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𝑥! ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

𝒙𝒊 is 0 or 1, not 0.62

What is this for?



Vertex Cover (VC) 
Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?
𝑥! ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗
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What have we accomplished?



Vertex Cover (VC) 
Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?
𝑥! ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

What have we accomplished?
Solving ILPs is NP-Hard.
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Vertex Cover (VC) 
Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?
𝑥! ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min∑! 𝑥!
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What have we accomplished?
Solving ILPs is NP-Hard.

In general



Vertex Cover (VC) 
Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?
𝑥! ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

Objective: min 𝑥! + 𝑥" + 𝑥# + 𝑥$ + 𝑥%
Subject to:𝑥! + 𝑥" ≥ 1

𝑥! + 𝑥# ≥ 1
𝑥" + 𝑥$ ≥ 1
𝑥# + 𝑥$ ≥ 1
𝑥# + 𝑥% ≥ 1
𝑥$ + 𝑥% ≥ 1
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Optimal Solution:
𝑥! = 0
𝑥" = 1
𝑥# = 1
𝑥$ = 1
𝑥% = 0
Objective = 3
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Vertex Cover (VC) 
Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?
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What happens?
𝑥! = 0.5
𝑥" = 0.5
𝑥# = 0.5
𝑥$ = 0.5
𝑥% = 0.5
Objective = 2.5



ILP vs LP
𝑥! ∈ [0,1] = Indicates if vertex 𝑖 is selected.

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

Optimal:
𝑥# = 0.5
𝑥$ = 0.5
𝑥% = 0.5
𝑥& = 0.5
𝑥' = 0.5
Objective = 2.5
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Since the LP has more options to reduce the objective value, 𝑂𝑃𝑇9: ≤ 𝑂𝑃𝑇;9:
(for a minimization problem). 



ILP vs LP
𝑥! ∈ [0,1] = Indicates if vertex 𝑖 is selected.

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

Optimal:
𝑥# = 0.5
𝑥$ = 0.5
𝑥% = 0.5
𝑥& = 0.5
𝑥' = 0.5
Objective = 2.5

𝑥! ∈ {0,1} = Indicates if vertex 𝑖 is selected.

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

Optimal:
𝑥# = 0
𝑥$ = 1
𝑥% = 1
𝑥& = 1
𝑥' = 0
Objective = 3

Since the LP has more options to reduce the objective value, 𝑂𝑃𝑇9: ≤ 𝑂𝑃𝑇;9:
(for a minimization problem). If the minimum objective value comes from an 
integer solution, a plain LP solver (e.g., Simplex) will find it.



𝑥!, 𝑥" ∈ ℝ

Objective: max5𝑥! + 8𝑥"
Subject to: 𝑥! + 𝑥" ≤ 6

5𝑥! + 9𝑥" ≤ 45
𝑥!, 𝑥" ≥ 0

Why are ILPs hard to solve?
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• Closest integer solution? – Not feasible
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𝑥!, 𝑥" ∈ ℕ

Objective: max5𝑥! + 8𝑥"
Subject to: 𝑥! + 𝑥" ≤ 6

5𝑥! + 9𝑥" ≤ 45
𝑥!, 𝑥" ≥ 0

Why are ILPs hard to solve?

No guarantee that the optimal solution 
is on the feasible region boundary!
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𝑥!, 𝑥" ∈ ℕ

Objective: max5𝑥! + 8𝑥"
Subject to: 𝑥! + 𝑥" ≤ 6

5𝑥! + 9𝑥" ≤ 45
𝑥!, 𝑥" ≥ 0

Integer feasible region:
• Not convex.
• local optimum ≠

global optimum.
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If you had the integer hull, Simplex 
would easily find the optimum. 
Calculating the integer hull is 
usually harder than solving the ILP.



Solving ILPs

How can we solve ILPs?
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2. Solve relaxed LP. Suppose the optimal objective is 
7.4 with an integer solution (i.e., 𝑥! ∈ ℤ, ∀𝑖). 

1. Relax ILP

What 
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Since the relaxed LP has more options to increase the objective value, 
𝑂𝑃𝑇;9: ≤ 𝑂𝑃𝑇9: (for a maximization problem). 

We’ve found 
the optimal!
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3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 

What 
happens?

UB = 100
LB = ?



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℤ, obj = 85

subproblem 2
𝒙 ∈ ℤ, obj = 90

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 

What 
happens?

Optimal

UB = 90
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
UB = 98
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 

So far, we have:
1. Feasible (integer) solution.

UB = 98
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 

So far, we have:
1. Feasible (integer) solution.
2. Upper and lower bounds on optimal.

UB = 98
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 

So far, we have:
1. Feasible (integer) solution.
2. Upper and lower bounds on optimal.

Branch and Bound Plan: Use these to restrict the 
search space and identify optimality.

UB = 98
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2subproblem 1.1

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

UB = 98
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2subproblem 1.1

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 

UB = 98
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 

What 
happens?

UB = ?
LB = ?



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 

What 
happens?

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

subproblem 1.1 is a dead end. 
Prune it and keep going.

UB = 97
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 85

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 

What 
happens?

UB = ?
LB = ?



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 85

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 

What 
happens?

Optimal

UB = 90
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

UB = 97
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.2.1 subproblem 1.2.2

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

UB = 97
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.2.1
𝒙 ∈ ℝ, obj = 94

subproblem 1.2.2
𝒙 ∈ ℤ, obj = 95

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

What 
happens?

UB = ?
LB = ?



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.2.1
𝒙 ∈ ℝ, obj = 94

subproblem 1.2.2
𝒙 ∈ ℤ, obj = 95

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

What 
happens? Optimal

UB = 95
LB = 95



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.2.1
𝒙 ∈ ℝ, obj = 85

subproblem 1.2.2
𝒙 ∈ ℤ, obj = 89

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

What 
happens?

UB = ?
LB = ?



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.2.1
𝒙 ∈ ℝ, obj = 85

subproblem 1.2.2
𝒙 ∈ ℤ, obj = 89

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

What 
happens?

Optimal

UB = 90
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.2.1
𝒙 ∈ ℝ, obj = 89

subproblem 1.2.2
𝒙 ∈ ℝ, obj = 88

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

What 
happens?

UB = ?
LB = ?



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.2.1
𝒙 ∈ ℝ, obj = 89

subproblem 1.2.2
𝒙 ∈ ℝ, obj = 88

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

What 
happens?

Optimal

UB = 90
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.2.1
𝒙 ∈ ℝ, obj = 94

subproblem 1.2.2
𝒙 ∈ ℤ, obj = 88

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

What 
happens?

UB = ?
LB = ?



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.2.1
𝒙 ∈ ℝ, obj = 94

subproblem 1.2.2
𝒙 ∈ ℤ, obj = 88

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

What 
happens?

Need to continue. There 
could be an integer solution 
buried in subproblem 1.2.1 
with a better objective value.

UB = 94
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.2.1
𝒙 ∈ ℝ, obj = 94

subproblem 1.2.2
𝒙 ∈ ℤ, obj = 92

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

What 
happens?

UB = ?
LB = ?



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.2.1
𝒙 ∈ ℝ, obj = 94

subproblem 1.2.2
𝒙 ∈ ℤ, obj = 92

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

What 
happens?

Need to continue. There 
could be an integer solution 
buried in subproblem 1.2.1 
with a better objective value.

UB = 94
LB = 92



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.2.1
𝒙 ∈ ℝ, obj = 85

subproblem 1.2.2
𝒙 ∈ ℤ, obj = 89

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

Optimal

UB = 90
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.2.1
𝒙 ∈ ℝ, obj = 85

subproblem 1.2.2
𝒙 ∈ ℤ, obj = 89

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

Optimal

Is this process guaranteed 
to eventually find the 
optimal integer solution?

UB = 90
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.2.1
𝒙 ∈ ℝ, obj = 85

subproblem 1.2.2
𝒙 ∈ ℤ, obj = 89

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

Optimal

Is this process guaranteed to eventually find 
the optimal integer solution?

Yes, given enough constraints like 𝑥" ≥ 3 and 
𝑥" ≤ 3, all variables will be bounded to their 
optimal integer values.

UB = 90
LB = 90



Solving ILPs
ILP 𝒙 ∈ ℤ → 𝒙 ∈ ℝ

Maximization

LP Relaxation
𝒙 ∈ ℝ, obj = 100

subproblem 1
𝒙 ∈ ℝ, obj = 98

subproblem 2
𝒙 ∈ ℤ, obj = 90

subproblem 1.2
𝒙 ∈ ℝ, obj = 97

subproblem 1.2.1
𝒙 ∈ ℝ, obj = 85

subproblem 1.2.2
𝒙 ∈ ℤ, obj = 89

subproblem 1.1
𝒙 ∈ ℝ, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 
100 with a fractional solution (e.g. some 𝑥! = 3.24).

1. Relax ILP

3. Formulate two new LPs. One with 
𝑥! ≥ 4 and the other with 𝑥! ≤ 3
constraints. 

4. Solve subproblem LPs. 
5. Formulate two new LPs 
that split the subproblem on 
some non-integer variable. 

6. Solve the subproblem LPs. 
7. Repeat. 

Optimal

Is this process guaranteed to eventually find 
the optimal integer solution?

Yes, given enough constraints like 𝑥" ≥ 3 and 
𝑥" ≤ 3, all variables will be bounded to their 
optimal integer values.
Other techniques (cutting planes, intelligently 
picking which 𝑥" to split on) can help speed up 
the process.

UB = 90
LB = 90


