Integer Linear Programming
CSCI 532
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Solving ILPs

X1, Xy € Z
Objective: min — 5%

Subjectto: x; <1

Can we optimally solve this ILP?

Why?

0 1 2

If all feasible region
vertices are integer-valued,
an optimal solution is
integer-valued, regardless
of the objective function.
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x; € {0,1} = Indicates if vertex i is selected.
Objective: min };; x;

Subject to: x; +x; = 1, for each edge e = (i, )




Vertex Cover

x; € {0,1} = Indicates if vertex i is selected.
Objective: min };; x;

Subject to: x; +x; = 1, for each edge e = (i, )

General Graphs: NP-Hard



Vertex Cover In Trees

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let f(v) = Size of minimum vertex cover rooted at v.

If ais in @ minimum VC
(D f@=1+f(b)+f(c)
ity If ais not in a minimum VC

S0, Which 17— £(0) _ 3.+ £(d) 4 £(e) + £
/The smallest!

f(v) = mm{l + f(uw), |child(v)| + Z f(W)}
uechild@) wegrandchild@)



Vertex Cover

x; € {0,1} = Indicates if vertex i is selected.
Objective: min };; x;

Subject to: x; +x; = 1, for each edge e = (i, )

General Graphs: NP-Hard
Trees: O(n)
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Vertex Cover

x; € {0,1} = Indicates if vertex i is selected.

Objective: min };; x;

Subject to: x; +x; = 1, for each edge e = (i, )

But they all use General Graphs: NP-Hard
the same ILP! Trees: O(n)

Goal: Find some property of special ILPs that
give them integer-vertexed feasible regions.
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Total Unimodularity

Definition: A matrix is totally unimodular if the determinant of any
square submatrix of itis 0, 1, or -1.

Theorem (Hoffman-Kruskal, 1956):
A € RMXN i The feasible region:
< {x € R""Ax < b,x = 0} has

totally unimodular . .
integer vertices Vb € Z™.

Objective: maxc'x
Subjectto: Ax<b
X =0

If A is totally unimodular, the ILP
can be solved in polynomial time!




Total Unimodularity

Definition: A matrix is totally unimodular if the determinant of any
square submatrix of itis 0, 1, or -1.

Theorem (Hoffman-Kruskal, 1956):
A € RMXN i The feasible region:
< {x € R""Ax < b,x = 0} has

totally unimodular . .
integer vertices Vb € Z™.
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Total Unimodularity

Definition: A matrix is totally unimodular if the determinant of any
square submatrix of itis 0, 1, or -1.

Theorem (Hoffman-Kruskal, 1956):
A € RMXN i The feasible region:
< {x € R""Ax < b,x = 0} has

totally unimodular . .
integer vertices Vb € Z™.

Theorem (Ghouila-Houri, 1962):
For every subset of rows R, there is a partition

A€ RM*" s R = Ry U R, such that for every column j,
. &
totally unimodular z Ay — Z 4, €{-1,0,1]

i{€ER, iER,
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Objective: min };; x; Subjectto: Ax<b
x=0

Subject to: x; +x; = 1, for each edge e = (i, )

Theorem (Ghouila-Houri, 1962):
For every subset of rows R, there is a partition

A€ RM*" s R = Ry U R, such that for every column j,
. &
totally unimodular z Ay — Z 4, €{-1,0,1]

i{€ER, iER,



Vertex Cover

x; € {0,1} = Indicates if vertex i is selected.
Objective: min };; x;

Subject to: x; +x; = 1, for each edge e = (i, )

Objective:

Subject to:

max c' x
Ax<b
x=0




Vertex Cover

x; € {0,1} = Indicates if vertex i is selected.

Objective: min };; x;

Subject to: x; +x; = 1, for each edge e = (i, )
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Objective: maxc'x
Subjectto: Ax<Db
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\
y




Vertex Cover

x; € {0,1} = Indicates if vertex i is selected.

Objective: min };; x;

Subject to: x; +x; = 1, for each edge e = (i, )

Objective: maxc'x
Subjectto: Ax<Db
x>0
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Vertex Cover
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Objective: min };; x;

Subject to: x; +x; = 1, for each edge e = (i, )
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Vertex Cover

x; € {0,1} = Indicates if vertex i is selected.

Objective: min };; x;

Subject to: x; +x; = 1, for each edge e = (i, )
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Vertex Cover

x; € {0,1} = Indicates if vertex i is selected.

Objective: min };; x;

Subject to: x; +x; = 1, for each edge e = (i, )

Objective: maxc'x
Subjectto: Ax<Db
X =0
X2 X3 Xy X5 Xg
1 0 0 0 0
O 1 0 0 O
O 1 1 0 O
o 1 0 1 O
o 0 O 1 1 )




Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

\/e rtex COve 0 unimodular & For every subset of rows R, there is a
partition R = R; U R, such that for every column j,

> A=) Ay e{-101)

i€ER, i€R,

e, (1 1 0 0 0 0)
e, |1 0 1 0 0 o
— e |0 0 1 1 0 o0
e, |0 0o 1 0 1 o0
el 0 0 0 0 1 1




Total Unimodularity

It also means that if A is totally unimodular, AT
is too, since det(B) = det(BT).



Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

\/e rtex COve 0 unimodular & For every subset of rows R, there is a
partition R = R; U R, such that for every column j,

> A=) Ay e{-101)

{ER4 iER,
e, €, €3 ey es
X1 X2 X3 Xg X5 Xg

- < xx (1 1 0 0 0)

e; (1 1 0 0 0 O 0 0 o0 .
X

e, |1 0 1 0 0 o0 201110
X

— e, |0 0 1 1 0 o0 AT=300100
X

e, ] 0O 0 1 0 1 o0 400011
X

es O 0 0 0 1 1, 500001
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Vertex Cover

f
x| 1 1 0 0
x| 1 0 0 0
x| 0 1 1 1
 x, | 0O 0 1 o0
xs | 0 0 0 1
xc | 0 0 0 O

Theorem (Ghouila-Houri, 1962): A € R™*™ js totally
unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,

> A=) Ay e{-101)

{ER, iER,



Theorem (Ghouila-Houri, 1962): A € R™*™ js totally
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partition R = R;{ U R, such that for every column j,
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X5 0 0 0 1 1
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What can we observe about a single column in terms of
0/1 values and B/G labels?
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Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

Vertex Cover unimodular & For every subset of rows R, there is a

partition R = R;{ U R, such that for every column j,
e, e, e3 e, e

- 72 = . N Z Aij — Z A;; €1{-1,0,1}
X1 1 1 0 0 O {ER, iER,
x21 1 0 0 O O
T x| 0 1 1 1 0 Label alternating generations of vertices
A = x|l o o 1 0 o into two sets B and G.

Xs 0 0 0 1 1
X, \ 0 0 0 0 1

What can we observe about a single column in terms of
0/1 values and B/G labels?

Each column has exactly two 1’s (edges are formed by
exactly two vertices) with exactly one B and one G labeled
vertex (generations don’t overlap).



Theorem (Ghouila-Houri, 1962): A € R™*™ js totally
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Vertex Cover
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Theorem (Ghouila-Houri, 1962): A € R™*™ js totally
unimodular & For every subset of rows R, there is a
partition R = R, U for every column j,

€5
\
0
0)
0 Label alternating generations of vertices
0 into two sets B and G. Consider a subset
1 of rows of AT
1 J

We need to partition R such that it is roughly ‘balanced’.
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Theorem (Ghouila-Houri, 1962): A € R™*™ js totally
unimodular & For every subset of rows R, there is a
partition R = R, U for every column j,
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\
0
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0 Label alternating generations of vertices
0 into two sets B and G. Consider a subset
1 of rows of AT
1 J

We need to partition R such that it is roughly ‘balanced’.

How?
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Theorem (Ghouila-Houri, 1962): A € R™*™ js totally
unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,

°5 ~ Z Aij — Z A;; €1{-1,0,1}

{ER, iER,

into two sets B and G. Consider a subset
of rows of AT.

0
0)
0 Label alternating generations of vertices
0)
1
1

We need to partition R such that it is roughly ‘balanced’.
How?

All we need is for the B vertices to go on one side of the
partition and for the G vertices to go on the other.
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We need to partition R such that it is roughly ‘balanced’.
How?

All we need is for the B vertices to go on one side of the
partition and for the G vertices to go on the other.
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Theorem (Ghouila-Houri, 1962): A € R™*™ js totally
unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,

°5 ~ Z Aij — Z A;; €1{-1,0,1}

{ER, iER,

into two sets B and G. Consider a subset

of rows of A'. Partition R into R, =RnN
BandR, =R NG.

0
0)
0 Label alternating generations of vertices
0)
1
1

We need to partition R such that it is roughly ‘balanced’.
How?

All we need is for the B vertices to go on one side of the
partition and for the G vertices to go on the other.
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BandR, =R NG.
% |\ 0 0 0 0 1,

For any column of AT, which corresponds to an edge e,
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Vertex Cover unimodular & For every subset of rows R, there is a
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For any column of AT, which corresponds to an edge e,

> Aue =B

UER]_



Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

Vertex Cover unimodular & For every subset of rows R, there is a
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For any column of AT, which corresponds to an edge e,

Z A,, =7 For a fixed column e, how many
VER, B labeled vertices are there?
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Vertex Cover unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,
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Z Aye €10,1} For a fixed column e, how many
VER, B labeled vertices are there?
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Vertex Cover unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,
e e e e e
1 €2 s & €5 z Ay — Z Ay € {(~1,0,1)
X1 1 1 0 0 O {ER, iER,
x» | 1 0 0 0 O
T x| 0 1 1 1 0 Label alternating generations of vertices
A = x|l o o 1 0 o into two sets B and G. Consider a subset
x| 0 0 0 1 1 of rows of A'. Partition R into Ri=RnN
BandR, =R NG.
% |\ 0 0 0 0 1,

For any column of AT, which corresponds to an edge e,

z A, €1{0,1} and Z A, = ?

UER]_ UERZ



Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

Vertex Cover unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,
e e e e e
1 €2 s & €5 z Ay — Z Ay € {(~1,0,1)
X1 1 1 0 0 O {ER, iER,
x» | 1 0 0 0 O
T x| 0 1 1 1 0 Label alternating generations of vertices
A = x|l o o 1 0 o into two sets B and G. Consider a subset
x| 0 0 0 1 1 of rows of A'. Partition R into Ri=RnN
BandR, =R NG.
% |\ 0 0 0 0 1,

For any column of AT, which corresponds to an edge e,

Z A,. €10,1} and Z Aye = 7 For a fixed column e, how many
VER, VER, G labeled vertices are there?



Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

Vertex Cover unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,
e e e e e
1 €2 s & €5 z Ay — Z Ay € {(~1,0,1)
X1 1 1 0 0 O {ER, iER,
x» | 1 0 0 0 O
T x| 0 1 1 1 0 Label alternating generations of vertices
A = x|l o o 1 0 o into two sets B and G. Consider a subset
x| 0 0 0 1 1 of rows of A'. Partition R into Ri=RnN
BandR, =R NG.
% |\ 0 0 0 0 1,

For any column of AT, which corresponds to an edge e,

Z A,, €1{0,1} and Z A,, €1{0,1} For a fixed column e, how many
VER, VER, G labeled vertices are there?



Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

Vertex Cover unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,
e e e e e
1 €2 s & €5 z Ay — Z Ay € {(~1,0,1)
X1 1 1 0 0 O {ER, iER,
x» | 1 0 0 0 O
T x| 0 1 1 1 0 Label alternating generations of vertices
A = x|l o o 1 0 o into two sets B and G. Consider a subset
x| 0 0 0 1 1 of rows of A'. Partition R into Ri=RnN
BandR, =R NG.
% |\ 0 0 0 0 1,

For any column of AT, which corresponds to an edge e,

z A,, € {01} and Z A, €01} = Z A, — Z A, = ?

UER]_ UERZ VERl UERZ



Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

Vertex Cover unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,
e e e e e
1 €2 s & €5 z Ay — Z Ay € {(~1,0,1)
X1 1 1 0 0 O {ER, iER,
x» | 1 0 0 0 O
T x| 0 1 1 1 0 Label alternating generations of vertices
A = x|l o o 1 0 o into two sets B and G. Consider a subset
x| 0 0 0 1 1 of rows of A'. Partition R into Ri=RnN
BandR, =R NG.
% |\ 0 0 0 0 1,

For any column of AT, which corresponds to an edge e,

z A, €1{0,1} and Z A, €{01} = Z A, — Z A, €{-1,01)
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Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

Vertex Cover unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,
e e e e e
1 €2 s & €5 z Ay — Z Ay € {(~1,0,1)
X1 1 1 0 0 O {ER, iER,
x» | 1 0 0 0 O
T x| 0 1 1 1 0 Label alternating generations of vertices
A’ = x|l o o 1 0 o into two sets B and (. Consider a subset
x| 0 0 0 1 1 of rows of A'. Partition R into Ri=RnN
BandR, =R NG.
% |\ 0 0 0 0 1,
T .
For any column of A", which corresponds to an edge e, Therefore, AT

and A are totally
Z Aye € {0;1} and Z Ay € {0:1} = z Aye — Z Aye € {_1’0’1} unimodular.

UERl UERZ UERl UERZ



Vertex Cover

x; € {0,1} = Indicates if vertex i is selected. Objective: max ¢’ x

Objective: min };; x; Subjectto: Ax<b
x=0

Subject to: x; +x; = 1, for each edge e = (i, )

Theorem (Hoffman-Kruskal, 1956):
A € RMXN i The feasible region:
<  {x € R"Ax < b,x = 0} has

totally unimodular . _
integer vertices Vb € Z™.

. The Vertex Cover ILP will be solved in
polynomial time when the graph is a tree.



Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

Vertex Cover unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,
e e e e e
1 €2 s & €5 z Ay — Z Ay € {(~1,0,1)
X1 1 1 0 0 O {ER, iER,
x» | 1 0 0 0 O
T x| 0 1 1 1 0 Label alternating generations of vertices
A’ = x|l o o 1 0 o into two sets B and G. Consider a subset
x| 0 0 0 1 1 of rows of A'. Partition R into Ri=RnN
BandR, =R NG.
% |\ 0 0 0 0 1,
For any column of AT, which corresponds to an edge e, Does this work

for any other
Z Ave (S {0,1} and Z Ave (S {0,1} = z Ave — Z Ave (S {_1,0,1} Special graphs

VER, VER, VER, VER; beyond trees?




Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

Vertex Cover unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,
e e e e e
1 €2 s & €5 z Ay — Z Ay € {(~1,0,1)
X1 1 1 0 0 O {ER, iER,
x»w| 1 0 0 0 o0 Bipartitie!
T x| 0 1 1 1 0 Label alternating generations of vertices
A’ = x|l o o 1 0 o into two sets B and G. Consider a subset
x| 0 0 0 1 1 of rows of A'. Partition R into Ri=RnN
BandR, =R NG.
% |\ 0 0 0 0 1,
For any column of AT, which corresponds to an edge e, Does this work

for any other
Z Ave (S {0,1} and Z Ave (S {0,1} = z Ave — Z Ave (S {_1,0,1} Special graphs

VER, VER, VER, VER; beyond trees?




Vertex Cover

x; € {0,1} = Indicates if vertex i is selected.

Objective: min };; x;

Subject to: x; +x; = 1, for each edge e = (i, )

But they all use General Graphs: NP-Hard
the same ILP! Trees: O(n)
Bipartite: Polynomial



Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

\/e rtex COve 0 unimodular & For every subset of rows R, there is a
partition R = R; U R, such that for every column j,

> A=) Ay e{-101)

i€ER, i€R,

(General Graph)




Vertex Cover
(General Graph)

X1 Xy

e, (1 1

e; |1 O

= e3 |0 1
e, |0 1

es \0 O

Theorem (Ghouila-Houri, 1962): A € R™*™ js totally
unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,

> A=) Ay e{-101)

i€R, i€R,
X3 Xy
0 0)
0 1
1 0
0 1
11,



Vertex Cover
(General Graph)

O R R O K

Theorem (Ghouila-Houri, 1962): A € R™*™ js totally
unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,

> A=) Ay e{-101)

iER, iER,
X3 X4
0 O\ f1 €2 €3 €4 35\
0 1 1 1 0 0 O
1 0 1 0 1 1 0O
0 1 O 0 1 0 1
Y o 1 0 1 1



Vertex Cover
(General Graph)

. O O B

Theorem (Ghouila-Houri, 1962): A € R™*™ js totally
unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,

> A=) Ay e{-101)

{ER, iER,

) Where is the contradiction
with Ghouila-Houri?

o = = O
_ O —» O



Vertex Cover
(General Graph)

R, O O K-

Theorem (Ghouila-Houri, 1962): A € R™*™ js totally
unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,

> A=) Ay e{-101)

{ER, iER,

) Where is the contradiction
with Ghouila-Houri?

o = = O
R O —» O



Vertex Cover
(General Graph)

R, O O B

Theorem (Ghouila-Houri, 1962): A € R™*™ js totally
unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,

> ay= Y Ay ei-101)

(ER, iER,
€3 €4 €5
0 0 0O Y  Where is the contradiction

: 1 5
1 1 0 with Ghouila-Houri:
1 0 1 x1 and x5, have to be on
o 1 1 different sides of the
>

partition.



Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

\/e rtex COve 0 unimodular & For every subset of rows R, there is a
partition R = R; U R, such that for every column j,

> A=) Ay e{-101)

{ER, iER,

(General Graph)

( )  Where is the contradiction
¥ -2 90 ith Ghouila-Houri?
@ o 1 1 o Wi ouila-Houri*
o 1 0 1 x1 and x5, have to be on
€1 1 o 1 1 different sides of the
N “  partition.
Ry = {x}



Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

Ve rtex COve 0 unimodular & For every subset of rows R, there is a
partition R = R; U R, such that for every column j,

> A=) Ay e{-101)

i€ER, i€R,

(General Graph)

. o o o) Whereisthe contradiction
. 1 5
0 1 1 0 with Ghouila-Houri-:
0 1 0 1 x1 and x5, have to be on
1 0 1 1 different sides of the
“  partition.
= {x1}

R, = {x;} Ry = {x3, x4}



Vertex Cover
(General Graph)

sums to

Ry = {xl,x4}} Column e,

R, = {x;}

2.

R,

Theorem (Ghouila-Houri, 1962): A € R™*™ js totally
unimodular & For every subset of rows R, there is a
partition R = R;{ U R, such that for every column j,

> ay= Y Ay ei-101)

iER, iER,
€3 €4 €5
0 0 0O Y  Where is the contradiction

. 1 5
1 1 0 with Ghouila-Houri:
1 0 1 x1 and x5, have to be on
o 1 1 different sides of the
Z  partition.
= {x4}

RZ — {XZJ X4}



Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

\/e rtex COve 0 unimodular & For every subset of rows R, there is a
partition R = R; U R, such that for every column j,

> A=) Ay e{-101)

i€ER, i€R,

(General Graph)

( )  Where is the contradiction
¥ o ° ith Ghouila-Houri?
Cnl1 o0 1 0 Wi ouila-Houri:
x|l o o 1 1 x1 and x, have to be on
€1 w| 0 1 o0 1 different sides of the
N “  partition.

R ={x1, x4} | column e, Ri= {x1} Column e,
R, = {x,} sumsto2. p = {x, x,}]| sumsto-2.



Theorem (Ghouila-Houri, 1962): A € R™*™ js totally

\/e rtex COve 0 unimodular & For every subset of rows R, there is a
partition R = R; U R, such that for every column j,

> A=) Ay e{-101)

i€ER, i€R,

(General Graph)

( Y\  Where is the contradiction
e, x| 1 1 0 0 O +h Ghouila-H 5
ol o0 11 o wi ouila-Houri:
x|l 0 0 1 0 1 x1 and x, have to be on
€1 w|lo 1 o0 1 1 different sides of the
- “  partition.

No such partition

exists, so AT and
A are not totally
unimodaular.

R ={x1, x4} | column e, Ri= {x1} Column e,
R, = {x,} sumsto2. p = {x, x,}]| sumsto-2.




, Theorem (Hoffman-Kruskal, 1956): A € R™*" js
F| Nda | N otes totally unimodular & The feasible region: {x €
R"™|Ax < b,x = 0} has integer vertices Vb € Z™.

Total unimodularity is not the only route to an integer-vertexed feasible region.



, Theorem (Hoffman-Kruskal, 1956): A € R™*" js
F| Nda | N otes totally unimodular & The feasible region: {x €
R"™|Ax < b,x = 0} has integer vertices Vb € Z™.

X1,Xy € Z
Objective: minx; + x,

Subjectto:x; +x, <1

Total unimodularity is not the only route to an integer-vertexed feasible region.



Theorem (Hoffman-Kruskal, 1956): A € R™*" js

F| N al N otes totally unimodular & The feasible region: {x €
R"™|Ax < b,x = 0} has integer vertices Vb € Z™.
X1 X2
, X5 € Z

A1 X2 | of 1 1°

Objective: minx; + x, ; | 1 -

Subjectto:x; +x, <1 ~ ol 1 o

x1 - Xz S 1

Xl,XZZO €4 . 0 _14

Total unimodularity is not the only route to an integer-vertexed feasible region.



Theorem (Hoffman-Kruskal, 1956): A € R™*" js

F| N al N otes totally unimodular & The feasible region: {x €
R"™|Ax < b,x = 0} has integer vertices Vb € Z™.
X1 X2
, X5 € Z

A1 X2 | a1 1)

Objective: minx; + x, ; o |l1 -1

Subjectto:x; +x, <1 ~ ol 1 o

x1 - xz S 1

xl,xZZO €4 . 0 _14

determinant = -2

Total unimodularity is not the only route to an integer-vertexed feasible region.



Theorem (Hoffman-Kruskal, 1956): A € R™*" js

F| N al N otes totally unimodular & The feasible region: {x €
R"™|Ax < b,x = 0} has integer vertices Vb € Z™.
X1 X2
, X, EZ
A1 X2 | a1 1)
Objective: minx; + x, ; o1 -1
Subjectto:x; +x, <1 ~ ol 1 o
x1 - xz S 1
Xl,XZZO /C4u 0 _14
Non-totally
Unimodular

determinant = -2

Total unimodularity is not the only route to an integer-vertexed feasible region.



Theorem (Hoffman-Kruskal, 1956): A € R™*" js

F| N al N otes totally unimodular & The feasible region: {x €
R"™|Ax < b,x = 0} has integer vertices Vb € Z™.
X2
Integer X1 X2
2 . X1,X2 € Z , N
Vertices <1 ¢l 1 1
N 2 Objective: minx; + x,
i c|l 1 -1
\/ Subjectto:x; +x, <1 A= 1 0
x1 - X2 S 1 O 1
C -
= 4\ y
X1+X2S1 ¥, Xz 2 0 /
Non-totally
Unimodular

Total unimodularity is not the only route to an integer-vertexed feasible region.



Theorem (Hoffman-Kruskal, 1956): A € R™*" js

F| N al N otes totally unimodular & The feasible region: {x €
R"|Ax < b,x = 0} has integer vertices Vb € Z™.
X2
Integer X1 X2
2 . X1,X2 € Z , N
Vertices <1 ¢l 1 1
N 2 Objective: minx; + x,
i c|l 1 -1
\/ Subjectto:x; +x, <1 A= 1 0
x1 - X2 S 1 O 1
C -
= 4\ y
X1+X2S1 ¥, Xz 2 0 /
Non-totally
Unimodular

Total unimodularity is not the only route to an integer-vertexed feasible region.



. Theorem (Hoffman-Kruskal, 1956): A € R™*" js
F| Nd | N otes totally unimodular & The feasible region: {x €
R"|Ax < b,x = 0} has integer vertices Vb € Z™.

X2
Integer 1%z
) . X1,X, € 4 r )
Vertices . <1 . a1 1
2 Objective: minx; + x,
N c;| 1 -1
\/ Subjectto:x; +x, <1 A= 1 0
x1 - X2 S 1 c O _1
x+x <1 X1, %2 2 0 /4“ ’
L7 = Non-totally
Unimodular

X1,Xy € 7
Objective: minx; + x,

Subjectto:x; +x, <1
x1 - xz S 0
X1,X2 =0




Final Notes
X2

Integer
2 Vertices —x, <1
T\ /

x1+x2S1

Theorem (Hoffman-Kruskal, 1956): A € R™*" js
totally unimodular & The feasible region: {x €

R"™|Ax < b,x = 0} has integer vertices Vb € Z™.

X1,Xy € Z
Objective: minx; + x,

Subjectto:x; +x, <1
x1 - xz S 1
X1, X2 >0

X1,Xy € 7
Objective: minx; + x,

Subjectto:x; +x, <1
x1 - xz S 0
X1,X5 =0

Non-totally
Unimodular




. Theorem (Hoffman-Kruskal, 1956): A € R™*" js
F| Nd | N otes totally unimodular & The feasible region: {x €
R"™|Ax < b,x = 0} has integer vertices Vb € Z™.

X2
Integer 1t
2 . xl, xz (S Z r A
Vertices , _ .. _4 . alp o
o 1 2 = Objective: minx; + x,
1 " < I
Subjectto:x; +x, <1 A= cs| -1 0
0 1 5 c,| 0 -1
\X1+X2§1 *1, Xz 2 0 / N J
Non-totally
X7 Unimodular X{ Xy
2 X1 —x =0 X1,Xy € Z \Clr R
} A‘/ Non-integer ObJ.ectlve: min x; + x, . | 1 -1
Vertices Subjectto:x; + x, <1 T | 10
0 1N 2 ° 20 (0 -
W\ x +x, <1 %2 = “ J
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