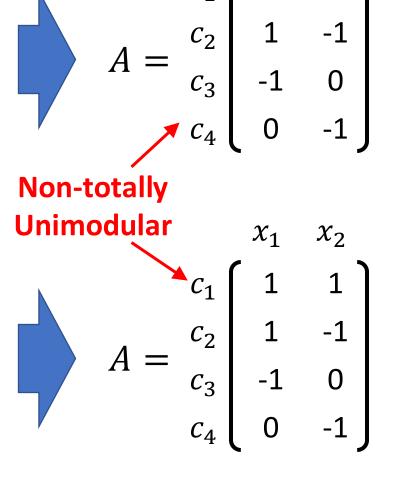


Integer Vertices $x_1 - x_2 \le 1$ $x_1 - x_2 \le 1$ $x_1 + x_2 \le 1$

Theorem (Hoffman-Kruskal, 1956): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow The feasible region: $\{x \in \mathbb{R}^n | Ax \leq b, x \geq 0\}$ has integer vertices $\forall b \in \mathbb{Z}^m$.







 x_2

Theorem (Hoffman-Kruskal, 1956): $A \in \mathbb{R}^{m \times n}$ is totally unimodular \Leftrightarrow The feasible region: $\{x \in \mathbb{R}^n | Ax \leq b, x \geq 0\}$ has integer vertices $\forall b \in \mathbb{Z}^m$.

