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Proving Optimality
𝑥!, 𝑥", 𝑥# ∈ ℝ
Objective: max 100𝑥! + 300𝑥" + 150𝑥#
Subject to: 𝑥" ≤ 20 A

𝑥! + 𝑥" + 𝑥# ≤ 40 B
2𝑥! + 𝑥" ≤ 60 C
𝑥!, 𝑥", 𝑥# ≥ 0

𝑥"

𝑥!

𝑥#
𝑥! ≤ 20

2𝑥" + 𝑥# ≤ 60

𝑥" + 𝑥! + 𝑥# ≤ 40

opt = 𝟎, 𝟐𝟎, 𝟐𝟎
obj = 𝟗𝟎𝟎𝟎

150 (constraint A) + 150 (constraint B) ⟹ 150𝑥! + 300𝑥# + 150𝑥" ≤ 9000



Proving Optimality
𝑥!, 𝑥", 𝑥# ∈ ℝ
Objective: max 100𝑥! + 300𝑥" + 150𝑥#
Subject to: 𝑥" ≤ 20 A

𝑥! + 𝑥" + 𝑥# ≤ 40 B
2𝑥! + 𝑥" ≤ 60 C
𝑥!, 𝑥", 𝑥# ≥ 0

𝑥"

𝑥!

𝑥#
𝑥! ≤ 20

2𝑥" + 𝑥# ≤ 60

𝑥" + 𝑥! + 𝑥# ≤ 40

opt = 𝟎, 𝟐𝟎, 𝟐𝟎
obj = 𝟗𝟎𝟎𝟎

150 (constraint A) + 150 (constraint B) ⟹ 150𝑥! + 300𝑥# + 150𝑥" ≤ 9000
⟹ 100𝑥! + 300𝑥# + 150𝑥" ≤ 9000



Proving Optimality
𝑥!, 𝑥", 𝑥# ∈ ℝ
Objective: max 100𝑥! + 300𝑥" + 150𝑥#
Subject to: 𝑥" ≤ 20 A

𝑥! + 𝑥" + 𝑥# ≤ 40 B
2𝑥! + 𝑥" ≤ 60 C
𝑥!, 𝑥", 𝑥# ≥ 0

𝑥"

𝑥!

𝑥#
𝑥! ≤ 20

2𝑥" + 𝑥# ≤ 60

𝑥" + 𝑥! + 𝑥# ≤ 40

opt = 𝟎, 𝟐𝟎, 𝟐𝟎
obj = 𝟗𝟎𝟎𝟎

150 (constraint A) + 150 (constraint B) ⟹ 150𝑥! + 300𝑥# + 150𝑥" ≤ 9000
⟹ 100𝑥! + 300𝑥# + 150𝑥" ≤ 9000

How did we get these coefficients?



Proving Optimality
Multiplier Constraint
𝑦" 𝑥! ≤ 20
𝑦! 𝑥" + 𝑥! + 𝑥# ≤ 40
𝑦# 2𝑥" + 𝑥# ≤ 60

𝑦"(Constraint A) + 𝑦!(Constraint B) + 𝑦#(Constraint C)

Don’t worry about non-negativity 
constraints for the moment.

Objective: max100𝑥" + 300𝑥! + 150𝑥#
Subject to: 𝑥! ≤ 20 A

𝑥" + 𝑥! + 𝑥# ≤ 40 B
2𝑥" + 𝑥# ≤ 60 C
𝑥", 𝑥! ≥ 0



Proving Optimality

Objective: max100𝑥" + 300𝑥! + 150𝑥#
Subject to: 𝒙𝟐 ≤ 𝟐𝟎 A

𝑥" + 𝑥! + 𝑥# ≤ 40 B
𝟐𝒙𝟏 + 𝒙𝟑 ≤ 𝟔𝟎 C
𝑥", 𝑥! ≥ 0

Multiplier Constraint
𝑦" 𝑥! ≤ 20
𝑦! 𝑥" + 𝑥! + 𝑥# ≤ 40
𝑦# 2𝑥" + 𝑥# ≤ 60

𝑦"(Constraint A) + 𝑦!(Constraint B) + 𝑦#(Constraint C)
⟹ 𝒚𝟏𝒙𝟐 + 𝑦!𝑥" + 𝑦!𝑥! + 𝑦!𝑥# + 𝟐𝒚𝟑𝒙𝟏 + 𝒚𝟑𝒙𝟑 ≤ 𝟐𝟎𝒚𝟏 + 40𝑦! + 𝟔𝟎𝒚𝟑



Proving Optimality

Objective: max100𝑥" + 300𝑥! + 150𝑥#
Subject to: 𝑥! ≤ 20 A

𝑥" + 𝑥! + 𝑥# ≤ 40 B
2𝑥" + 𝑥# ≤ 60 C
𝑥", 𝑥! ≥ 0

Multiplier Constraint
𝑦" 𝑥! ≤ 20
𝑦! 𝑥" + 𝑥! + 𝑥# ≤ 40
𝑦# 2𝑥" + 𝑥# ≤ 60

𝑦"(Constraint A) + 𝑦!(Constraint B) + 𝑦#(Constraint C)
⟹ 𝑦"𝑥! + 𝑦!𝑥" + 𝑦!𝑥! + 𝑦!𝑥# + 2𝑦#𝑥" + 𝑦#𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#

𝑦! need to be ≥ 0, because multiplying 
by negative swaps the inequality sign.



Proving Optimality

Objective: max100𝑥" + 300𝑥! + 150𝑥#
Subject to: 𝑥! ≤ 20 A

𝑥" + 𝑥! + 𝑥# ≤ 40 B
2𝑥" + 𝑥# ≤ 60 C
𝑥", 𝑥! ≥ 0

Multiplier Constraint
𝑦" 𝑥! ≤ 20
𝑦! 𝑥" + 𝑥! + 𝑥# ≤ 40
𝑦# 2𝑥" + 𝑥# ≤ 60

𝑦"(Constraint A) + 𝑦!(Constraint B) + 𝑦#(Constraint C)
⟹ 𝑦"𝑥! + 𝑦!𝑥" + 𝑦!𝑥! + 𝑦!𝑥# + 2𝑦#𝑥" + 𝑦#𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#
⟹ 𝑦! + 2𝑦# 𝑥" + 𝑦" + 𝑦! 𝑥! + (𝑦! + 𝑦#)𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#



Proving Optimality

Objective: max100𝑥" + 300𝑥! + 150𝑥#
Subject to: 𝑥! ≤ 20 A

𝑥" + 𝑥! + 𝑥# ≤ 40 B
2𝑥" + 𝑥# ≤ 60 C
𝑥", 𝑥! ≥ 0

Multiplier Constraint
𝑦" 𝑥! ≤ 20
𝑦! 𝑥" + 𝑥! + 𝑥# ≤ 40
𝑦# 2𝑥" + 𝑥# ≤ 60

𝑦"(Constraint A) + 𝑦!(Constraint B) + 𝑦#(Constraint C)
⟹ 𝑦"𝑥! + 𝑦!𝑥" + 𝑦!𝑥! + 𝑦!𝑥# + 2𝑦#𝑥" + 𝑦#𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#
⟹ 𝑦! + 2𝑦# 𝑥" + 𝑦" + 𝑦! 𝑥! + (𝑦! + 𝑦#)𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#

Want to make this look like this.



Proving Optimality

Objective: max100𝑥" + 300𝑥! + 150𝑥#
Subject to: 𝑥! ≤ 20 A

𝑥" + 𝑥! + 𝑥# ≤ 40 B
2𝑥" + 𝑥# ≤ 60 C
𝑥", 𝑥! ≥ 0

Multiplier Constraint
𝑦" 𝑥! ≤ 20
𝑦! 𝑥" + 𝑥! + 𝑥# ≤ 40
𝑦# 2𝑥" + 𝑥# ≤ 60

𝑦"(Constraint A) + 𝑦!(Constraint B) + 𝑦#(Constraint C)
⟹ 𝑦"𝑥! + 𝑦!𝑥" + 𝑦!𝑥! + 𝑦!𝑥# + 2𝑦#𝑥" + 𝑦#𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#
⟹ 𝑦! + 2𝑦# 𝑥" + 𝑦" + 𝑦! 𝑥! + (𝑦! + 𝑦#)𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#

⟹ 100𝑥" + 300𝑥! + 150𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#, If: 𝑦! + 2𝑦# ≥ 100
𝑦" + 𝑦! ≥ 300
𝑦! + 𝑦# ≥ 150
𝑦", 𝑦!, 𝑦# ≥ 0



Proving Optimality

Objective: max𝟏𝟎𝟎𝑥" + 300𝑥! + 150𝑥#
Subject to: 𝑥! ≤ 20 A

𝑥" + 𝑥! + 𝑥# ≤ 40 B
2𝑥" + 𝑥# ≤ 60 C
𝑥", 𝑥! ≥ 0

Multiplier Constraint
𝑦" 𝑥! ≤ 20
𝑦! 𝑥" + 𝑥! + 𝑥# ≤ 40
𝑦# 2𝑥" + 𝑥# ≤ 60

𝑦"(Constraint A) + 𝑦!(Constraint B) + 𝑦#(Constraint C)
⟹ 𝑦"𝑥! + 𝑦!𝑥" + 𝑦!𝑥! + 𝑦!𝑥# + 2𝑦#𝑥" + 𝑦#𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#
⟹ 𝒚𝟐 + 𝟐𝒚𝟑 𝑥" + 𝑦" + 𝑦! 𝑥! + (𝑦! + 𝑦#)𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#

⟹ 100𝑥" + 300𝑥! + 150𝑥# ≤ 𝟐𝟎𝒚𝟏 + 𝟒𝟎𝒚𝟐 + 𝟔𝟎𝒚𝟑, If: 𝑦! + 2𝑦# ≥ 100
𝑦" + 𝑦! ≥ 300
𝑦! + 𝑦# ≥ 150
𝑦", 𝑦!, 𝑦# ≥ 0

≥ because the coefficient needs to bound 
the objective from above so that we get a 
bound on the the objective function.



Proving Optimality

Objective: max100𝑥" + 300𝑥! + 150𝑥#
Subject to: 𝑥! ≤ 20 A

𝑥" + 𝑥! + 𝑥# ≤ 40 B
2𝑥" + 𝑥# ≤ 60 C
𝑥", 𝑥! ≥ 0

Multiplier Constraint
𝑦" 𝑥! ≤ 20
𝑦! 𝑥" + 𝑥! + 𝑥# ≤ 40
𝑦# 2𝑥" + 𝑥# ≤ 60

𝑦"(Constraint A) + 𝑦!(Constraint B) + 𝑦#(Constraint C)
⟹ 𝑦"𝑥! + 𝑦!𝑥" + 𝑦!𝑥! + 𝑦!𝑥# + 2𝑦#𝑥" + 𝑦#𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#
⟹ 𝑦! + 2𝑦# 𝑥" + 𝑦" + 𝑦! 𝑥! + (𝑦! + 𝑦#)𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#

⟹ 100𝑥" + 300𝑥! + 150𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#, If: 𝑦! + 2𝑦# ≥ 100
𝑦" + 𝑦! ≥ 300
𝑦! + 𝑦# ≥ 150
𝑦", 𝑦!, 𝑦# ≥ 0So, we need to find 𝑦 values that minimize this



Proving Optimality

Objective: max100𝑥" + 300𝑥! + 150𝑥#
Subject to: 𝑥! ≤ 20 A

𝑥" + 𝑥! + 𝑥# ≤ 40 B
2𝑥" + 𝑥# ≤ 60 C
𝑥", 𝑥! ≥ 0

Multiplier Constraint
𝑦" 𝑥! ≤ 20
𝑦! 𝑥" + 𝑥! + 𝑥# ≤ 40
𝑦# 2𝑥" + 𝑥# ≤ 60

𝑦"(Constraint A) + 𝑦!(Constraint B) + 𝑦#(Constraint C)
⟹ 𝑦"𝑥! + 𝑦!𝑥" + 𝑦!𝑥! + 𝑦!𝑥# + 2𝑦#𝑥" + 𝑦#𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#
⟹ 𝑦! + 2𝑦# 𝑥" + 𝑦" + 𝑦! 𝑥! + (𝑦! + 𝑦#)𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#

⟹ 100𝑥" + 300𝑥! + 150𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#, If: 𝑦! + 2𝑦# ≥ 100
𝑦" + 𝑦! ≥ 300
𝑦! + 𝑦# ≥ 150
𝑦", 𝑦!, 𝑦# ≥ 0So, we need to find 𝑦 values that minimize this

without violating any of these.



Proving Optimality

Objective: max100𝑥" + 300𝑥! + 150𝑥#
Subject to: 𝑥! ≤ 20 A

𝑥" + 𝑥! + 𝑥# ≤ 40 B
2𝑥" + 𝑥# ≤ 60 C
𝑥", 𝑥! ≥ 0

Multiplier Constraint
𝑦" 𝑥! ≤ 20
𝑦! 𝑥" + 𝑥! + 𝑥# ≤ 40
𝑦# 2𝑥" + 𝑥# ≤ 60

𝑦"(Constraint A) + 𝑦!(Constraint B) + 𝑦#(Constraint C)
⟹ 𝑦"𝑥! + 𝑦!𝑥" + 𝑦!𝑥! + 𝑦!𝑥# + 2𝑦#𝑥" + 𝑦#𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#
⟹ 𝑦! + 2𝑦# 𝑥" + 𝑦" + 𝑦! 𝑥! + (𝑦! + 𝑦#)𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#

⟹ 100𝑥" + 300𝑥! + 150𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#, If: 𝑦! + 2𝑦# ≥ 100
𝑦" + 𝑦! ≥ 300
𝑦! + 𝑦# ≥ 150
𝑦", 𝑦!, 𝑦# ≥ 0So, we need to find 𝑦 values that minimize this

without violating any of these.

Linear Programmize™ It!



Dual

Objective: max100𝑥" + 300𝑥! + 150𝑥#
Subject to: 𝑥! ≤ 20 A

𝑥" + 𝑥! + 𝑥# ≤ 40 B
2𝑥" + 𝑥# ≤ 60 C
𝑥", 𝑥! ≥ 0

𝑦"(Constraint A) + 𝑦!(Constraint B) + 𝑦#(Constraint C)
⟹ 𝑦"𝑥! + 𝑦!𝑥" + 𝑦!𝑥! + 𝑦!𝑥# + 2𝑦#𝑥" + 𝑦#𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#
⟹ 𝑦! + 2𝑦# 𝑥" + 𝑦" + 𝑦! 𝑥! + (𝑦! + 𝑦#)𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#

⟹ 100𝑥" + 300𝑥! + 150𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#, If: 𝑦! + 2𝑦# ≥ 100
𝑦" + 𝑦! ≥ 300
𝑦! + 𝑦# ≥ 150
𝑦", 𝑦!, 𝑦# ≥ 0

Objective: min20𝑦" + 40𝑦! + 60𝑦#
Subject to: 𝑦! + 2𝑦# ≥ 100

𝑦" + 𝑦! ≥ 300
𝑦! + 𝑦# ≥ 150
𝑦", 𝑦!, 𝑦# ≥ 0



Dual

Objective: max100𝑥" + 300𝑥! + 150𝑥#
Subject to: 𝑥! ≤ 20 A

𝑥" + 𝑥! + 𝑥# ≤ 40 B
2𝑥" + 𝑥# ≤ 60 C
𝑥", 𝑥! ≥ 0

𝑦"(Constraint A) + 𝑦!(Constraint B) + 𝑦#(Constraint C)
⟹ 𝑦"𝑥! + 𝑦!𝑥" + 𝑦!𝑥! + 𝑦!𝑥# + 2𝑦#𝑥" + 𝑦#𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#
⟹ 𝑦! + 2𝑦# 𝑥" + 𝑦" + 𝑦! 𝑥! + (𝑦! + 𝑦#)𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#

⟹ 100𝑥" + 300𝑥! + 150𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#, If: 𝑦! + 2𝑦# ≥ 100
𝑦" + 𝑦! ≥ 300
𝑦! + 𝑦# ≥ 150
𝑦", 𝑦!, 𝑦# ≥ 0

Objective: min20𝑦" + 40𝑦! + 60𝑦#
Subject to: 𝑦! + 2𝑦# ≥ 100

𝑦" + 𝑦! ≥ 300
𝑦! + 𝑦# ≥ 150
𝑦", 𝑦!, 𝑦# ≥ 0

Roughly, we’ve made an LP that turned constraints
into variables and variables into constraints.



Dual

Objective: max100𝑥" + 300𝑥! + 150𝑥#
Subject to: 0𝑥" + 1𝑥! + 0𝑥# ≤ 20 A

1𝑥" + 1𝑥! + 1𝑥# ≤ 40 B
2𝑥" + 0𝑥! + 1𝑥# ≤ 60 C
𝑥", 𝑥! ≥ 0

𝑦"(Constraint A) + 𝑦!(Constraint B) + 𝑦#(Constraint C)
⟹ 𝑦"𝑥! + 𝑦!𝑥" + 𝑦!𝑥! + 𝑦!𝑥# + 2𝑦#𝑥" + 𝑦#𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#
⟹ 𝑦! + 2𝑦# 𝑥" + 𝑦" + 𝑦! 𝑥! + (𝑦! + 𝑦#)𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#

⟹ 100𝑥" + 300𝑥! + 150𝑥# ≤ 20𝑦" + 40𝑦! + 60𝑦#, If: 𝑦! + 2𝑦# ≥ 100
𝑦" + 𝑦! ≥ 300
𝑦! + 𝑦# ≥ 150
𝑦", 𝑦!, 𝑦# ≥ 0

Objective: min20𝑦" + 40𝑦! + 60𝑦#
Subject to: 𝑦! + 2𝑦# ≥ 100

𝑦" + 𝑦! ≥ 300
𝑦! + 𝑦# ≥ 150
𝑦", 𝑦!, 𝑦# ≥ 0



Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

Dual

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Objective: min 20 40 60
𝑦"
𝑦!
𝑦#

Subject to:
0 1 2
1 1 0
0 1 1

𝑦"
𝑦!
𝑦#

≥
100
300
150𝑦"

𝑦!
𝑦#

≥
0
0
0

Objective: max 100 300 150
𝑥"
𝑥!
𝑥#

Subject to:
0 1 0
1 1 1
2 0 1

𝑥"
𝑥!
𝑥#

≤
20
40
60𝑥"

𝑥!
𝑥#

≥
0
0
0



Duality

Theorem: The dual of a dual is the original primal.

Proof: ?

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0



Duality

Theorem: The dual of a dual is the original primal.

Proof:

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Objective: min bTy
Subject to: AT y ≥ c

y ≥ 0

Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0



Objective: max −bTy
Subject to: -AT y ≤ -c

y ≥ 0

Duality

Theorem: The dual of a dual is the original primal.

Proof:

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Objective: min bTy
Subject to: AT y ≥ c

y ≥ 0

Standard Form

Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0



Objective: max −bTy
Subject to: -AT y ≤ -c

y ≥ 0

Duality

Theorem: The dual of a dual is the original primal.

Proof:

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Objective: min bTy
Subject to: AT y ≥ c

y ≥ 0

Objective: min −cT z

Subject to: -ATT
z ≥ -b

z ≥ 0
Standard Form Dual

Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0



Objective: max −bTy
Subject to: -AT y ≤ -c

y ≥ 0

Duality

Theorem: The dual of a dual is the original primal.

Proof:

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Objective: min bTy
Subject to: AT y ≥ c

y ≥ 0

Objective: min −cT z

Subject to: -ATT
z ≥ -b

z ≥ 0

Objective: max cT z
Subject to: A z ≤ b

z ≥ 0

Standard Form Dual Standard Form

Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0



Duality

Theorem (Weak Duality): cT x∗ ≤ bT y∗, for all feasible solutions to the primal x∗, 
and all feasible solutions to the dual y∗.

Proof: ?

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

I.e., The objective value of every feasible solution 
to the primal is less than or equal to the objective 
value of every feasible solution to the dual.



Duality

Theorem (Weak Duality): cT x∗ ≤ bT y∗, for all feasible solutions to the primal x∗, 
and all feasible solutions to the dual y∗.

Proof:
cTx∗ ≤ (ATy∗)Tx∗

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

Since AT y ≥ c



Duality

Theorem (Weak Duality): cT x∗ ≤ bT y∗, for all feasible solutions to the primal x∗, 
and all feasible solutions to the dual y∗.

Proof:
cTx∗ ≤ (ATy∗)Tx∗ = (y∗T A)x∗

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

Since transpose of multiplication is 
multiplication of transposes (reversed)
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and all feasible solutions to the dual y∗.

Proof:
cTx∗ ≤ (ATy∗)Tx∗ = (y∗T A)x∗ = y∗T (Ax∗)

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

Since matrix multiplication is associative



Duality

Theorem (Weak Duality): cT x∗ ≤ bT y∗, for all feasible solutions to the primal x∗, 
and all feasible solutions to the dual y∗.

Proof:
cTx∗ ≤ (ATy∗)Tx∗ = (y∗T A)x∗ = y∗T (Ax∗) ≤ y∗T b

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Primal
Objective: max cT x
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x ≥ 0

Since A x ≤ b



Duality

Theorem (Weak Duality): cT x∗ ≤ bT y∗, for all feasible solutions to the primal x∗, 
and all feasible solutions to the dual y∗.

Proof:
cTx∗ ≤ (ATy∗)Tx∗ = (y∗T A)x∗ = y∗T (Ax∗) ≤ y∗T b = bTy∗

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

Since b and 0y are 1-dimensional vectors. 
𝑦" 𝑦! 𝑦#

20
40
60

= 20 40 60
𝑦"
𝑦!
𝑦#
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Theorem (Weak Duality): cT x∗ ≤ bT y∗, for all feasible solutions to the primal x∗, 
and all feasible solutions to the dual y∗.

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

Weak Duality holds for integer 
linear programs and is a 
useful tool for approximating 
solutions to hard problems
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Duality

Theorem (Weak Duality): cT x∗ ≤ bT y∗, for all feasible solutions to the primal x∗, 
and all feasible solutions to the dual y∗.

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

Weak Duality holds for integer 
linear programs and is a 
useful tool for approximating 
solutions to hard problems cTx∗ bTy∗

cTx𝒐𝒑𝒕

Duality Gap



Duality

Theorem (Strong Duality): If either the primal or the dual has a finite optimal 
solution, then the other does as well, and their optimal objectives are equal.

Proof: A little more complicated…

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0
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Theorem (Strong Duality): If either the primal or the dual has a finite optimal 
solution, then the other does as well, and their optimal objectives are equal.

Consequences:
• The optimal objective value for the primal (dual) gives you the optimal 

value for the dual (primal).

Dual
Objective: min bT y
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Primal
Objective: max cT x
Subject to: A x ≤ b
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Duality

Theorem (Strong Duality): If either the primal or the dual has a finite optimal 
solution, then the other does as well, and their optimal objectives are equal.

Consequences:
• The optimal objective value for the primal (dual) gives you the optimal 

value for the dual (primal).
• If one is unbounded (i.e., infinite optimal solution) the other is infeasible 

(i.e., no optimal solutions).

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0



Duality

Theorem (Strong Duality): If either the primal or the dual has a finite optimal 
solution, then the other does as well, and their optimal objectives are equal.

Consequences:
• The optimal objective value for the primal (dual) gives you the optimal 

value for the dual (primal).
• If one is unbounded (i.e., infinite optimal solution) the other is infeasible 

(i.e., no optimal solutions).
• Does not hold for integer linear programming.

Dual
Objective: min bT y
Subject to: AT y ≥ c

y ≥ 0

Primal
Objective: max cT x
Subject to: A x ≤ b

x ≥ 0



Example

𝑥((,*) = Amount of flow on edge 𝑢, 𝑣

Objective: max∑ ,,* ∈. 𝑥 ,,*

Subject to:
𝑥((,*) ≤ 𝑐((,*), ∀(𝑢, 𝑣) ∈ 𝐸
∑(/,()∈. 𝑥(/,() − ∑((,0)∈. 𝑥((,0) = 0, 

∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡}
𝑥((,*) ≥ 0, ∀(𝑢, 𝑣) ∈ 𝐸

Maximum Flow 
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Maximum Flow Shortest Path
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Objective: max∑ ,,* ∈. 𝑥 ,,*

Subject to:
𝑥((,*) ≤ 𝑐((,*), ∀(𝑢, 𝑣) ∈ 𝐸
∑(/,()∈. 𝑥(/,() − ∑((,0)∈. 𝑥((,0) = 0, 

∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡}
𝑥((,*) ≥ 0, ∀(𝑢, 𝑣) ∈ 𝐸

𝑥((,*) = Amount of flow on edge 𝑢, 𝑣

Objective: max∑ ,,* ∈. 𝑥 ,,*

Subject to:
𝑥((,*) ≤ 𝑐((,*), ∀(𝑢, 𝑣) ∈ 𝐸
∑(/,()∈. 𝑥(/,() − ∑((,0)∈. 𝑥((,0) = 0, 

∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡}
∑ ,,* ∈. 𝑥 ,,* = 1
𝑥((,*) ≥ 0, ∀(𝑢, 𝑣) ∈ 𝐸

Maximum Flow Shortest Path



Example

𝑥((,*) = Amount of flow on edge 𝑢, 𝑣

Objective: max∑ ,,* ∈. 𝑥 ,,*

Subject to:
𝑥((,*) ≤ 𝑐((,*), ∀(𝑢, 𝑣) ∈ 𝐸
∑(/,()∈. 𝑥(/,() − ∑((,0)∈. 𝑥((,0) = 0, 

∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡}
𝑥((,*) ≥ 0, ∀(𝑢, 𝑣) ∈ 𝐸
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Shortest Path

𝑥((,*) = Amount of flow on edge 𝑢, 𝑣

Objective: min∑ (,* ∈. 𝑐 (,* 𝑥 (,*

Subject to:
∑(/,()∈. 𝑥(/,() − ∑((,0)∈. 𝑥((,0) = 0, 

∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡}
∑ ,,* ∈. 𝑥 ,,* = 1
𝑥((,*) ≥ 0, ∀(𝑢, 𝑣) ∈ 𝐸



Shortest Path

𝑥((,*) = Amount of flow on edge 𝑢, 𝑣

Objective: min∑ (,* ∈. 𝑐 (,* 𝑥 (,*

Subject to:
∑(/,()∈. 𝑥(/,() − ∑((,0)∈. 𝑥((,0) = 0, 

∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡}
∑ ,,* ∈. 𝑥 ,,* = 1
𝑥((,*) ≥ 0, ∀(𝑢, 𝑣) ∈ 𝐸

Dual
Objective: max bT y
Subject to: AT y ≤ c

Primal
Objective: min cT x
Subject to: A x = b

x ≥ 0

This can be derived from 
standard primal/dual 
definitions.



Shortest Path

𝑥((,*) = Amount of flow on edge 𝑢, 𝑣

Objective: min∑ (,* ∈. 𝑐 (,* 𝑥 (,*

Subject to:
∑(/,()∈. 𝑥(/,() − ∑((,0)∈. 𝑥((,0) = 0, 

∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡}
∑ ,,* ∈. 𝑥 ,,* = 1
𝑥((,*) ≥ 0, ∀(𝑢, 𝑣) ∈ 𝐸

Dual
Objective: max bT y
Subject to: AT y ≤ c

Primal
Objective: min cT x
Subject to: A x = b

x ≥ 0

Dual Variables?



Shortest Path

𝑥((,*) = Amount of flow on edge 𝑢, 𝑣

Objective: min∑ (,* ∈. 𝑐 (,* 𝑥 (,*

Subject to:
∑(/,()∈. 𝑥(/,() − ∑((,0)∈. 𝑥((,0) = 0, 

∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡}
∑ ,,* ∈. 𝑥 ,,* = 1
𝑥((,*) ≥ 0, ∀(𝑢, 𝑣) ∈ 𝐸

Dual
Objective: max bT y
Subject to: AT y ≤ c

Primal
Objective: min cT x
Subject to: A x = b

x ≥ 0

𝑦* = Conservation constraints (not 𝑠 or 𝑡)
𝑧 = Source outflow constraint

Dual Variables? Each constraint 
(other than non-negativity) 
from the primal corresponds to 
a variable in the dual.



Shortest Path

𝑥((,*) = Amount of flow on edge 𝑢, 𝑣

Objective: min∑ (,* ∈. 𝑐 (,* 𝑥 (,*

Subject to:
∑(/,()∈. 𝑥(/,() − ∑((,0)∈. 𝑥((,0) = 0, 

∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡}
∑ ,,* ∈. 𝑥 ,,* = 1
𝑥((,*) ≥ 0, ∀(𝑢, 𝑣) ∈ 𝐸

Dual
Objective: max bT y
Subject to: AT y ≤ c

Primal
Objective: min cT x
Subject to: A x = b

x ≥ 0

𝑦* = Conservation constraints (not 𝑠 or 𝑡)
𝑧 = Source outflow constraint

Objective:

Objective?
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Objective: min∑ (,* ∈. 𝑐 (,* 𝑥 (,*

Subject to:
∑(/,()∈. 𝑥(/,() − ∑((,0)∈. 𝑥((,0) = 0, 
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∑ ,,* ∈. 𝑥 ,,* = 1
𝑥((,*) ≥ 0, ∀(𝑢, 𝑣) ∈ 𝐸

Dual
Objective: max bT y
Subject to: AT y ≤ c

Primal
Objective: min cT x
Subject to: A x = b

x ≥ 0

𝑦* = Conservation constraints (not 𝑠 or 𝑡)
𝑧 = Source outflow constraint

Objective: max 𝑧

Objective? The only non-
zero b values are for the 
source outflow constraint. 
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Subject to: A x = b

x ≥ 0

𝑦* = Conservation constraints (not 𝑠 or 𝑡)
𝑧 = Source outflow constraint

Objective: max 𝑧

Subject to:

Constraints? Turn columns 
of A into rows of AT
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Subject to:

When does 𝒙(𝒖,𝒗) show up in A x? 
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Subject to:

When does 𝒙(𝒖,𝒗) show up in A x? 
+1 coefficient for 𝒚𝒗
-1 coefficient for 𝒚𝒖
+1 coefficient if 𝒖 = 𝒔.
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𝑥((,*) = Amount of flow on edge 𝑢, 𝑣
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𝑦* = Conservation constraints (not 𝑠 or 𝑡)
𝑧 = Source outflow constraint
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𝑦* − 𝑦, + 𝑧 ≤ 𝑐 ,,* , ∀ 𝑠, 𝑣 ∈ 𝐸

When does 𝒙(𝒖,𝒗) show up in A x? 
+1 coefficient for 𝒚𝒗
-1 coefficient for 𝒚𝒖
+1 coefficient if 𝒖 = 𝒔.
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We can extend the representation of 
flow out/in flow of a node to 𝒔 and 𝒕.
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The rise in value between neighboring 
nodes can’t exceed the cost of the node. 
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Interpretation?
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Interpretation? How far apart can I pull 
𝒔 and 𝒕 without exceeding edge costs.


