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/ x;is0or1,not0.62

x; € {0,1} = Indicates if vertex i is selected.
Objective: min},; x;

Subject to: x; + x; = 1, for each edge e = (i, )

What is this for?




Vertex Cover (VC)

Vertex Cover: Given graph G = (V, E), find the smallest V' € V such that
each edge in E contains an end point in I/'?

x; € {0,1} = Indicates if vertex i is selected.
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What have we accomplished?



Vertex Cover (VC)

Vertex Cover: Given graph G = (V, E), find the smallest V' € V such that
each edge in E contains an end point in I/'?

x; € {0,1} = Indicates if vertex i is selected.

Objective: min},; x;

Subject to: x; + x; = 1, for each edge e = (i, )

What have we accomplished?
Solving ILPs is NP-Hard.
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Vertex Cover (VC)

Vertex Cover: Given graph G = (V, E), find the smallest V' € V such that
each edge in E contains an end point in I/'?

x; € {0,1} = Indicates if vertex i is selected.

Objective: min},; x;

Subject to: x; + x; = 1, for each edge e = (i, )

What have we accomplished?
Solving ILPs is NP-Hard.

K In general



Vertex Cover (VC)

Vertex Cover: Given graph G = (V, E), find the smallest V' € V such that
each edge in E contains an end point in I/'?

x; € {0,1} = Indicates if vertex i is selected.

Objective: min},; x;

Subject to: x; + x; = 1, for each edge e = (i, )

Objective: minx; + x5 + X3 + x4 + Xx:
. |Subjectto:x; +x, =1
Example: N @
X, +x4 21
X3 + X4 > 1
X3 + X5 >1 @
x4+x5 > 1




Vertex Cover (VC)

Vertex Cover: Given graph G = (V, E), find the smallest V' € V such that
each edge in E contains an end point in I/'?

x; € {0,1} = Indicates if vertex i is selected.
Objective: min},; x;

Subject to: x; + x; = 1, for each edge e = (i, )

Example:

Objective: minx; + x5 + X3 + x4 + Xx:
Subjectto:x; + x, =1

X1 +x3=1

X, +x4 21

X3 + X4 >1

X3 +X5 >1

X4+X5 >1

Optimal Solution:

x1=0
X, =1
x3 =1
X, =1
Xy = 0
Objective =3




Vertex Cover (VC)

Vertex Cover: Given graph G = (V, E), find the smallest V' € V such that

each edge in E contains an end point in V'? What happensp

x; € [0,1] = Indicates if vertex i is selected.

Objective: min},; x;

Subject to: x; + x; = 1, for each edge e = (i, )
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Vertex Cover (VC)

Vertex Cover: Given graph G = (V, E), find the smallest V' € V such that
each edge in E contains an end point in I/'?

What happens?

x; € [0,1] = Indicates if vertex i is selected. x1 = 0.5
L. : xz = 0.5
Objective: min},; x; %z = 0.5
Subjectto: x; +x; = 1, for each edge e = (i, ) i: z 82
Objective: minx; + x5 + X3 + x4 + Xx: Objective = 2.5
Example: Subjectto:x; +x, =1 1
X1 + X3 > 1 O
X9 + X4 > 1
X3 + X4 > 1
X3 + X5 > 1 @
X4 + X5 > 1




ILP vs LP

x; € {0,1} = Indicates if vertex i is selected. x; € [0,1] = Indicates if vertex i is selected.
Objective: min};; x; Objective: min };; x;
Subjectto: x; +x; = 1, for each edge e = (i, ) Subjectto: x; +x; = 1, for each edge e = (i, )
Optimal: Optimal:

X1 = 0 X1 = 0.5

Xy = 1 Xy = 0.5

X3 = 1 X3 = 0.5

X4 = 1 X4 = 0.5

Xg = 0 Xg = 0.5

Objective = 3 Objective = 2.5
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X3 = 1 X3 = 0.5
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Objective = 3 Objective = 2.5

Since the LP has more options to reduce the objective value, OPT;p < OPTj;p
(for a minimization problem).



ILP vs LP

x; € {0,1} = Indicates if vertex i is selected. x; € [0,1] = Indicates if vertex i is selected.
Objective: min};; x; Objective: min };; x;
Subjectto: x; +x; = 1, for each edge e = (i, ) Subjectto: x; +x; = 1, for each edge e = (i, )
Optimal: Optimal:

X1 = 0 X1 = 0.5

Xy = 1 Xy = 0.5

X3 = 1 X3 = 0.5

X4 = 1 X4 = 0.5

Xg = 0 Xg = 0.5

Objective = 3 Objective = 2.5

Since the LP has more options to reduce the objective value, OPT;p < OPTj;p
(for a minimization problem). If the minimum objective value comes from an
integer solution, a plain LP solver (e.g., Simplex) will find it.



X1, X, € R

Objective: max 5x; + 8x,

Subjectto: x;+x, <6
5x1 + 9x, < 45
X1,X2 =0

Why are ILPs hard to solve?
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X1,X, € N
X
2 Objective: max 5x; + 8x,
R Subjectto: x;1+x, <6
(2,25,3.75) » 4125 5x1 +9x, < 45
| o [ J [ [ J [ J [ ] [ J xl, xz 2 O

Why are ILPs hard to solve?



X1,X, € N
xz . .
Objective: max 5x; + 8x,
0 Subjectto: x;+x, <6
4 (20'2553'25)._) f1-1‘25 o o le + 9XZ < 45
o ) ) ° ° ° ° xl; xz 2 O

Optimal continuous solution — optimal integer solution?
* (losest integer solution?
* Closest feasible integer solution?
* Closest feasible integer solution on feasible region boundary?
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X1,X, € N
X2 .
Objective: max 5x; + 8x,
0 Subjectto: x;+x, <6
4 (2,25,3.75) » 4125 5x1 +9x, < 45
e o o o o o o xl; x2 = 0

No guarantee that the optimal solution
0 2 4 6 8 10 1 is on the feasible region boundary!

Optimal continuous solution — optimal integer solution?
e Closest integer solution? — Not feasible
* C(losest feasible integer solution? — Obj =34
* Closest feasible integer solution on feasible region boundary? — Obj = 39
* Actual optimal — Obj =40

Why are ILPs hard to solve?
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Objective:
Subject to:

max 5x; + 8x,
X1 +x, <6
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X1,X2 EN

Objective:
Subject to:

max 5x; + 8x,
X1 +x, <6
5x1 + 9x, < 45
X1,X2 =0

Integer feasible region:
* Not convex.




X1,X, € N
X2 Objective: max 5x; + 8x,
40 Subjectto: x;+x, <6
le + 9XZ < 45
X1,Xo = 0
4 39 - 1, X2

Integer feasible region:
* Not convex.
* |ocal optimum
global optimum.
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X1,X2 EN

Objective:
Subject to:

max 5x; + 8x,
X1 +x, <6
5x1 +9x, < 45
X1,X2 =0




X1,X, € N

X2 Objective: max 5x; + 8x,
20 Subjectto: x;+x, <6
‘ le + 9X2 < 45
X1,X2 =0
4 o
o o : Minimal convex hull (integer hull):
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Minimal convex hull (integer hull):

X1,X2 EN

Objective:
Subject to:

max 5x; + 8x,
X1 +x, <6
5x1 +9x, < 45
X1,X2 =0

Convex.




Minimal convex hull (integer hull):

X1,X, € N

Objective:
Subject to:

max 5x; + 8x,
X1 +x, <6
5x1 + 9x, < 45
X1,X2 =0

Convex.

local optimum = global

optimum.




Minimal convex hull (integer hull):
Convex.

X1,X, € N

Objective:
Subject to:

max 5x; + 8x,
X1 +x, <6
5x1 + 9x, < 45
X1,X2 =0

local optimum = global

optimum.

0 (nld/zl) faces,

n = # points
d = # dimensions




If you had the integer hull, Simplex || x1,x; € N

X2 would easily find the optimum. Objective: max 5x; + 8x,
Calculating the integer hull is Subjectto: x;+x, <6
usually harder than solving the ILP. 5x1 + 9x; < 45

X1,X2 =0

Minimal convex hull (integer hull):

* Convex.

* Jocal optimum = global
optimum.

. O(nld/zl) faces,

n = # points
d = # dimensions




Solving ILPs

How can we solve ILPs?



Solving ILPs

ILP

K Maximization



Solving ILPs

ILP | x€E€Z->xE€E @ LP Relaxation

K 1. Relax ILP
Maximization



Solving ILPs

ILP |x€Z->x€ER LP Relaxation

K 1. Relax ILP
Maximization

x; € {0,1} = Indicates if vertex i is selected. x; € [0,1] = Indicates if vertex i is selected.

Objective: min };; x; Objective: min };; x;

Subjectto: x; +x; = 1, for each edge e = (i, ) Subjectto: x; +x; = 1, for each edge e = (i, )




2. Solve relaxed LP.

Solving ILPs

ILP | x€E€Z->xE€E @ LP Relaxation

K 1. Relax ILP
Maximization



, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPS 7.4 with an integer solution (i.e., x; € Z, Vi).

ILP | x€E€Z->xE€E @ LP Relaxation

t 1. Relax ILP X € Z,0bj=7.4
Maximization

What
happens?




, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPS 7.4 with an integer solution (i.e., x; € Z, Vi).

ILP [xEZ —> x € @ LP Relaxation
X €7Z,0bj=7.4

K 1. Relax ILP
Maximization We’ve found
the optimal!

Since the relaxed LP has more options to increase the objective value,
OPT;; p < OPT;p (for a maximization problem).

What
happens?




, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPS 100 with a fractional solution (e.g. some x; = 3.24).

ILP |[x€Z > x€R ) LPRelaxation
t 1. Relax ILP x € R, obj =100

Maximization

UB =100
LB="?




, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPS 100 with a fractional solution (e.g. some x; = 3.24).

- R P Rel ] 3. Formulate two new LPs. One with
ILP [ xXEZ->XE elaxation x; = 4 and the other with x; < 3

K 1. Relax ILP x € R,0bj=100 . ctraints.

Maximization

UB = 100 subproblem 1 subproblem 2
LB="?




, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPS 100 with a fractional solution (e.g. some x; = 3.24).

3. Formulate two new LPs. One with
x; = 4 and the other with x; < 3

ILP |x€Z->x€ER LP Relaxation

t 1. Relax ILP x € R, 0bj=100  5nstraints.
Maximization 4. Solve subproblem LPs.
UB = 100 subproblem 1 subproblem 2

LB=7?
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, 2. Solve relaxed LP. Suppose the optimal objective is
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So far, we have:
1. Feasible (integer) solution.
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, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPS 100 with a fractional solution (e.g. some x; = 3.24).

- R P Rel ] 3. Formulate two new LPs. One with
ILP [ xXEZ->XE elaxation x; = 4 and the other with x; < 3

t 1. Relax ILP x € R, 0bj=100  5nstraints.

Maximization 4. Solve subproblem LPs.
UB = 98 subproblem 1 subproblem 2

LB = 90 X € R, obj =98 X € Z, 0bj=90

So far, we have:
1. Feasible (integer) solution.
2. Upper and lower bounds on optimal.

Branch and Bound Plan: Use these to restrict the
search space and identify optimality.



, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPS 100 with a fractional solution (e.g. some x; = 3.24).
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x; = 4 and the other with x; < 3

ILP |x€Z->x€ER LP Relaxation

K 1. Relax ILP x € R, 0bj=100  5nstraints.
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UB = 98 subproblem 1 subproblem 2 5, Formulate two new LPs
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, 2. Solve relaxed LP. Suppose the optimal objective is
SO|V| ng ILPs 100 with a fractional solution (e.g. some x; = 3.24).
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x € R, obj=8 x € R, obj =97

What subproblem 1.1 is a dead end.
Prune it and keep going.
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Solving ILPs

IlP | xeZ->x€eR

K 1. Relax ILP
Maximization

UB =90
LB =90

—_————
X ER,obj=8

subproblem 1
x € R, obj =98

/\

What

happens?

LP Relaxation
x € R, obj =100

—_——
x €ER,obj=8

2. Solve relaxed LP. Suppose the optimal objective is
100 with a fractional solution (e.g. some x; = 3.24).

3. Formulate two new LPs. One with
x; = 4 and the other with x; < 3
constraints.

4. Solve subproblem LPs.
subproblem 2 5. Formulate two new LPs

X € 7, 0bj =90 that split the subproblem on
4 some non-integer variable.

6. Solve the subproblem LPs.

Optimal
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, 2. Solve relaxed LP. Suppose the optimal objective is
SO|V| ng ILPs 100 with a fractional solution (e.g. some x; = 3.24).
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, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPs 100 with a fractional solution (e.g. some x; = 3.24).

3. Formulate two new LPs. One with
x; = 4 and the other with x; < 3

ILP |x€Z->x€ER LP Relaxation
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/\ some non-integer variable.
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, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPs 100 with a fractional solution (e.g. some x; = 3.24).

3. Formulate two new LPs. One with
x; = 4 and the other with x; < 3

ILP |x€Z->x€ER LP Relaxation

K 1. Relax ILP x € R, 0bj=100  5nstraints.

Maximization 4. Solve subproblem LPs.

UB =95 subproblem 1 subproblem 2 5, Formulate two new LPs
LB =95 X € R, obj =98 X € 7., 0bj =90 that split the subproblem on

/\ some non-integer variable.

R — subproblem 1.2 6. Solve the subproblem LPs.
x € R, obj=8 X € R, obj =97 /. Repeat.

/\

h What , [subpreblem1-2-1 subproblem 1.2.2 _

Optimal




, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPs 100 with a fractional solution (e.g. some x; = 3.24).

3. Formulate two new LPs. One with
x; = 4 and the other with x; < 3

ILP |x€Z->x€ER LP Relaxation

K 1. Relax ILP x € R, 0bj=100  5nstraints.

Maximization 4. Solve subproblem LPs.

UB =? subproblem 1 subproblem 2 5. Formulate two new LPs
LB="? X € R, obj =98 X € 7., 0bj =90 that split the subproblem on

/\ some non-integer variable.

R — subproblem 1.2 6. Solve the subproblem LPs.
x € R, obj=8 X € R, obj =97 /. Repeat.

/\

h What I subproblem 1.2.1 subproblem 1.2.2
APPENSE | x € R, obj = 85 X € Z, obj =89




, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPs 100 with a fractional solution (e.g. some x; = 3.24).

3. Formulate two new LPs. One with
x; = 4 and the other with x; < 3

ILP |x€Z->x€ER LP Relaxation

K 1. Relax ILP x € R, 0bj=100  5nstraints.

Maximization 4. Solve subproblem LPs.

UB = 90 subproblem 1 subproblem 2 5, Formulate two new LPs
LB =90 X € R, obj =98 X € 7, 0bj =90 that split the subproblem on

/‘\ f some non-integer variable.
Optimal

R — subproblem 1.2 6. Solve the subproblem LPs.
x € R, obj=8 X € R, obj =97 /. Repeat.

/\

h What , [subpreblem1-2-1 subproblem 1.2.2
appPeNs: | y e R, obj = 85 X € Z, obj =89




, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPs 100 with a fractional solution (e.g. some x; = 3.24).

3. Formulate two new LPs. One with
x; = 4 and the other with x; < 3

ILP |x€Z->x€ER LP Relaxation

K 1. Relax ILP x € R, 0bj=100  5nstraints.

Maximization 4. Solve subproblem LPs.

UB =? subproblem 1 subproblem 2 5. Formulate two new LPs
LB="? X € R, obj =98 X € 7., 0bj =90 that split the subproblem on

/\ some non-integer variable.

R — subproblem 1.2 6. Solve the subproblem LPs.
x € R, obj=8 X € R, obj =97 /. Repeat.

/\

h What I subproblem 1.2.1 subproblem 1.2.2




, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPs 100 with a fractional solution (e.g. some x; = 3.24).

3. Formulate two new LPs. One with
x; = 4 and the other with x; < 3

ILP |x€Z->x€ER LP Relaxation

K 1. Relax ILP x € R, 0bj=100  5nstraints.

Maximization 4. Solve subproblem LPs.

UB = 90 subproblem 1 subproblem 2 5, Formulate two new LPs
LB =90 X € R, obj =98 X € 7, 0bj =90 that split the subproblem on

/‘\ f some non-integer variable.
Optimal

R — subproblem 1.2 6. Solve the subproblem LPs.
x € R, obj=8 X € R, obj =97 /. Repeat.

/\

What
happens? | c r obj =89 x € R, obj = 88




, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPs 100 with a fractional solution (e.g. some x; = 3.24).

3. Formulate two new LPs. One with
x; = 4 and the other with x; < 3

ILP |x€Z->x€ER LP Relaxation

K 1. Relax ILP x € R, 0bj=100  5nstraints.

Maximization 4. Solve subproblem LPs.

UB =? subproblem 1 subproblem 2 5. Formulate two new LPs
LB="? X € R, obj =98 X € 7., 0bj =90 that split the subproblem on

/\ some non-integer variable.

R — subproblem 1.2 6. Solve the subproblem LPs.
x € R, obj=8 X € R, obj =97 /. Repeat.

/\

h What I subproblem 1.2.1 subproblem 1.2.2
appens x € R, obj =94 X € Z, obj = 88




Solving ILPs

2. Solve relaxed LP. Suppose the optimal objective is

ILP |x€Z->x€ER LP Relaxation

K 1. Relax ILP
Maximization

UB =94
LB =90

/\

—_———— subproblem 1.2

x € R, obj =100

100 with a fractional solution (e.g. some x; = 3.24).

3. Formulate two new LPs. One with
x; = 4 and the other with x; < 3
constraints.

4. Solve subproblem LPs.

subproblem 1 subproblem 2 5 Formulate two new LPs
X € R, obj =98 X € Z,0bj =90 that split the subproblem on

some non-integer variable.
6. Solve the subproblem LPs.

x € R, obj=8 x € R, obj =97 /. Repeat.

What
happens?

/\

subproblem 1.2.1 subproblem 1.2.2
X €E R, obj=94 X € Z, obj = 88

Need to continue. There
could be an integer solution
buried in subproblem 1.2.1
with a better objective value.




, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPs 100 with a fractional solution (e.g. some x; = 3.24).

3. Formulate two new LPs. One with
x; = 4 and the other with x; < 3

ILP |x€Z->x€ER LP Relaxation

K 1. Relax ILP x € R, 0bj=100  5nstraints.

Maximization 4. Solve subproblem LPs.

UB =? subproblem 1 subproblem 2 5. Formulate two new LPs
LB="? X € R, obj =98 X € 7., 0bj =90 that split the subproblem on

/\ some non-integer variable.

R — subproblem 1.2 6. Solve the subproblem LPs.
x € R, obj=8 X € R, obj =97 /. Repeat.

/\

h What , |subproblem 1.2.1 subproblem 1.2.2




Solving ILPs

2. Solve relaxed LP. Suppose the optimal objective is

ILP |x€Z->x€ER LP Relaxation

K 1. Relax ILP
Maximization

UB=94
LB =92

/\

—_———— subproblem 1.2

x € R, obj =100

100 with a fractional solution (e.g. some x; = 3.24).

3. Formulate two new LPs. One with
x; = 4 and the other with x; < 3
constraints.

4. Solve subproblem LPs.

subproblem 1 subproblem 2 5 Formulate two new LPs
X € R, obj =98 X € 7Z,0bj =90 that split the subproblem on

some non-integer variable.
6. Solve the subproblem LPs.

x € R, obj=8 x € R, obj =97 /. Repeat.

What
happens?

/\

subproblem 1.2.1 subproblem 1.2.2
X €E R, obj=94 X € Z, obj =92

Need to continue. There
could be an integer solution
buried in subproblem 1.2.1
with a better objective value.




, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPs 100 with a fractional solution (e.g. some x; = 3.24).

3. Formulate two new LPs. One with
x; = 4 and the other with x; < 3

ILP |x€Z->x€ER LP Relaxation

K 1. Relax ILP x € R, 0bj=100  5nstraints.

Maximization 4. Solve subproblem LPs.

UB = 90 subproblem 1 subproblem 2 5, Formulate two new LPs
LB =90 X € R, obj =98 X € 7, 0bj =90 that split the subproblem on

/‘\ f some non-integer variable.
Optimal

R — subproblem 1.2 6. Solve the subproblem LPs.
x € R, obj=8 X € R, obj =97 /. Repeat.

/\

X € R, obj =85 X € 7Z,0bj=8



, 2. Solve relaxed LP. Suppose the optimal objective is
SO|V| ng ILPs 100 with a fractional solution (e.g. some x; = 3.24).

3. Formulate two new LPs. One with
x; = 4 and the other with x; < 3

ILP |x€Z->x€ER LP Relaxation

K 1. Relax ILP x € R, 0bj=100  5nstraints.

Maximization 4. Solve subproblem LPs.

UB = 90 subproblem 1 subproblem 2 5, Formulate two new LPs
LB =90 X € R, obj =98 X € 7, 0bj =90 that split the subproblem on

/‘\ f some non-integer variable.
Optimal

R — subproblem 1.2 6. Solve the subproblem LPs.
x € R, obj=8 X € R, obj =97 /. Repeat.

/\ Is this process guaranteed

subpreblem-1-2-1- subpreblem12:2- to eventually find the
x € R, obj = 85 X € 7, obj = 89 optimal integer solutlonl




2. Solve relaxed LP. Suppose the optimal objective is

Solvi Nng ILPS 100 with a fractional solution (e.g. some x; = 3.24).
3. Formulate two new LPs. One with

ILP [x€Z->x€R > LPRelaxation x; = 4 and the other with x; < 3

t 1. Relax ILP X E R/'PE= 100 constraints.
Maximizatiq |s this process guaranteed to eventually find plem LPs.
UB = 90 the optimal integer solution? o new LPs
LB =90 , , , bproblem on
Yes, given enough constraints like x; = 3 and br variable.

—1x; < 3, all variables will be bounded to their
em LPs.

subpreblem ontimal integer values.

X € R, obj 3

JL;LLJ,WJ |~ 4

ﬂhuu’w.’ L=~



, 2. Solve relaxed LP. Suppose the optimal objective is
SO‘V| ng ILPS 100 with a fractional solution (e.g. some x; = 3.24).

- R P Rel ] 3. Formulate two new LPs. One with
ILP [ xXEZ->XE € ax.atlon x; = 4 and the other with x; < 3
x € R, obj =100
A

constraints.

t 1. Relax ILP
Maximizatiq |s this process guaranteed to eventually find plem LPs.

UB = 90 the optimal integer solution? o new LPs
LB = 90 , . . bproblem on
Yes, given enough constraints like x; = 3 and efvariable
—|%; = 3, all variables will be bounded to their | o

subpreblem ontimal integer values.
X € R, obj 3 . . . .
Other techniques (cutting planes, intelligently

picking which x; to split on) can help speed up
the process.

ﬂhuu’w., L=~ AMLLJ’WJ |~ 4
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