Integer Linear Programming CSCI 532

x_i is 0 or 1, not 0.62

 $x_i \in \{0,1\}$ = Indicates if vertex *i* is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

What is this for?

Vertex Cover: Given graph G = (V, E), find the smallest $V' \subseteq V$ such that each edge in E contains an end point in V'?

 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Vertex Cover: Given graph G = (V, E), find the smallest $V' \subseteq V$ such that each edge in E contains an end point in V'?

 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

What have we accomplished?

Vertex Cover: Given graph G = (V, E), find the smallest $V' \subseteq V$ such that each edge in E contains an end point in V'?

 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

What have we accomplished? Solving ILPs is NP-Hard.

Questions?

Vertex Cover: Given graph G = (V, E), find the smallest $V' \subseteq V$ such that each edge in E contains an end point in V'?

 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

What have we accomplished? Solving ILPs is NP-Hard.

In general

Vertex Cover: Given graph G = (V, E), find the smallest $V' \subseteq V$ such that each edge in E contains an end point in V'?

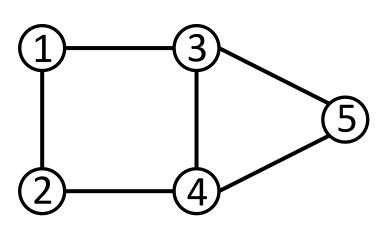
 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Example:

Objective: $\min x_1 + x_2 + x_3 + x_4 + x_5$ Subject to: $x_1 + x_2 \ge 1$ $x_1 + x_3 \ge 1$ $x_2 + x_4 \ge 1$ $x_3 + x_4 \ge 1$ $x_3 + x_5 \ge 1$ $x_4 + x_5 \ge 1$



Vertex Cover: Given graph G = (V, E), find the smallest $V' \subseteq V$ such that each edge in E contains an end point in V'?

 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Example:

Objective: $\min x_1 + x_2 + x_3 + x_4 + x_5$ Subject to: $x_1 + x_2 \ge 1$ $x_1 + x_3 \ge 1$ $x_2 + x_4 \ge 1$ $x_3 + x_4 \ge 1$ $x_3 + x_5 \ge 1$ $x_4 + x_5 \ge 1$ Optimal Solution:

$$x_1 = 0$$

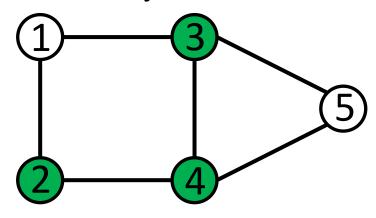
$$x_2 = 1$$

$$x_3 = 1$$

$$x_4 = 1$$

$$x_5 = 0$$

Objective = 3



Vertex Cover: Given graph G = (V, E), find the smallest $V' \subseteq V$ such that each edge in E contains an end point in V'?

What happens?

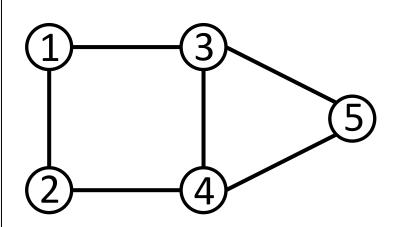
 $x_i \in [0,1] = \text{Indicates if vertex } i \text{ is selected.}$

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Example:

Objective: $\min x_1 + x_2 + x_3 + x_4 + x_5$ Subject to: $x_1 + x_2 \ge 1$ $x_1 + x_3 \ge 1$ $x_2 + x_4 \ge 1$ $x_3 + x_4 \ge 1$ $x_3 + x_5 \ge 1$ $x_4 + x_5 \ge 1$



Vertex Cover: Given graph G = (V, E), find the smallest $V' \subseteq V$ such that each edge in E contains an end point in V'?

What happens?

 $x_i \in [0,1] = \text{Indicates if vertex } i \text{ is selected.}$

Objective: $\min \sum_{i} x_i$

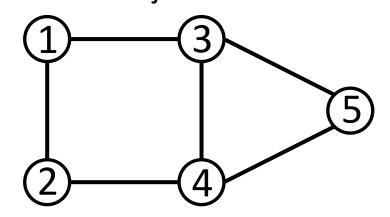
Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Example:

Objective: $\min x_1 + x_2 + x_3 + x_4 + x_5$ Subject to: $x_1 + x_2 \ge 1$ $x_1 + x_3 \ge 1$ $x_2 + x_4 \ge 1$ $x_3 + x_4 \ge 1$ $x_3 + x_5 \ge 1$ $x_4 + x_5 \ge 1$

$$x_1 = 0.5$$

 $x_2 = 0.5$
 $x_3 = 0.5$
 $x_4 = 0.5$
 $x_5 = 0.5$
Objective = 2.5



ILP vs LP

```
x_i \in \{0,1\} = Indicates if vertex i is selected.
```

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_i \ge 1$, for each edge e = (i, j)

Optimal:

$$x_1 = 0$$

$$x_2 = 1$$

$$x_3 = 1$$

$$x_4 = 1$$

$$x_5 = 0$$

Objective = 3

 $x_i \in [0,1] = \text{Indicates if vertex } i \text{ is selected.}$

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Optimal:

$$x_1 = 0.5$$

$$x_2 = 0.5$$

$$x_3 = 0.5$$

$$x_4 = 0.5$$

$$x_5 = 0.5$$

Objective = 2.5

ILP vs LP

```
x_i \in \{0,1\} = Indicates if vertex i is selected.
```

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_i \ge 1$, for each edge e = (i, j)

Optimal:

$$x_1 = 0$$

$$x_2 = 1$$

$$x_3 = 1$$

$$x_4 = 1$$

$$x_5 = 0$$

Objective = 3

$$x_i \in [0,1] = \text{Indicates if vertex } i \text{ is selected.}$$

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Optimal:

$$x_1 = 0.5$$

$$x_2 = 0.5$$

$$x_3 = 0.5$$

$$x_4 = 0.5$$

$$x_5 = 0.5$$

Objective = 2.5

Since the LP has more options to reduce the objective value, $OPT_{LP} \leq OPT_{ILP}$ (for a minimization problem).

ILP vs LP

```
x_i \in \{0,1\} = Indicates if vertex i is selected.
```

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Optimal:

$$x_1 = 0$$

$$x_2 = 1$$

$$x_3 = 1$$

$$x_4 = 1$$

$$x_5 = 0$$

Objective = 3

$$x_i \in [0,1] = \text{Indicates if vertex } i \text{ is selected.}$$

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Optimal:

$$x_1 = 0.5$$

$$x_2 = 0.5$$

$$x_3 = 0.5$$

$$x_4 = 0.5$$

$$x_5 = 0.5$$

Objective = 2.5

Since the LP has more options to reduce the objective value, $OPT_{LP} \leq OPT_{ILP}$ (for a minimization problem). If the minimum objective value comes from an integer solution, a plain LP solver (e.g., Simplex) will find it.

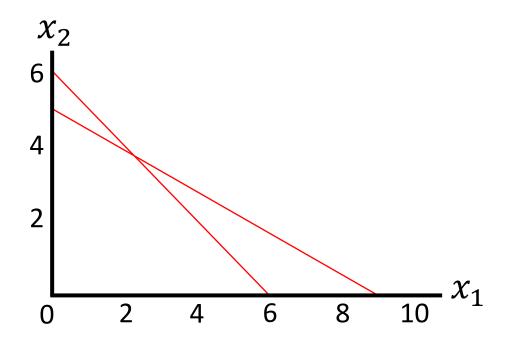
 $x_1, x_2 \in \mathbb{R}$

Objective: $\max 5x_1 + 8x_2$

Subject to: $x_1 + x_2 \le 6$

 $5x_1 + 9x_2 \le 45$

 $x_1, x_2 \ge 0$

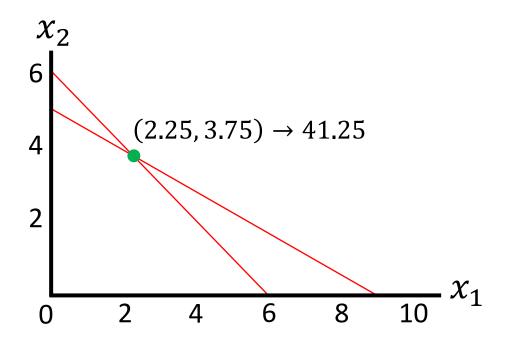


$$x_1, x_2 \in \mathbb{R}$$

Subject to: $x_1 + x_2 \le 6$

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$

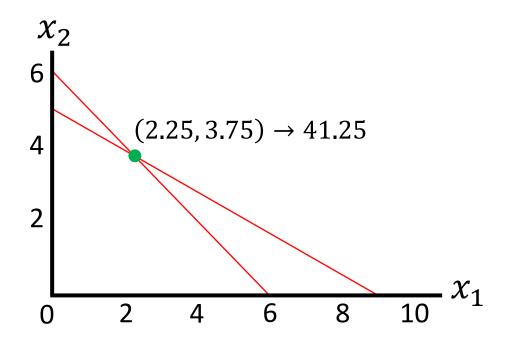


$$x_1, x_2 \in \mathbb{R}$$

Subject to: $x_1 + x_2 \le 6$

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$



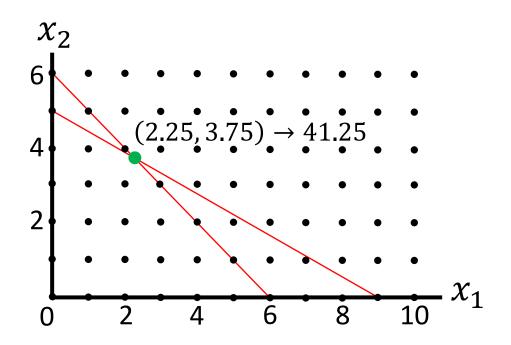
 $x_1, x_2 \in \mathbb{N}$

Objective: $\max 5x_1 + 8x_2$

Subject to: $x_1 + x_2 \le 6$

 $5x_1 + 9x_2 \le 45$

 $x_1, x_2 \ge 0$



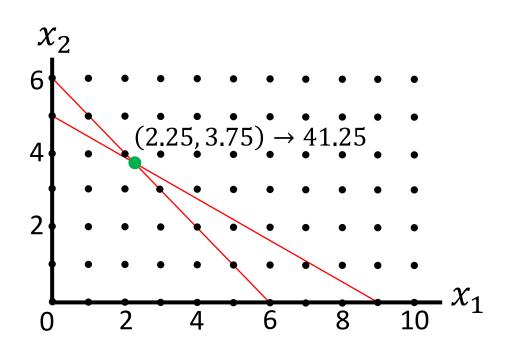
 $x_1, x_2 \in \mathbb{N}$

Objective: $\max 5x_1 + 8x_2$

Subject to: $x_1 + x_2 \le 6$

 $5x_1 + 9x_2 \le 45$

 $x_1, x_2 \ge 0$



$$x_1,x_2\in\mathbb{N}$$

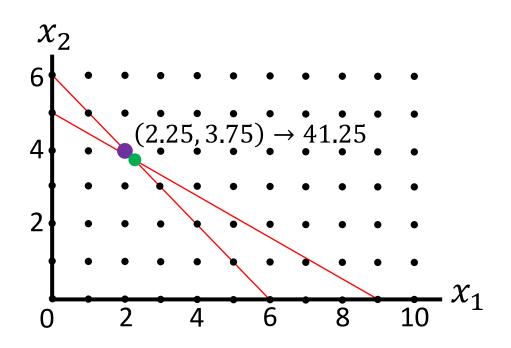
Subject to: $x_1 + x_2 \le 6$

 $5x_1 + 9x_2 \le 45$

 $x_1, x_2 \ge 0$

Optimal continuous solution \rightarrow optimal integer solution?

- Closest integer solution?
- Closest feasible integer solution?
- Closest feasible integer solution on feasible region boundary?



$$x_1, x_2 \in \mathbb{N}$$

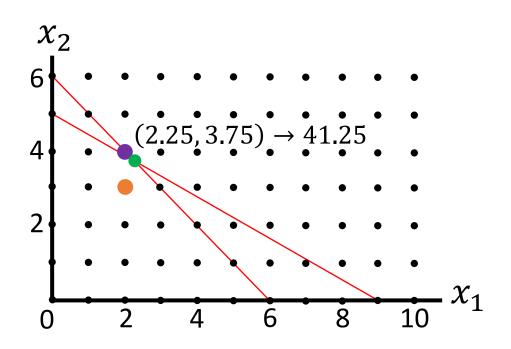
Subject to: $x_1 + x_2 \le 6$

 $5x_1 + 9x_2 \le 45$

 $x_1, x_2 \ge 0$

Optimal continuous solution → optimal integer solution?

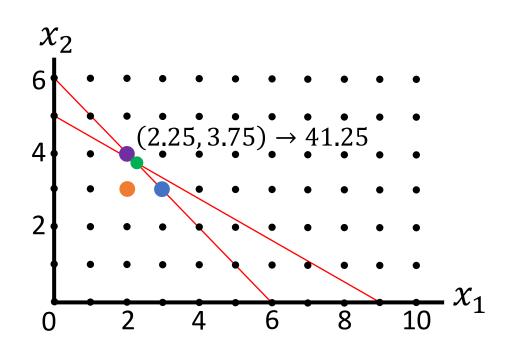
- Closest integer solution? Not feasible
- Closest feasible integer solution?
- Closest feasible integer solution on feasible region boundary?



$$x_1, x_2 \in \mathbb{N}$$
Objective: $\max 5x_1 + 8x_2$
Subject to: $x_1 + x_2 \le 6$
 $5x_1 + 9x_2 \le 45$
 $x_1, x_2 \ge 0$

Optimal continuous solution → optimal integer solution?

- Closest integer solution? Not feasible
- Closest feasible integer solution? Obj = 34
- Closest feasible integer solution on feasible region boundary?

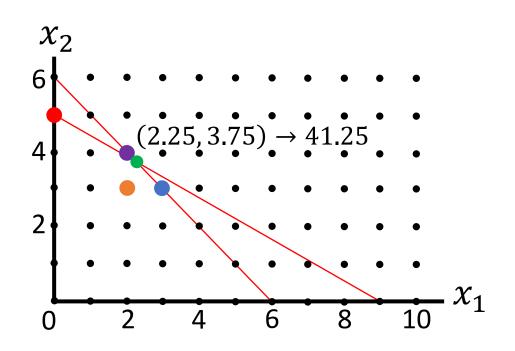


$$x_1, x_2 \in \mathbb{N}$$
Objective: $\max 5x_1 + 8x_2$
Subject to: $x_1 + x_2 \le 6$
 $5x_1 + 9x_2 \le 45$

 $x_1, x_2 \ge 0$

Optimal continuous solution → optimal integer solution?

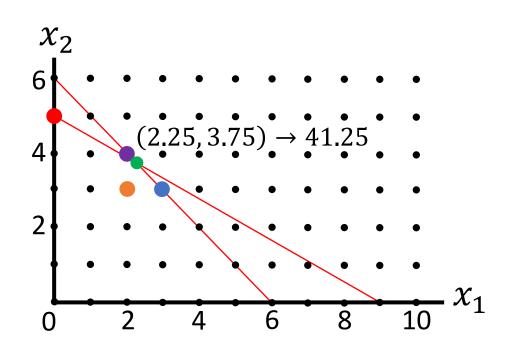
- Closest integer solution? Not feasible
- Closest feasible integer solution? Obj = 34
- Closest feasible integer solution on feasible region boundary? Obj = 39



$$x_1, x_2 \in \mathbb{N}$$
Objective: $\max 5x_1 + 8x_2$
Subject to: $x_1 + x_2 \le 6$
 $5x_1 + 9x_2 \le 45$
 $x_1, x_2 \ge 0$

Optimal continuous solution → optimal integer solution?

- Closest integer solution? Not feasible
- Closest feasible integer solution? Obj = 34
- Closest feasible integer solution on feasible region boundary? Obj = 39
- Actual optimal Obj = 40



$$x_1,x_2\in\mathbb{N}$$

Subject to: $x_1 + x_2 \le 6$

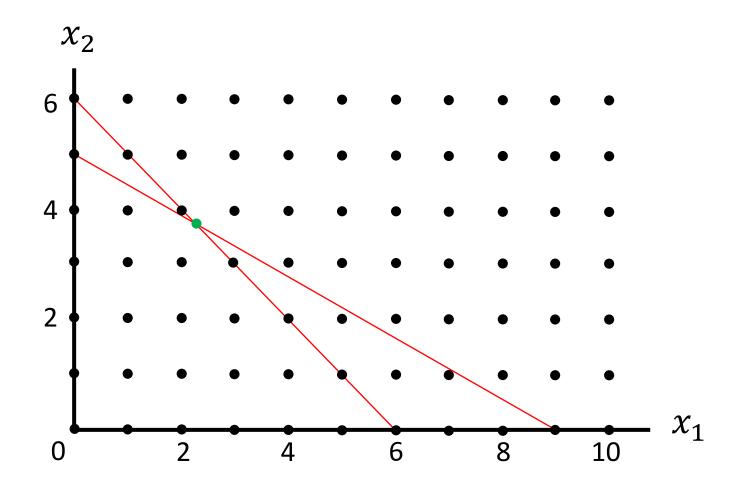
$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$

No guarantee that the optimal solution is on the feasible region boundary!

Optimal continuous solution → optimal integer solution?

- Closest integer solution? Not feasible
- Closest feasible integer solution? Obj = 34
- Closest feasible integer solution on feasible region boundary? Obj = 39
- Actual optimal Obj = 40

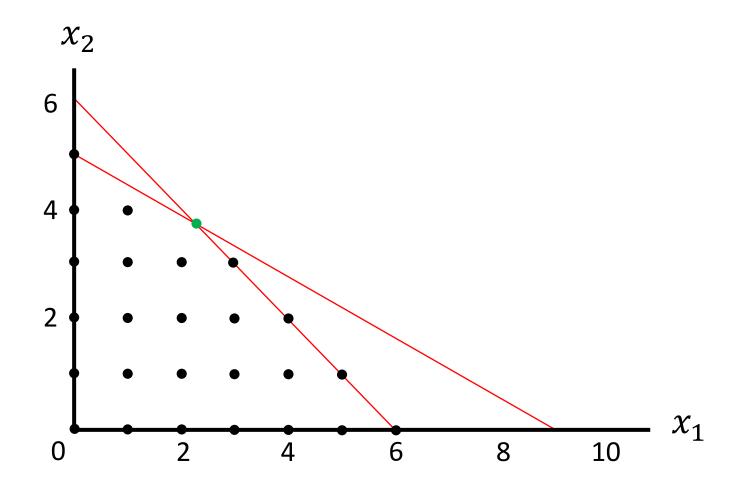


$$x_1, x_2 \in \mathbb{N}$$

Subject to: $x_1 + x_2 \le 6$

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$

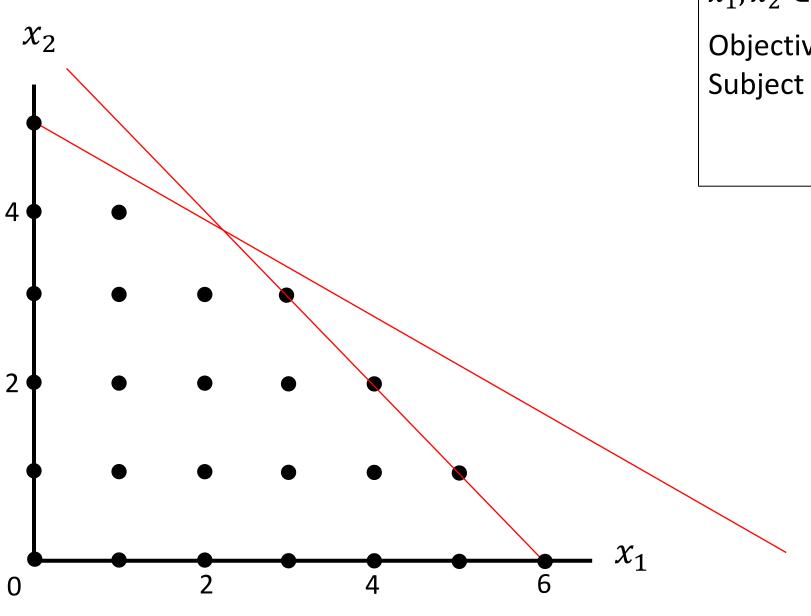


$$x_1, x_2 \in \mathbb{N}$$

Subject to: $x_1 + x_2 \le 6$

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$



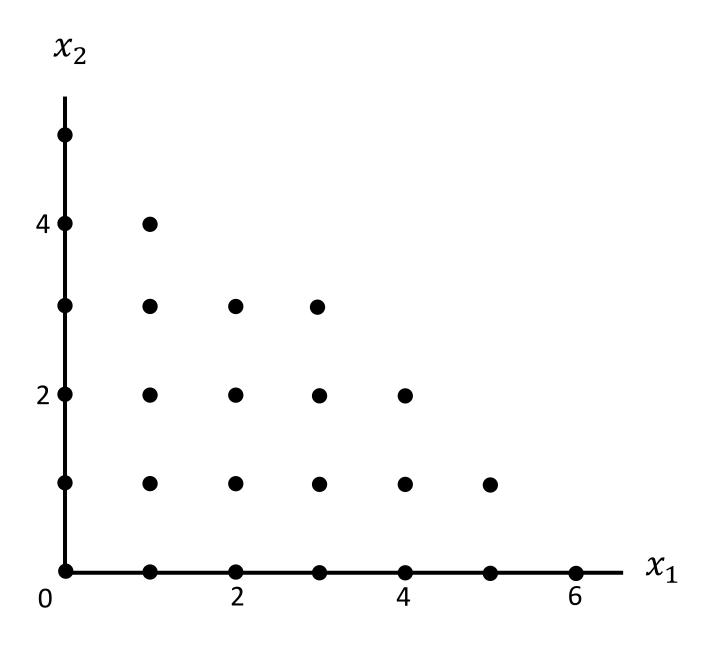
 $x_1, x_2 \in \mathbb{N}$

Objective: $\max 5x_1 + 8x_2$

Subject to: $x_1 + x_2 \le 6$

 $5x_1 + 9x_2 \le 45$

 $x_1, x_2 \ge 0$



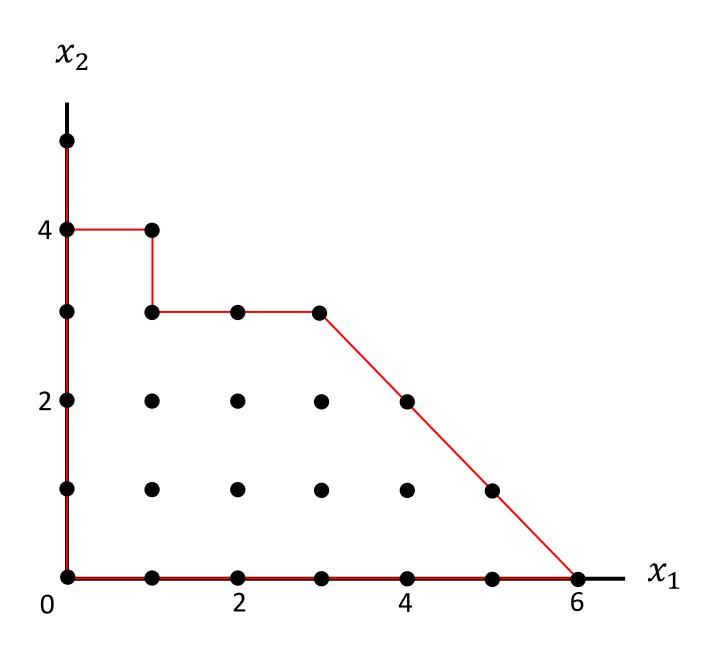
 $x_1, x_2 \in \mathbb{N}$

Objective: $\max 5x_1 + 8x_2$

Subject to: $x_1 + x_2 \le 6$

 $5x_1 + 9x_2 \le 45$

 $x_1, x_2 \ge 0$



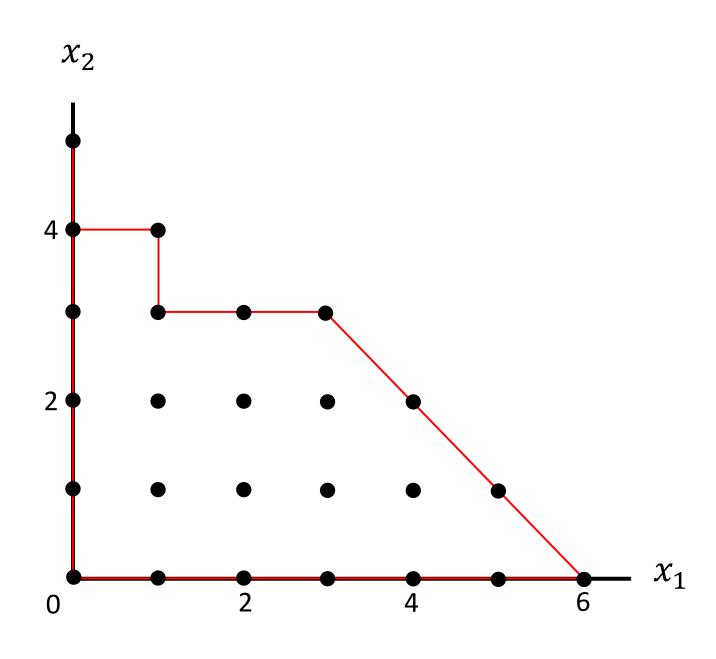
$$x_1, x_2 \in \mathbb{N}$$

Subject to: $x_1 + x_2 \le 6$

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$

Integer feasible region:



$$x_1, x_2 \in \mathbb{N}$$

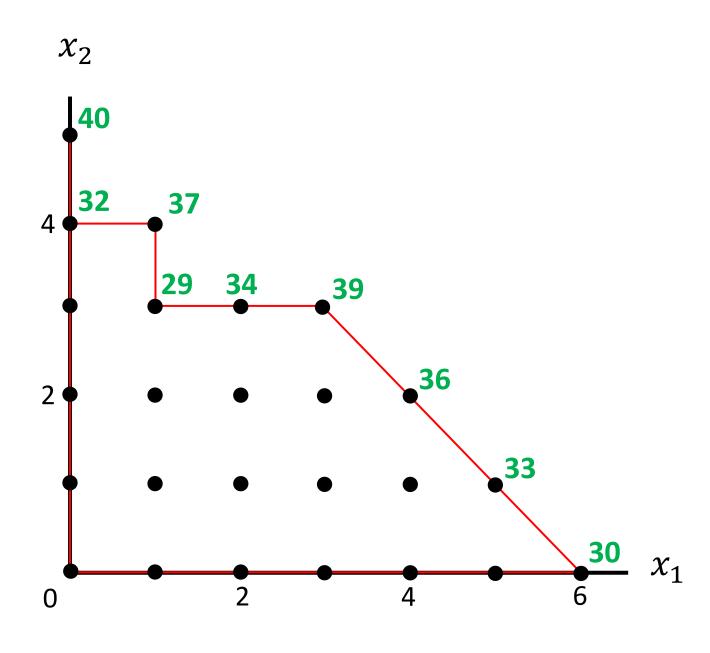
Subject to: $x_1 + x_2 \le 6$

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$

Integer feasible region:

Not convex.



$$x_1, x_2 \in \mathbb{N}$$

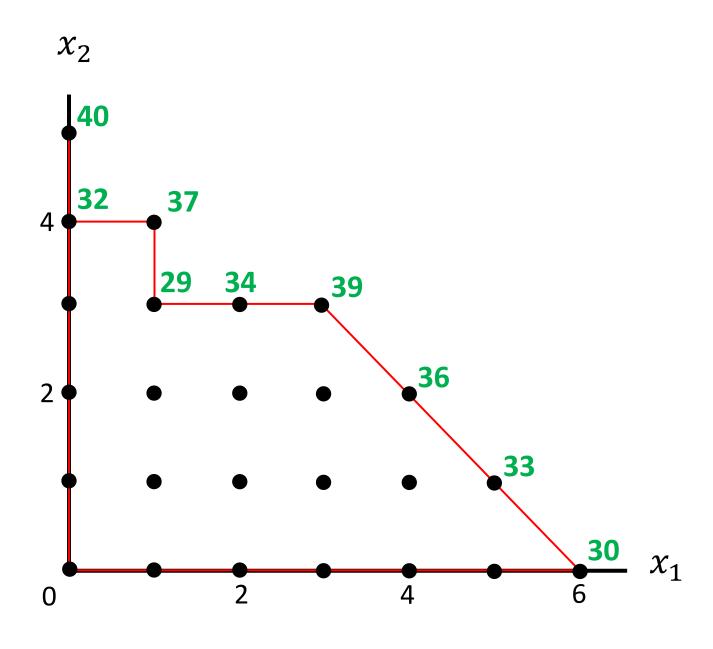
Subject to: $x_1 + x_2 \le 6$

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$

Integer feasible region:

• Not convex.



$$x_1, x_2 \in \mathbb{N}$$

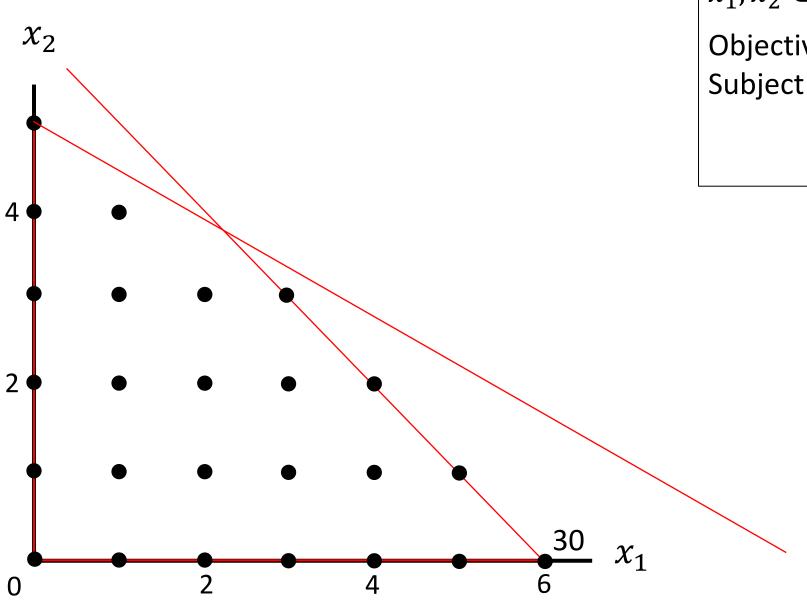
Subject to: $x_1 + x_2 \le 6$

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$

Integer feasible region:

- Not convex.
- local optimum ≠ global optimum.



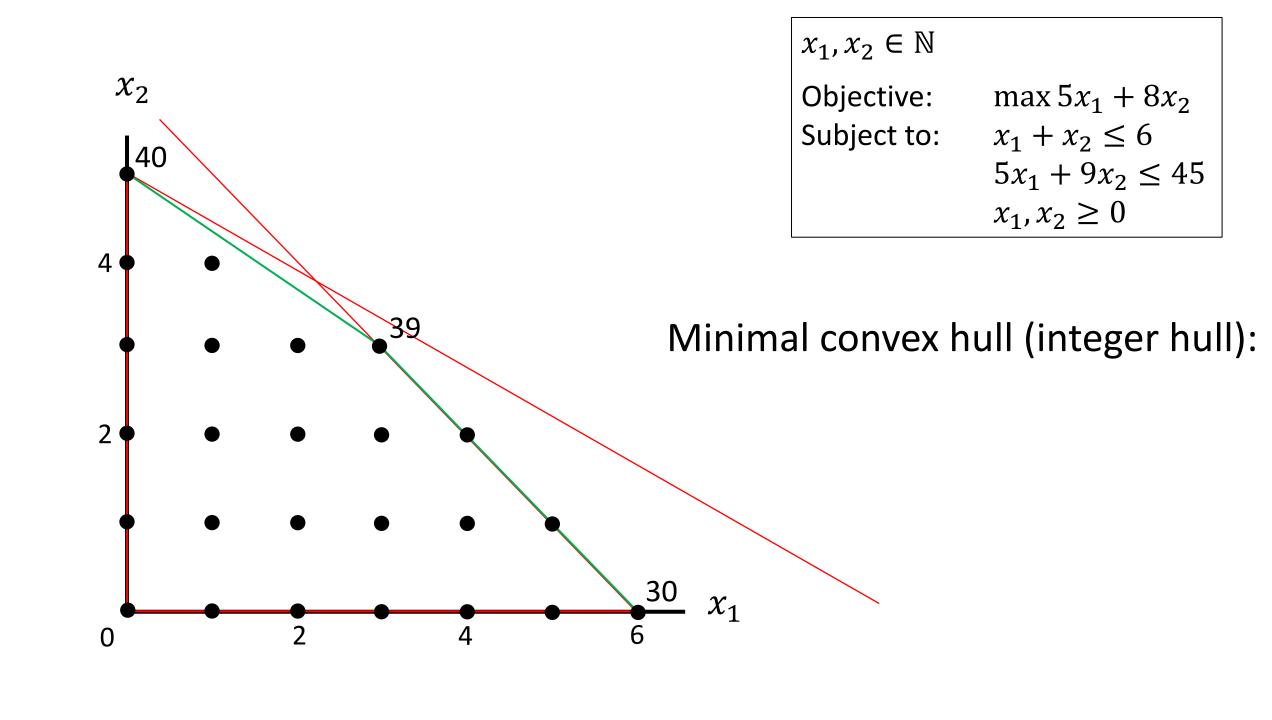
 $x_1, x_2 \in \mathbb{N}$

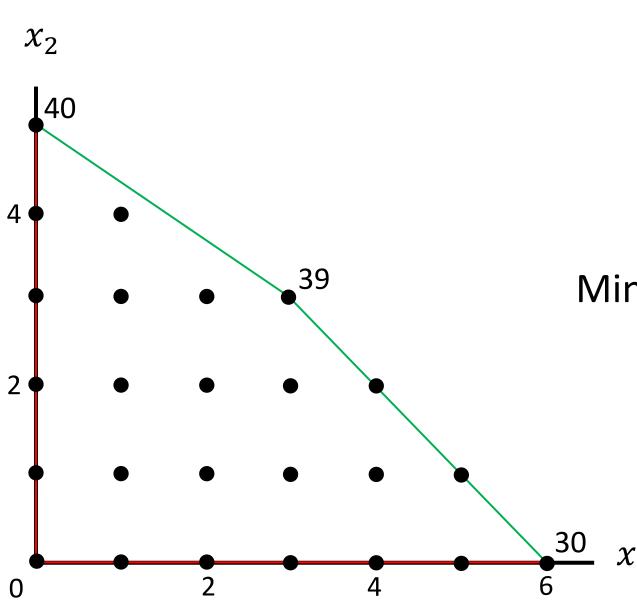
Objective: $\max 5x_1 + 8x_2$

Subject to: $x_1 + x_2 \le 6$

 $5x_1 + 9x_2 \le 45$

 $x_1, x_2 \ge 0$





 $x_1, x_2 \in \mathbb{N}$

Objective: $\max 5x_1 + 8x_2$

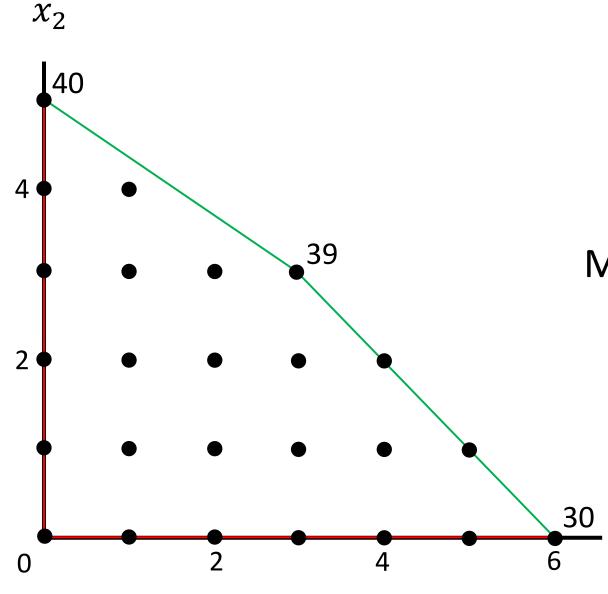
Subject to: $x_1 + x_2 \le 6$

 $5x_1 + 9x_2 \le 45$

 $x_1, x_2 \ge 0$

Minimal convex hull (integer hull):

Convex.



$$x_1, x_2 \in \mathbb{N}$$

Objective: $\max 5x_1 + 8x_2$

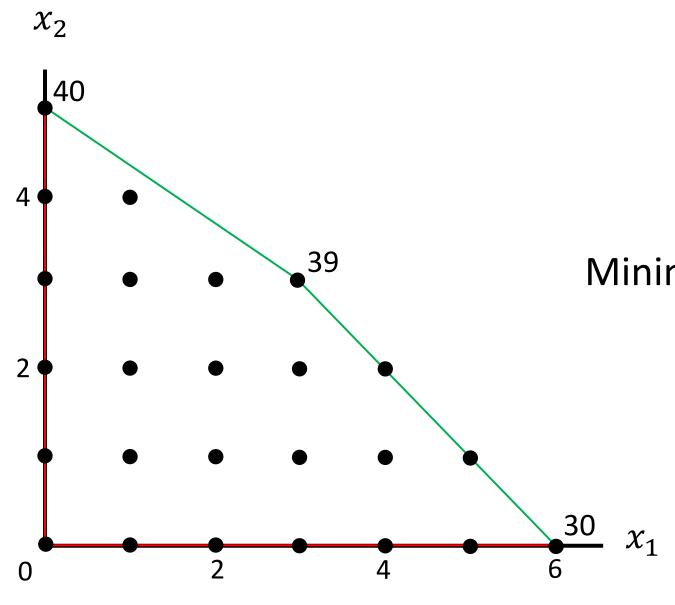
Subject to: $x_1 + x_2 \le 6$

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$

Minimal convex hull (integer hull):

- Convex.
- local optimum = global optimum.



$$x_1, x_2 \in \mathbb{N}$$

Objective: $\max 5x_1 + 8x_2$

Subject to: $x_1 + x_2 \le 6$

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$

Minimal convex hull (integer hull):

- Convex.
- local optimum = global optimum.
- $O\left(n^{\lfloor d/2 \rfloor}\right)$ faces, n=# points d=# dimensions

If you had the integer hull, Simplex would easily find the optimum. Calculating the integer hull is usually harder than solving the ILP.

$$x_1, x_2 \in \mathbb{N}$$

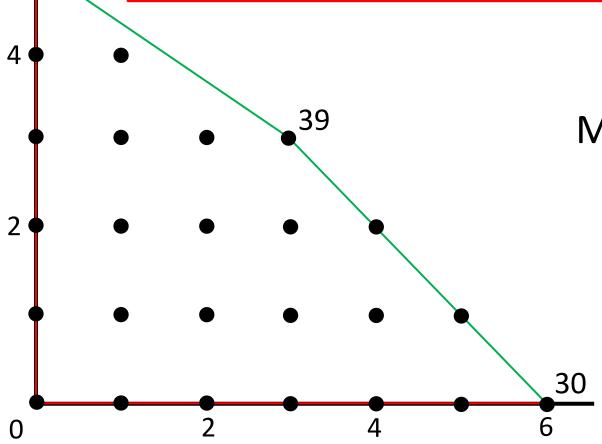
Objective: $\max 5x_1 + 8x_2$

Subject to: $x_1 + x_2 \le 6$

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$

- Convex.
- local optimum = global optimum.
- $O(n^{\lfloor d/2 \rfloor})$ faces, n=# points d=# dimensions



 χ_2

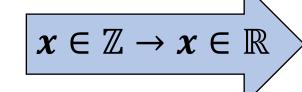
40

How can we solve ILPs?

Solving ILPs $x \in \mathbb{Z} \to x \in \mathbb{R}$ 1. Relax ILP

Maximization

ILP



LP Relaxation

1. Relax ILP

Maximization

 $x_i \in \{0,1\}$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

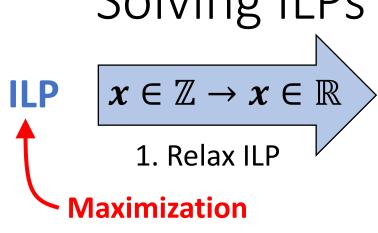
 $x_i \in [0,1]$ = Indicates if vertex i is selected.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Solving ILPs

2. Solve relaxed LP. $x \in \mathbb{Z} \to x \in \mathbb{R}$ LP Relaxation



- 2. Solve relaxed LP. Suppose the optimal objective is 7.4 with an integer solution (i.e., $x_i \in \mathbb{Z}, \forall i$).
- $x \in \mathbb{Z} \to x \in \mathbb{R}$
 - 1. Relax ILP

Maximization

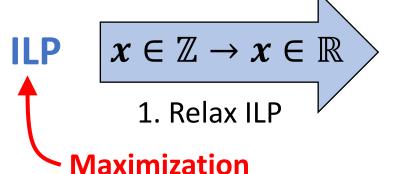
ILP

LP Relaxation

$$x \in \mathbb{Z}$$
, obj = 7.4

What happens

- 2. Solve relaxed LP. Suppose the optimal objective is
- 7.4 with an integer solution (i.e., $x_i \in \mathbb{Z}, \forall i$).



LP Relaxation

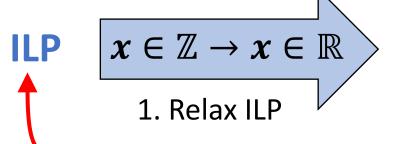
$$x \in \mathbb{Z}$$
, obj = 7.4

We've found the optimal!

Since the relaxed LP has **more options** to increase the objective value, $OPT_{ILP} \leq OPT_{LP}$ (for a maximization problem).

What happens?

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

Maximization

 $\mathbb{LP} \quad x \in \mathbb{Z} \to x \in \mathbb{R}$

1. Relax ILP

LP Relaxation

 $x \in \mathbb{R}$, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

subproblem 1

subproblem 2

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).

 $x \in \mathbb{Z} \to x \in \mathbb{R}$ **ILP**

1. Relax ILP

LP Relaxation

 $x \in \mathbb{R}$, obj = 100

subproblem 2

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

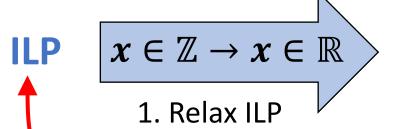
LB = ?

subproblem 1

4. Solve subproblem LPs.

UB = 100

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

4. Solve subproblem LPs.

Maximization

subproblem 1

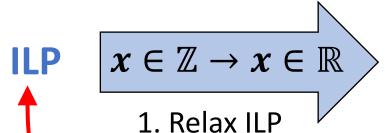
$$x \in \mathbb{Z}$$
, obj = 85

subproblem 2

$$x \in \mathbb{Z}$$
, obj = 90

What happens?

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

4. Solve subproblem LPs.

Maximization

UB = 90

LB = 90

subproblem 1

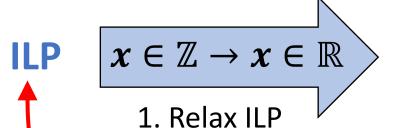
$$x \in \mathbb{Z}$$
, obj = 85

subproblem 2

$$x \in \mathbb{Z}$$
, obj = 90

What happens?

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

4. Solve subproblem LPs.

Maximization

$$UB = 98$$

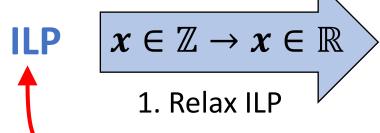
$$LB = 90$$

subproblem 1

$$x \in \mathbb{R}$$
, obj = 98

subproblem 2

$$x \in \mathbb{Z}$$
, obj = 90



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

4. Solve subproblem LPs.

Maximization

- waximization

UB = 98

LB = 90

subproblem 1

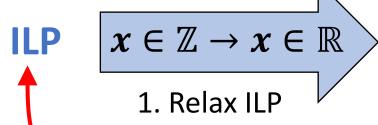
$$x \in \mathbb{R}$$
, obj = 98

subproblem 2

$$x \in \mathbb{Z}$$
, obj = 90

So far, we have:

1. Feasible (integer) solution.



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

4. Solve subproblem LPs.

Maximization

subproblem 1

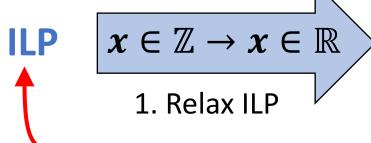
$$x \in \mathbb{R}$$
, obj = 98

subproblem 2

$$x \in \mathbb{Z}$$
, obj = 90

So far, we have:

- 1. Feasible (integer) solution.
- 2. Upper and lower bounds on optimal.



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

4. Solve subproblem LPs.

LB = 90

$$x \in \mathbb{R}$$
, obj = 98

subproblem 2

$$x \in \mathbb{Z}$$
, obj = 90

So far, we have:

- 1. Feasible (integer) solution.
- 2. Upper and lower bounds on optimal.

Branch and Bound Plan: Use these to restrict the search space and identify optimality.

 $x \in \mathbb{Z} \to x \in \mathbb{R}$

1. Relax ILP

LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

LB = 90

ILP

subproblem 1

$$x \in \mathbb{R}$$
, obj = 98

subproblem 2

$$x \in \mathbb{Z}$$
, obj = 90

4. Solve subproblem LPs.

5. Formulate two new LPs that split the subproblem on some non-integer variable.

subproblem 1.1

 $x \in \mathbb{Z} \to x \in \mathbb{R}$ 1. Relax ILP

LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

UB = 98

ILP

LB = 90

subproblem 1

$$x \in \mathbb{R}$$
, obj = 98

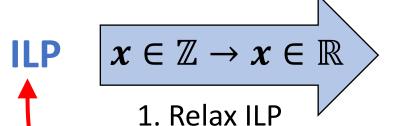
$$x \in \mathbb{Z}$$
, obj = 90

4. Solve subproblem LPs.

subproblem 2
5. Formulate two new LPs that split the subproblem on some non-integer variable.

6. Solve the subproblem LPs.

subproblem 1.1



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

UB = ?

LB = ?

subproblem 1

$$x \in \mathbb{R}$$
, obj = 98

$$x \in \mathbb{Z}$$
, obj = 90

4. Solve subproblem LPs.

subproblem 2 5. Formulate two new LPs that split the subproblem on some non-integer variable.

6. Solve the subproblem LPs.

subproblem 1.1

$$x \in \mathbb{R}$$
, obj = 88

subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 97

What happens

 $x \in \mathbb{Z} \to x \in \mathbb{R}$ **ILP** 1. Relax ILP

LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

subproblem 1

$$x \in \mathbb{R}$$
, obj = 98

$$x \in \mathbb{Z}$$
, obj = 90

4. Solve subproblem LPs.

subproblem 2 5. Formulate two new LPs that split the subproblem on some non-integer variable.

6. Solve the subproblem LPs.

$$x \in \mathbb{R}$$
, obj = 88

subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 97

What happens?

UB = 97

LB = 90

subproblem 1.1 is a dead end.

Prune it and keep going.

 $x \in \mathbb{Z} \to x \in \mathbb{R}$ **ILP** 1. Relax ILP

LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

UB = ?

LB = ?

subproblem 1

$$x \in \mathbb{R}$$
, obj = 98

$$x \in \mathbb{Z}$$
, obj = 90

4. Solve subproblem LPs.

subproblem 2 5. Formulate two new LPs that split the subproblem on some non-integer variable.

6. Solve the subproblem LPs.

subproblem 1.1

$$x \in \mathbb{R}$$
, obj = 88

subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 85

What happens

LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

$$x \in \mathbb{R}$$
, obj = 98

subproblem 2

$$x \in \mathbb{Z}$$
, obj = 90

- 4. Solve subproblem LPs.
- 5. Formulate two new LPs that split the subproblem on some non-integer variable.
- 6. Solve the subproblem LPs.

subproblem 1.1

$$x \in \mathbb{R}$$
, obj = 88

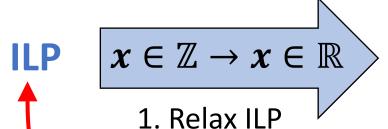
subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 85

What happens?

Optimal

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

subproblem 1

$$x \in \mathbb{R}$$
, obj = 98

$$x \in \mathbb{Z}$$
, obj = 90

4. Solve subproblem LPs.

subproblem 2
5. Formulate two new LPs that split the subproblem on some non-integer variable.

$$x \in \mathbb{R}$$
, obj = 88

subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 97

6. Solve the subproblem LPs.

7. Repeat.

 $x \in \mathbb{Z} \to x \in \mathbb{R}$ **ILP**

1. Relax ILP

LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

UB = 97

LB = 90

subproblem 1

$$x \in \mathbb{R}$$
, obj = 98

$$x \in \mathbb{Z}$$
, obj = 90

4. Solve subproblem LPs.

subproblem 2 5. Formulate two new LPs that split the subproblem on some non-integer variable.

6. Solve the subproblem LPs.

7. Repeat.

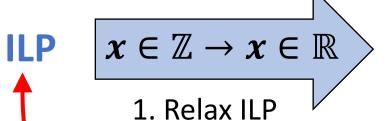
$$x \in \mathbb{R}$$
, obj = 88

subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 97

subproblem 1.2.1

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

UB = ?

LB = ?

$$x \in \mathbb{R}$$
, obj = 98

$$x \in \mathbb{Z}$$
, obj = 90

4. Solve subproblem LPs. subproblem 2 5. Formulate two new LPs

> that split the subproblem on some non-integer variable.

6. Solve the subproblem LPs.

7. Repeat.

$$x \in \mathbb{R}$$
, obj = 88

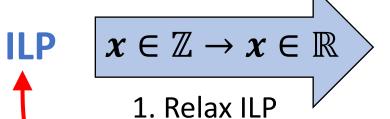
subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 97

What subproblem 1.2.1 happens $x \in \mathbb{R}$, obj = 94

$$x \in \mathbb{Z}$$
, obj = 95

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

4. Solve subproblem LPs.

subproblem 1

$$x \in \mathbb{R}$$
, obj = 98

$$x \in \mathbb{Z}$$
, obj = 90

subproblem 2 5. Formulate two new LPs that split the subproblem on some non-integer variable.

$$x \in \mathbb{R}$$
, obj = 88

subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 97

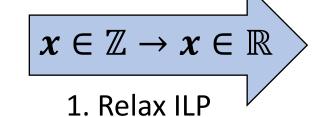
- 6. Solve the subproblem LPs.
- 7. Repeat.

What happens?

$$x \in \mathbb{R}$$
, obj = 94

$$x \in \mathbb{Z}$$
, obj = 95

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

UB = ?

ILP

 $x \in \mathbb{R}$, obj = 98

$$x \in \mathbb{Z}$$
, obj = 90

4. Solve subproblem LPs.

subproblem 2 5. Formulate two new LPs that split the subproblem on some non-integer variable.

subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 88

$$x \in \mathbb{R}$$
, obj = 97

- 6. Solve the subproblem LPs.
- 7. Repeat.

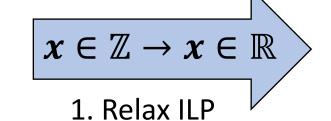
What happens

subproblem 1.2.1

$$x \in \mathbb{R}$$
, obj = 85

$$x \in \mathbb{Z}$$
, obj = 89

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

subproblem 2 5. Formulate two new LPs
$$x \in \mathbb{Z}$$
, obj = 90 that split the subproblem on

some non-integer variable.

4. Solve subproblem LPs.

UB = 90

ILP

$$x \in \mathbb{R}$$
, obj = 98

subproblem 1

subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 97

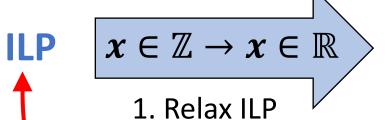
- 6. Solve the subproblem LPs.
- 7. Repeat.

$$x \in \mathbb{R}$$
, obj = 88

What happens? $x \in \mathbb{R}$, obj = 85

$$x \in \mathbb{Z}$$
, obj = 89

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

UB = ?

LB = ?

subproblem 1

$$x \in \mathbb{R}$$
, obj = 98

$$x \in \mathbb{Z}$$
, obj = 90

subproblem 2 5. Formulate two new LPs that split the subproblem on

some non-integer variable.

4. Solve subproblem LPs.

$$x \in \mathbb{R}$$
, obj = 88

subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 97

- 6. Solve the subproblem LPs.
- 7. Repeat.

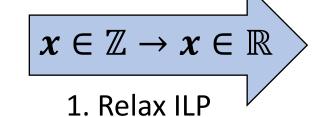
What happens

subproblem 1.2.1

$$x \in \mathbb{R}$$
, obj = 89

$$x \in \mathbb{R}$$
, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

ILP

UB = 90

LB = 90

subproblem 1

$$x \in \mathbb{R}$$
, obj = 98

subproblem 2

$$x \in \mathbb{Z}$$
, obj = 90

4. Solve subproblem LPs.

5. Formulate two new LPs $x \in \mathbb{Z}$, obj = 90 that split the subproblem on some non-integer variable.

$$x \in \mathbb{R}$$
, obj = 88

subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 97

6. Solve the subproblem LPs.

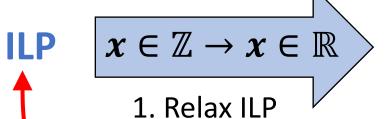
7. Repeat.

What happens?

$$x \in \mathbb{R}$$
, obj = 89

$$x \in \mathbb{R}$$
, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

UB = ?

LB = ?

subproblem 1

$$x \in \mathbb{R}$$
, obj = 98

$$x \in \mathbb{Z}$$
, obj = 90

subproblem 2 5. Formulate two new LPs that split the subproblem on

4. Solve subproblem LPs.

some non-integer variable.

subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 97

- 6. Solve the subproblem LPs.
- 7. Repeat.

$$x \in \mathbb{R}$$
, obj = 88

What subproblem 1.2.1 happens $x \in \mathbb{R}$, obj = 94

$$x \in \mathbb{Z}$$
, obj = 88

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).

 $x \in \mathbb{Z} \to x \in \mathbb{R}$ 1. Relax ILP

LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

ILP

UB = 94

LB = 90

$$x \in \mathbb{R}$$
, obj = 98

subproblem 2

$$x \in \mathbb{Z}$$
, obj = 90

- 4. Solve subproblem LPs.
- 5. Formulate two new LPs that split the subproblem on some non-integer variable.
- 6. Solve the subproblem LPs.
- 7. Repeat.

$$x \in \mathbb{R}$$
, obj = 88

subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 97

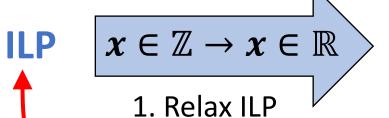
What subproblem 1.2.1 happens? $x \in \mathbb{R}$, obj = 94

subproblem 1.2.2

$$x \in \mathbb{Z}$$
, obj = 88

Need to continue. There could be an integer solution buried in subproblem 1.2.1 with a better objective value.

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

$$x \in \mathbb{R}$$
, obj = 98

$$x \in \mathbb{Z}$$
, obj = 90

subproblem 2 5. Formulate two new LPs that split the subproblem on

4. Solve subproblem LPs.

some non-integer variable.

$$x \in \mathbb{R}$$
, obj = 88

subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 97

What happens?

UB = ?

LB = ?

subproblem 1.2.1

$$x \in \mathbb{R}$$
, obj = 94

$$x \in \mathbb{Z}$$
, obj = 92

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).

 $x \in \mathbb{Z} \to x \in \mathbb{R}$

1. Relax ILP

LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

ILP

UB = 94

LB = 92

subproblem 1

$$x \in \mathbb{R}$$
, obj = 98

- 4. Solve subproblem LPs.
- $x \in \mathbb{Z}$, obj = 90

subproblem 2

5. Formulate two new LPs that split the subproblem on some non-integer variable.

$$x \in \mathbb{R}$$
, obj = 88

subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 97

- 6. Solve the subproblem LPs.
- 7. Repeat.

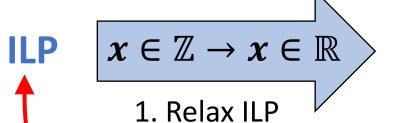
What subproblem 1.2.1 happens? $x \in \mathbb{R}$, obj = 94

subproblem 1.2.2

 $x \in \mathbb{Z}$, obj = 92

Need to continue. There could be an integer solution buried in subproblem 1.2.1 with a better objective value.

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

subproblem 1

$$x \in \mathbb{R}$$
, obj = 98

$$x \in \mathbb{Z}$$
, obj = 90

- 4. Solve subproblem LPs.
- subproblem 2 5. Formulate two new LPs $x \in \mathbb{Z}$, obj = 90 that split the subproblem on some non-integer variable.

$$x \in \mathbb{R}$$
, obj = 97

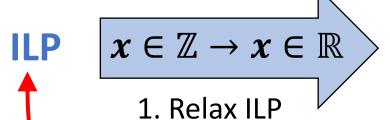
- 6. Solve the subproblem LPs.
- 7. Repeat.

$$x \in \mathbb{R}$$
, obj = 88

$$x \in \mathbb{R}$$
, obj = 85

$$x \in \mathbb{Z}$$
, obj = 89

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximization

UB = 90

LB = 90

subproblem 1

$$x \in \mathbb{R}$$
, obj = 98

subproblem 2

$$x \in \mathbb{Z}$$
, obj = 90

4. Solve subproblem LPs.

5. Formulate two new LPs $x \in \mathbb{Z}$, obj = 90 that split the subproblem on some non-integer variable.

subproblem 1.2

$$x \in \mathbb{R}$$
, obj = 88 $x \in \mathbb{R}$, obj = 97

6. Solve the subproblem LPs.

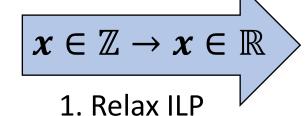
7. Repeat.

$$x \in \mathbb{R}$$
, obj = 85

$$x \in \mathbb{Z}$$
, obj = 89

Is this process guaranteed to eventually find the optimal integer solution?

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

Maximizatid Is this process guaranteed to eventually find the optimal integer solution?

> Yes, given enough constraints like $x_i \geq 3$ and $x_i \leq 3$, all variables will be bounded to their optimal integer values.

blem LPs.

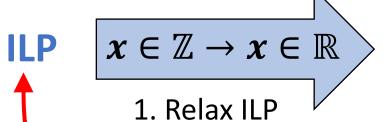
lo new LPs bproblem on

er variable.

em LPs.

$$x \in \mathbb{R}$$
, obj

2. Solve relaxed LP. Suppose the optimal objective is 100 with a fractional solution (e.g. some $x_i = 3.24$).



LP Relaxation

$$x \in \mathbb{R}$$
, obj = 100

3. Formulate two new LPs. One with $x_i \ge 4$ and the other with $x_i \le 3$ constraints.

$$LB = 90$$

Maximizatid Is this process guaranteed to eventually find the optimal integer solution?

> Yes, given enough constraints like $x_i \geq 3$ and $x_i \leq 3$, all variables will be bounded to their optimal integer values.

 $x \in \mathbb{R}$, obj

Other techniques (cutting planes, intelligently picking which x_i to split on) can help speed up he process.

blem LPs.

o new LPs bproblem on er variable.

em LPs.