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Solving ILPs

𝑥1, 𝑥2 ∈ ℤ

Objective: min 𝑥1 + 𝑥2

Subject to: 𝑥1 ≤ 1
    𝑥2 ≤ 1
    𝑥1, 𝑥2 ≥ 0

Can we optimally solve this ILP?
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Solving ILPs

𝑥1, 𝑥2 ∈ ℤ

Objective: min −
𝜋

2
𝑥1 +

log 2

𝑒
𝑥2 +

32

17

Subject to: 𝑥1 ≤ 1
    𝑥2 ≤ 1
    𝑥1, 𝑥2 ≥ 0

Can we optimally solve this ILP?

 Why?
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𝒙𝟏 ≤ 𝟏

If all feasible region 
vertices are integer-valued, 
an optimal solution is 
integer-valued, regardless 
of the objective function.



Vertex Cover

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min σ𝑖 𝑥𝑖
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General Graphs: NP-Hard



Vertex Cover in Trees 
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

If a is not in a minimum VC

𝑓(𝑎) = 2 + 𝑓(𝑑) + 𝑓(𝑒) + 𝑓(𝑓)

𝑓 𝑣 = min 1 + ෍

𝑢∈child(𝑣)

𝑓(𝑢) , child(𝑣) + ෍

𝑤∈grandchild(𝑣)

𝑓(𝑤)

l So, which is it?
     The smallest!
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Vertex Cover

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

General Graphs: NP-Hard
Trees: 𝑂(𝑛)

But they all use 
the same ILP!

Goal: Find some property of special ILPs that 
give them integer-vertexed feasible regions.
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Total Unimodularity

Definition: A matrix is totally unimodular if the determinant of any 
square submatrix of it is 0, 1, or −1.

𝐴 ∈ ℝ𝑚×𝑛 is 
totally unimodular

The feasible region: 
{𝑥 ∈ ℝ𝑛|𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} has 
integer vertices ∀𝑏 ∈ ℤ𝑚.

Theorem (Hoffman-Kruskal, 1956):
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Total Unimodularity

Definition: A matrix is totally unimodular if the determinant of any 
square submatrix of it is 0, 1, or −1.

Objective: max cT 
x

Subject to: A x ≤ b
    x ≥ 0

If A is totally unimodular, the ILP 
can be solved in polynomial time!
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Total Unimodularity

Definition: A matrix is totally unimodular if the determinant of any 
square submatrix of it is 0, 1, or −1.

For every subset of rows 𝑅, there is a partition 
𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1

Theorem (Ghouila-Houri, 1962):

𝐴 ∈ ℝ𝑚×𝑛 is 
totally unimodular

⇔

𝐴 ∈ ℝ𝑚×𝑛 is 
totally unimodular

The feasible region: 
{𝑥 ∈ ℝ𝑛|𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} has 
integer vertices ∀𝑏 ∈ ℤ𝑚.

Theorem (Hoffman-Kruskal, 1956):

⇔



Vertex Cover

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover

Objective: max cT 
x

Subject to: A x ≤ b
    x ≥ 0

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

For every subset of rows 𝑅, there is a partition 
𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1

Theorem (Ghouila-Houri, 1962):

𝐴 ∈ ℝ𝑚×𝑛 is 
totally unimodular

⇔
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Objective: max cT 
x

Subject to: A x ≤ b
    x ≥ 0

𝐴 =  ??

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover

𝑣1

𝑣3

𝑣4

𝑣2

𝑣5

𝑣6

𝑒1 𝑒2

𝑒3 𝑒4

𝑒5

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

Objective: max cT 
x

Subject to: A x ≤ b
    x ≥ 0

𝐴 =

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗
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Objective: max cT 
x

Subject to: A x ≤ b
    x ≥ 0

𝐴 =

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗
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𝑣1

𝑣3

𝑣4

𝑣2

𝑣5

𝑣6

𝑒1 𝑒2

𝑒3 𝑒4

𝑒5

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑒1 1 1 0 0 0 0

𝑒2

𝑒3

𝑒4

𝑒5

Objective: max cT 
x

Subject to: A x ≤ b
    x ≥ 0

𝐴 =

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗
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𝑣1

𝑣3

𝑣4

𝑣2

𝑣5

𝑣6

𝑒1 𝑒2

𝑒3 𝑒4

𝑒5

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑒1 1 1 0 0 0 0

𝑒2 1 0 1 0 0 0

𝑒3

𝑒4

𝑒5

Objective: max cT 
x

Subject to: A x ≤ b
    x ≥ 0

𝐴 =

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗
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𝑣1
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𝑣2

𝑣5

𝑣6

𝑒1 𝑒2

𝑒3 𝑒4

𝑒5

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑒1 1 1 0 0 0 0

𝑒2 1 0 1 0 0 0

𝑒3 0 0 1 1 0 0

𝑒4 0 0 1 0 1 0

𝑒5 0 0 0 0 1 1

Objective: max cT 
x

Subject to: A x ≤ b
    x ≥ 0

𝐴 =

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑒1 1 1 0 0 0 0

𝑒2 1 0 1 0 0 0

𝑒3 0 0 1 1 0 0

𝑒4 0 0 1 0 1 0

𝑒5 0 0 0 0 1 1

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1

𝐴 =



Total Unimodularity

Definition: A matrix is totally unimodular if the determinant of any 
square submatrix of it is 0, 1, or −1.

This implies that totally unimodular matrices 
are composed of only 0’s, 1’s, and -1’s, since 
single elements are square submatrices.

It also means that if 𝑨 is totally unimodular, 𝑨T 

is too, since det 𝑩  = det 𝑩T .



Vertex Cover

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑒1 1 1 0 0 0 0

𝑒2 1 0 1 0 0 0

𝑒3 0 0 1 1 0 0

𝑒4 0 0 1 0 1 0

𝑒5 0 0 0 0 1 1

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝑥1 1 1 0 0 0

𝑥2 1 0 0 0 0

𝑥3 0 1 1 1 0

𝑥4 0 0 1 0 0

𝑥5 0 0 0 1 1

𝑥6 0 0 0 0 1

𝐴 = 𝐴T =



Vertex Cover

𝐴T =

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1
𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝑥1 1 1 0 0 0

𝑥2 1 0 0 0 0

𝑥3 0 1 1 1 0

𝑥4 0 0 1 0 0

𝑥5 0 0 0 1 1

𝑥6 0 0 0 0 1



Vertex Cover

𝐴T =

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1
𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝑥1 1 1 0 0 0

𝑥2 1 0 0 0 0

𝑥3 0 1 1 1 0

𝑥4 0 0 1 0 0

𝑥5 0 0 0 1 1

𝑥6 0 0 0 0 1

𝑣1

𝑣3

𝑣4

𝑣2

𝑣5

𝑣6

𝑒1 𝑒2

𝑒3 𝑒4

𝑒5

Label alternating generations of vertices 
into two sets 𝐵 and 𝐺.
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𝐴T =

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1
𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝒙𝟏 1 1 0 0 0

𝑥2 1 0 0 0 0

𝑥3 0 1 1 1 0

𝑥4 0 0 1 0 0

𝑥5 0 0 0 1 1

𝑥6 0 0 0 0 1
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𝑣4

𝑣2

𝑣5
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𝑒1 𝑒2

𝑒3 𝑒4

𝑒5

Label alternating generations of vertices 
into two sets 𝐵 and 𝐺.
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𝐴T =

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1
𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝒙𝟏 1 1 0 0 0

𝒙𝟐 1 0 0 0 0

𝒙𝟑 0 1 1 1 0

𝑥4 0 0 1 0 0

𝑥5 0 0 0 1 1

𝑥6 0 0 0 0 1

𝑣1

𝑣3

𝑣4

𝑣2

𝑣5

𝑣6

𝑒1 𝑒2

𝑒3 𝑒4

𝑒5

Label alternating generations of vertices 
into two sets 𝐵 and 𝐺.
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𝐴T =

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1
𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝒙𝟏 1 1 0 0 0

𝒙𝟐 1 0 0 0 0

𝒙𝟑 0 1 1 1 0

𝒙𝟒 0 0 1 0 0

𝒙𝟓 0 0 0 1 1

𝑥6 0 0 0 0 1

𝑣1

𝑣3

𝑣4

𝑣2

𝑣5

𝑣6

𝑒1 𝑒2

𝑒3 𝑒4

𝑒5

Label alternating generations of vertices 
into two sets 𝐵 and 𝐺.
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𝐴T =

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1
𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝒙𝟏 1 1 0 0 0

𝒙𝟐 1 0 0 0 0

𝒙𝟑 0 1 1 1 0

𝒙𝟒 0 0 1 0 0

𝒙𝟓 0 0 0 1 1

𝒙𝟔 0 0 0 0 1

𝑣1

𝑣3

𝑣4

𝑣2

𝑣5

𝑣6

𝑒1 𝑒2

𝑒3 𝑒4

𝑒5

Label alternating generations of vertices 
into two sets 𝐵 and 𝐺.
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𝐴T =

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
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We need to partition 𝑅 such that it is roughly ‘balanced’.
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How?

All we need is for the 𝐵 vertices to go on one side of the 
partition and for the 𝐺 vertices to go on the other.
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𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝒙𝟏 1 1 0 0 0

𝒙𝟐 1 0 0 0 0

𝒙𝟑 0 1 1 1 0

𝒙𝟒 0 0 1 0 0

𝒙𝟓 0 0 0 1 1

𝒙𝟔 0 0 0 0 1

Label alternating generations of vertices 
into two sets 𝐵 and 𝐺. Consider a subset 

of rows of 𝐴T. Partition 𝑅 into 𝑅1 = 𝑅 ∩
𝐵 and 𝑅2 = 𝑅 ∩ 𝐺. 

෍

𝑣∈𝑅1

𝐴𝑣𝑒 ∈ 0,1  and ෍

𝑣∈𝑅2

𝐴𝑣𝑒 ∈ 0,1 ⇒ ෍

𝑣∈𝑅1

𝐴𝑣𝑒 − ෍

𝑣∈𝑅2

𝐴𝑣𝑒 ∈ −1,0,1



Vertex Cover

𝐴T =

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1

For any column of 𝐴T, which corresponds to an edge 𝑒,

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝒙𝟏 1 1 0 0 0

𝒙𝟐 1 0 0 0 0

𝒙𝟑 0 1 1 1 0

𝒙𝟒 0 0 1 0 0

𝒙𝟓 0 0 0 1 1

𝒙𝟔 0 0 0 0 1

Label alternating generations of vertices 
into two sets 𝐵 and 𝐺. Consider a subset 

of rows of 𝐴T. Partition 𝑅 into 𝑅1 = 𝑅 ∩
𝐵 and 𝑅2 = 𝑅 ∩ 𝐺. 

෍

𝑣∈𝑅1

𝐴𝑣𝑒 ∈ 0,1  and ෍

𝑣∈𝑅2

𝐴𝑣𝑒 ∈ 0,1 ⇒ ෍

𝑣∈𝑅1

𝐴𝑣𝑒 − ෍

𝑣∈𝑅2

𝐴𝑣𝑒 ∈ −1,0,1

Therefore, 𝑨T 
and 𝑨 are totally 
unimodular.
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Objective: max cT 
x

Subject to: A x ≤ b
    x ≥ 0

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

∴ The Vertex Cover ILP will be solved in 
polynomial time when the graph is a tree.

𝐴 ∈ ℝ𝑚×𝑛 is 
totally unimodular

The feasible region: 
{𝑥 ∈ ℝ𝑛|𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} has 
integer vertices ∀𝑏 ∈ ℤ𝑚.

Theorem (Hoffman-Kruskal, 1956):

⇔



Vertex Cover

𝐴T =

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1

For any column of 𝐴T, which corresponds to an edge 𝑒,

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝒙𝟏 1 1 0 0 0

𝒙𝟐 1 0 0 0 0

𝒙𝟑 0 1 1 1 0

𝒙𝟒 0 0 1 0 0

𝒙𝟓 0 0 0 1 1

𝒙𝟔 0 0 0 0 1

Label alternating generations of vertices 
into two sets 𝐵 and 𝐺. Consider a subset 

of rows of 𝐴T. Partition 𝑅 into 𝑅1 = 𝑅 ∩
𝐵 and 𝑅2 = 𝑅 ∩ 𝐺. 

෍

𝑣∈𝑅1

𝐴𝑣𝑒 ∈ 0,1  and ෍

𝑣∈𝑅2

𝐴𝑣𝑒 ∈ 0,1 ⇒ ෍

𝑣∈𝑅1

𝐴𝑣𝑒 − ෍

𝑣∈𝑅2

𝐴𝑣𝑒 ∈ −1,0,1

Does this work 
for any other 
special graphs 
beyond trees?
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𝐴T =

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1

For any column of 𝐴T, which corresponds to an edge 𝑒,

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝒙𝟏 1 1 0 0 0

𝒙𝟐 1 0 0 0 0

𝒙𝟑 0 1 1 1 0

𝒙𝟒 0 0 1 0 0

𝒙𝟓 0 0 0 1 1

𝒙𝟔 0 0 0 0 1

Label alternating generations of vertices 
into two sets 𝐵 and 𝐺. Consider a subset 

of rows of 𝐴T. Partition 𝑅 into 𝑅1 = 𝑅 ∩
𝐵 and 𝑅2 = 𝑅 ∩ 𝐺. 

෍

𝑣∈𝑅1

𝐴𝑣𝑒 ∈ 0,1  and ෍

𝑣∈𝑅2

𝐴𝑣𝑒 ∈ 0,1 ⇒ ෍

𝑣∈𝑅1

𝐴𝑣𝑒 − ෍

𝑣∈𝑅2

𝐴𝑣𝑒 ∈ −1,0,1

Does this work 
for any other 
special graphs 
beyond trees?

Bipartitie!



Vertex Cover

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

General Graphs: NP-Hard
Trees: 𝑂(𝑛)
Bipartite: Polynomial

But they all use 
the same ILP!



Vertex Cover
Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1
(General Graph)

𝑣1 𝑣3

𝑣4

𝑣2

𝑒2 𝑒5

𝑒4

𝑒3𝑒1



Vertex Cover

𝑥1 𝑥2 𝑥3 𝑥4

𝑒1 1 1 0 0

𝑒2 1 0 0 1

𝑒3 0 1 1 0

𝑒4 0 1 0 1

𝑒5 0 0 1 1

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1

𝐴 =

(General Graph)

𝑣1 𝑣3

𝑣4

𝑣2

𝑒2 𝑒5

𝑒4

𝑒3𝑒1



Vertex Cover

𝑥1 𝑥2 𝑥3 𝑥4

𝑒1 1 1 0 0

𝑒2 1 0 0 1

𝑒3 0 1 1 0

𝑒4 0 1 0 1

𝑒5 0 0 1 1

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝑥1 1 1 0 0 0

𝑥2 1 0 1 1 0

𝑥3 0 0 1 0 1

𝑥4 0 1 0 1 1

𝐴T =𝐴 =

(General Graph)

𝑣1 𝑣3

𝑣4

𝑣2

𝑒2 𝑒5

𝑒4

𝑒3𝑒1



Vertex Cover

𝑣1 𝑣3

𝑣4

𝑣2

𝑒2 𝑒5

𝑒4

𝑒3𝑒1

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1
(General Graph)

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝑥1 1 1 0 0 0

𝑥2 1 0 1 1 0

𝑥3 0 0 1 0 1

𝑥4 0 1 0 1 1

𝐴T =

Where is the contradiction 
with Ghouila-Houri?
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𝑣1 𝑣3

𝑣4

𝑣2

𝑒2 𝑒5

𝑒4

𝑒3𝑒1

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1
(General Graph)

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝑥1 1 1 0 0 0

𝑥2 1 0 1 1 0

𝑥3 0 0 1 0 1

𝑥4 0 1 0 1 1

𝐴T =

Where is the contradiction 
with Ghouila-Houri?



Vertex Cover

𝑣1 𝑣3

𝑣4

𝑣2

𝑒2 𝑒5

𝑒4

𝑒3𝑒1

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1
(General Graph)

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝑥1 1 1 0 0 0

𝑥2 1 0 1 1 0

𝑥3 0 0 1 0 1

𝑥4 0 1 0 1 1

𝐴T =

Where is the contradiction 
with Ghouila-Houri?

𝑥1 and 𝑥2 have to be on 
different sides of the 
partition. 
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𝑣1 𝑣3

𝑣4

𝑣2

𝑒2 𝑒5

𝑒4

𝑒3𝑒1

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1
(General Graph)

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝑥1 1 1 0 0 0

𝑥2 1 0 1 1 0

𝑥3 0 0 1 0 1

𝑥4 0 1 0 1 1

𝐴T =

Where is the contradiction 
with Ghouila-Houri?

𝑥1 and 𝑥2 have to be on 
different sides of the 
partition. 

𝑅1 = 𝑥1

𝑅2 = 𝑥2
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𝑣1 𝑣3

𝑣4

𝑣2

𝑒2 𝑒5

𝑒4

𝑒3𝑒1

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1
(General Graph)

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝑥1 1 1 0 0 0

𝑥2 1 0 1 1 0

𝑥3 0 0 1 0 1

𝑥4 0 1 0 1 1

𝐴T =

Where is the contradiction 
with Ghouila-Houri?

𝑥1 and 𝑥2 have to be on 
different sides of the 
partition. 

𝑅1 = 𝑥1, 𝑥4

𝑅2 = 𝑥2

𝑅1 = 𝑥1

𝑅2 = 𝑥2, 𝑥4
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𝑣1 𝑣3

𝑣4

𝑣2

𝑒2 𝑒5

𝑒4

𝑒3𝑒1

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1
(General Graph)

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝑥1 1 1 0 0 0

𝑥2 1 0 1 1 0

𝑥3 0 0 1 0 1

𝑥4 0 1 0 1 1

𝐴T =

Where is the contradiction 
with Ghouila-Houri?

𝑥1 and 𝑥2 have to be on 
different sides of the 
partition. 

𝑅1 = 𝑥1, 𝑥4

𝑅2 = 𝑥2

Column 𝒆𝟐 
sums to 2.

𝑅1 = 𝑥1

𝑅2 = 𝑥2, 𝑥4
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𝑣1 𝑣3

𝑣4

𝑣2

𝑒2 𝑒5

𝑒4

𝑒3𝑒1

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1
(General Graph)

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝑥1 1 1 0 0 0

𝑥2 1 0 1 1 0

𝑥3 0 0 1 0 1

𝑥4 0 1 0 1 1

𝐴T =

Where is the contradiction 
with Ghouila-Houri?

𝑥1 and 𝑥2 have to be on 
different sides of the 
partition. 

𝑅1 = 𝑥1, 𝑥4

𝑅2 = 𝑥2

Column 𝒆𝟐 
sums to 2.

𝑅1 = 𝑥1

𝑅2 = 𝑥2, 𝑥4

Column 𝒆𝟒 
sums to -2.
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𝑣1 𝑣3

𝑣4

𝑣2

𝑒2 𝑒5

𝑒4

𝑒3𝑒1

Theorem (Ghouila-Houri, 1962): 𝐴 ∈ ℝ𝑚×𝑛 is totally 
unimodular ⇔ For every subset of rows 𝑅, there is a 
partition 𝑅 = 𝑅1 ∪ 𝑅2 such that for every column 𝑗,

෍

𝑖∈𝑅1

𝐴𝑖𝑗 − ෍

𝑖∈𝑅2

𝐴𝑖𝑗 ∈ −1,0,1
(General Graph)

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝑥1 1 1 0 0 0

𝑥2 1 0 1 1 0

𝑥3 0 0 1 0 1

𝑥4 0 1 0 1 1

𝐴T =

Where is the contradiction 
with Ghouila-Houri?

𝑥1 and 𝑥2 have to be on 
different sides of the 
partition. 

𝑅1 = 𝑥1, 𝑥4

𝑅2 = 𝑥2

Column 𝒆𝟐 
sums to 2.

𝑅1 = 𝑥1

𝑅2 = 𝑥2, 𝑥4

Column 𝒆𝟒 
sums to -2.

No such partition 

exists, so 𝑨T and 
𝑨 are not totally 
unimodular.



Final Notes
Theorem (Hoffman-Kruskal, 1956): 𝐴 ∈ ℝ𝑚×𝑛 is 
totally unimodular ⇔ The feasible region: {𝑥 ∈
ℝ𝑛|𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} has integer vertices ∀𝑏 ∈ ℤ𝑚.

Total unimodularity is not the only route to an integer-vertexed feasible region.



Final Notes
Theorem (Hoffman-Kruskal, 1956): 𝐴 ∈ ℝ𝑚×𝑛 is 
totally unimodular ⇔ The feasible region: {𝑥 ∈
ℝ𝑛|𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} has integer vertices ∀𝑏 ∈ ℤ𝑚.

𝑥1, 𝑥2 ∈ ℤ

Objective: min 𝑥1 + 𝑥2

Subject to: 𝑥1 + 𝑥2 ≤ 1
   𝑥1 − 𝑥2 ≤ 1
   𝑥1, 𝑥2 ≥ 0

Total unimodularity is not the only route to an integer-vertexed feasible region.



Final Notes
Theorem (Hoffman-Kruskal, 1956): 𝐴 ∈ ℝ𝑚×𝑛 is 
totally unimodular ⇔ The feasible region: {𝑥 ∈
ℝ𝑛|𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} has integer vertices ∀𝑏 ∈ ℤ𝑚.

𝑥1, 𝑥2 ∈ ℤ

Objective: min 𝑥1 + 𝑥2

Subject to: 𝑥1 + 𝑥2 ≤ 1
   𝑥1 − 𝑥2 ≤ 1
   𝑥1, 𝑥2 ≥ 0

𝑥1 𝑥2

𝑐1 1 1

𝑐2 1 -1

𝑐3 -1 0

𝑐4 0 -1

𝐴 =

Total unimodularity is not the only route to an integer-vertexed feasible region.



Final Notes
Theorem (Hoffman-Kruskal, 1956): 𝐴 ∈ ℝ𝑚×𝑛 is 
totally unimodular ⇔ The feasible region: {𝑥 ∈
ℝ𝑛|𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} has integer vertices ∀𝑏 ∈ ℤ𝑚.

𝑥1, 𝑥2 ∈ ℤ

Objective: min 𝑥1 + 𝑥2

Subject to: 𝑥1 + 𝑥2 ≤ 1
   𝑥1 − 𝑥2 ≤ 1
   𝑥1, 𝑥2 ≥ 0

𝑥1 𝑥2

𝑐1 1 1

𝑐2 1 -1

𝑐3 -1 0

𝑐4 0 -1

𝐴 =

Total unimodularity is not the only route to an integer-vertexed feasible region.

determinant = -2



Final Notes
Theorem (Hoffman-Kruskal, 1956): 𝐴 ∈ ℝ𝑚×𝑛 is 
totally unimodular ⇔ The feasible region: {𝑥 ∈
ℝ𝑛|𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} has integer vertices ∀𝑏 ∈ ℤ𝑚.

𝑥1, 𝑥2 ∈ ℤ

Objective: min 𝑥1 + 𝑥2

Subject to: 𝑥1 + 𝑥2 ≤ 1
   𝑥1 − 𝑥2 ≤ 1
   𝑥1, 𝑥2 ≥ 0

𝑥1 𝑥2

𝑐1 1 1

𝑐2 1 -1

𝑐3 -1 0

𝑐4 0 -1

𝐴 =

Total unimodularity is not the only route to an integer-vertexed feasible region.

determinant = -2

Non-totally 
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