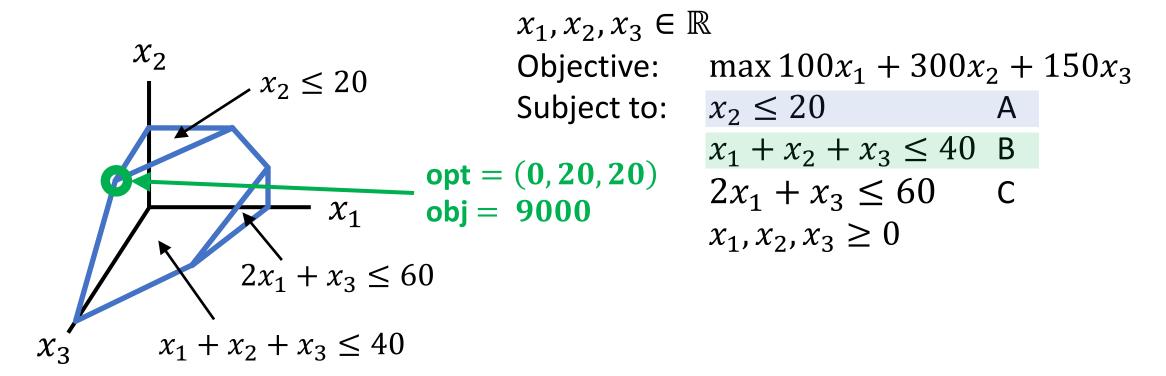
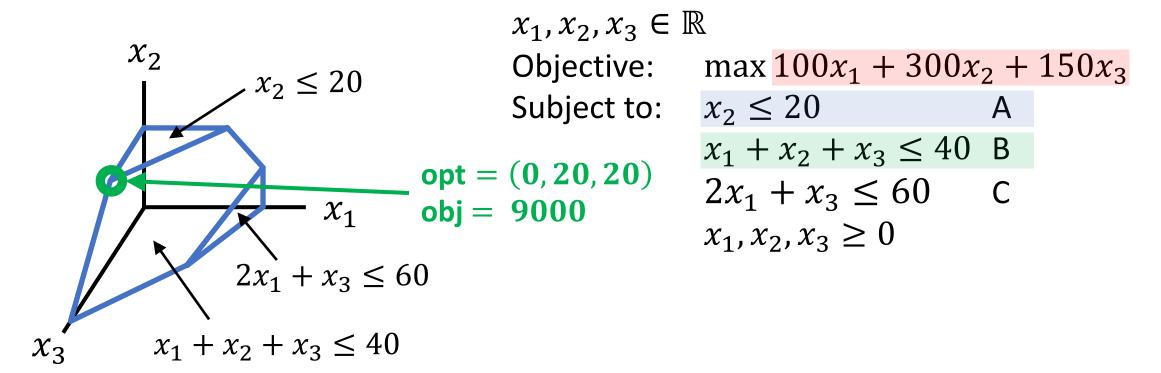
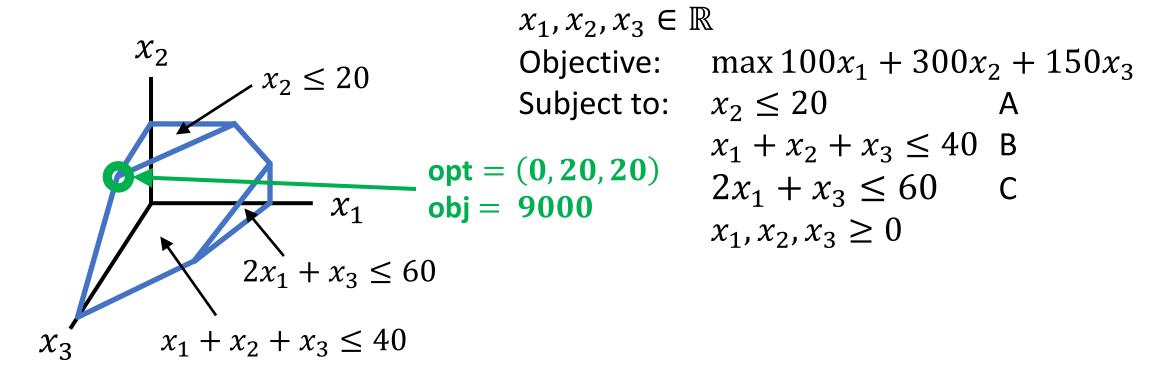
Duality CSCI 532



150 (constraint A) + 150 (constraint B) \Rightarrow 150 x_1 + 300 x_2 + 150 x_3 \leq 9000



150 (constraint A) + 150 (constraint B)
$$\Rightarrow$$
 150 x_1 + 300 x_2 + 150 x_3 \leq 9000 \Rightarrow 100 x_1 + 300 x_2 + 150 x_3 \leq 9000



150 (constraint A) + 150 (constraint B)
$$\Rightarrow$$
 150 x_1 + 300 x_2 + 150 x_3 \leq 9000 \Rightarrow 100 x_1 + 300 x_2 + 150 x_3 \leq 9000

How did we get these coefficients?

Objective: $\max 100x_1 + 300x_2 + 150x_3$

Subject to: $x_2 \le 20$ A

 $x_1 + x_2 + x_3 \le 40$ B

 $2x_1 + x_3 \le 60$ C

 $x_1, x_2 \ge 0$

Multiplier	Constraint
y_1	$x_2 \le 20$
y_2	$x_1 + x_2 + x_3 \le 40$
y_3	$2x_1 + x_3 \le 60$

 y_1 (Constraint A) + y_2 (Constraint B) + y_3 (Constraint C)

Don't worry about non-negativity constraints for the moment.

Objective: $\max 100x_1 + 300x_2 + 150x_3$

Subject to: $x_2 \le 20$

 $x_1 + x_2 + x_3 \le 40$ B

 $2x_1 + x_3 \le 60$

 $x_1, x_2 \ge 0$

Multiplier	Constraint
y_1	$x_2 \le 20$
y_2	$x_1 + x_2 + x_3 \le 40$
y_3	$2x_1 + x_3 \le 60$

$$y_1$$
(Constraint A) + y_2 (Constraint B) + y_3 (Constraint C)
 $\Rightarrow y_1x_2 + y_2x_1 + y_2x_2 + y_2x_3 + 2y_3x_1 + y_3x_3 \le 20y_1 + 40y_2 + 60y_3$

Objective: $\max 100x_1 + 300x_2 + 150x_3$

Subject to: $x_2 \le 20$

 $x_1 + x_2 + x_3 \le 40$ B

 $2x_1 + x_3 \le 60$ C

 $x_1, x_2 \ge 0$

Multiplier	Constraint
y_1	$x_2 \le 20$
y_2	$x_1 + x_2 + x_3 \le 40$
y_3	$2x_1 + x_3 \le 60$

$$y_1$$
(Constraint A) + y_2 (Constraint B) + y_3 (Constraint C)
 $\Rightarrow y_1x_2 + y_2x_1 + y_2x_2 + y_2x_3 + 2y_3x_1 + y_3x_3 \le 20y_1 + 40y_2 + 60y_3$

 y_i need to be ≥ 0 , because multiplying by negative swaps the inequality sign.

Objective: $\max 100x_1 + 300x_2 + 150x_3$

Subject to: $x_2 \le 20$ A

 $x_1 + x_2 + x_3 \le 40$ B

 $2x_1 + x_3 \le 60$ C

 $x_1, x_2 \ge 0$

Multiplier	Constraint
y_1	$x_2 \le 20$
y_2	$x_1 + x_2 + x_3 \le 40$
y_3	$2x_1 + x_3 \le 60$

 y_1 (Constraint A) + y_2 (Constraint B) + y_3 (Constraint C)

$$\Rightarrow y_1x_2 + y_2x_1 + y_2x_2 + y_2x_3 + 2y_3x_1 + y_3x_3 \le 20y_1 + 40y_2 + 60y_3$$

$$\Rightarrow (y_2 + 2y_3)x_1 + (y_1 + y_2)x_2 + (y_2 + y_3)x_3 \le 20y_1 + 40y_2 + 60y_3$$

Objective: $\max 100x_1 + 300x_2 + 150x_3$

Subject to: $x_2 \le 20$ A

 $x_1 + x_2 + x_3 \le 40$ B

 $2x_1 + x_3 \le 60$

 $x_1, x_2 \ge 0$

Multiplier	Constraint
y_1	$x_2 \le 20$
y_2	$x_1 + x_2 + x_3 \le 40$
<i>y</i> ₃	$2x_1 + x_3 \le 60$

 y_1 (Constraint A) + y_2 (Constraint B) + y_3 (Constraint C)

$$\Rightarrow y_1 x_2 + y_2 x_1 + y_2 x_2 + y_2 x_3 + 2y_3 x_1 + y_3 x_3 \le 20 y_1 + 40 y_2 + 60 y_3$$

$$= (y_2 + 2y_3)x_1 + (y_1 + y_2)x_2 + (y_2 + y_3)x_3 \le 20y_1 + 40y_2 + 60y_3$$

Want to make this look like this.

Objective: $\max 100x_1 + 300x_2 + 150x_3$

Subject to: $x_2 \le 20$

 $x_1 + x_2 + x_3 \le 40$ B

 $2x_1 + x_3 \le 60$

 $x_1, x_2 \ge 0$

Multiplier	Constraint
y_1	$x_2 \le 20$
y_2	$x_1 + x_2 + x_3 \le 40$
y_3	$2x_1 + x_3 \le 60$

$$y_1$$
(Constraint A) + y_2 (Constraint B) + y_3 (Constraint C)

$$\Rightarrow y_1 x_2 + y_2 x_1 + y_2 x_2 + y_2 x_3 + 2y_3 x_1 + y_3 x_3 \le 20y_1 + 40y_2 + 60y_3$$

$$\Rightarrow (y_2 + 2y_3)x_1 + (y_1 + y_2)x_2 + (y_2 + y_3)x_3 \le 20y_1 + 40y_2 + 60y_3$$

$$\Rightarrow 100x_1 + 300x_2 + 150x_3 \le 20y_1 + 40y_2 + 60y_3$$
, If: $y_2 + 2y_3 \ge 100$

$$y_1 + y_2 \ge 300$$

$$y_2 + y_3 \ge 150$$

$$y_1, y_2, y_3 \ge 0$$

Objective: $\max \mathbf{100}x_1 + 300x_2 + 150x_3$

Subject to: $x_2 \le 20$

 $x_1 + x_2 + x_3 \le 40$ B

 $2x_1 + x_3 \le 60$

 $x_1, x_2 \ge 0$

Multiplier	Constraint
y_1	$x_2 \le 20$
y_2	$x_1 + x_2 + x_3 \le 40$
y_3	$2x_1 + x_3 \le 60$

 y_1 (Constraint A) + y_2 (Constraint B) + y_3 (Constraint C)

$$\Rightarrow y_1 x_2 + y_2 x_1 + y_2 x_2 + y_2 x_3 + 2y_3 x_1 + y_3 x_3 \le 20y_1 + 40y_2 + 60y_3$$

$$\Rightarrow (y_2 + 2y_3)x_1 + (y_1 + y_2)x_2 + (y_2 + y_3)x_3 \le 20y_1 + 40y_2 + 60y_3$$

$$\Rightarrow 100x_1 + 300x_2 + 150x_3 \le 20y_1 + 40y_2 + 60y_3, \text{ If: } y_2 + 2y_3 \ge 100$$

≥ because the **coefficient** needs to bound the **objective** from above so that we get a **bound on the the objective function.**

$$y_1 + y_2 \ge 300$$

 $y_2 + y_3 \ge 150$
 $y_1, y_2, y_3 \ge 0$

Objective: $\max 100x_1 + 300x_2 + 150x_3$

Subject to: $x_2 \le 20$

 $x_1 + x_2 + x_3 \le 40$ B

 $2x_1 + x_3 \le 60$

 $x_1, x_2 \ge 0$

Multiplier	Constraint
y_1	$x_2 \le 20$
y_2	$x_1 + x_2 + x_3 \le 40$
y_3	$2x_1 + x_3 \le 60$

 y_1 (Constraint A) + y_2 (Constraint B) + y_3 (Constraint C)

$$\Rightarrow y_1 x_2 + y_2 x_1 + y_2 x_2 + y_2 x_3 + 2y_3 x_1 + y_3 x_3 \le 20y_1 + 40y_2 + 60y_3$$

$$\Rightarrow (y_2 + 2y_3)x_1 + (y_1 + y_2)x_2 + (y_2 + y_3)x_3 \le 20y_1 + 40y_2 + 60y_3$$
$$\Rightarrow 100x_1 + 300x_2 + 150x_3 \le 20y_1 + 40y_2 + 60y_3, \text{ If: } y_2 + 2y_3 \ge 100$$

So, we need to find y values that minimize this

$$y_1 + y_2 \ge 300$$

 $y_2 + y_3 \ge 150$
 $y_1, y_2, y_3 \ge 0$

Objective: $\max 100x_1 + 300x_2 + 150x_3$

Subject to: $x_2 \le 20$

 $x_1 + x_2 + x_3 \le 40$ B

 $2x_1 + x_3 \le 60$

 $x_1, x_2 \ge 0$

Multiplier	Constraint
y_1	$x_2 \le 20$
y_2	$x_1 + x_2 + x_3 \le 40$
y_3	$2x_1 + x_3 \le 60$

 y_1 (Constraint A) + y_2 (Constraint B) + y_3 (Constraint C)

$$\Rightarrow y_1x_2 + y_2x_1 + y_2x_2 + y_2x_3 + 2y_3x_1 + y_3x_3 \le 20y_1 + 40y_2 + 60y_3$$

$$\Rightarrow (y_2 + 2y_3)x_1 + (y_1 + y_2)x_2 + (y_2 + y_3)x_3 \le 20y_1 + 40y_2 + 60y_3$$

$$\Rightarrow 100x_1 + 300x_2 + 150x_3 \le 20y_1 + 40y_2 + 60y_3$$
, If: $y_2 + 2y_3 \ge 100$

So, we need to find y values that minimize this without violating any of these.

 $y_1 + y_2 \ge 300$ $y_2 + y_3 \ge 150$ $y_1, y_2, y_3 \ge 0$

 $\max 100x_1 + 300x_2 + 150x_3$ Objective:

Subject to: $x_2 \le 20$

 $x_1 + x_2 + x_3 \le 40$

 $2x_1 + x_3 \le 60$

Multiplier	Constraint
y_1	$x_2 \le 20$
y_2	$x_1 \pm x$

Linear ProgrammizeTM

 $150x_3 \le 20y_1 + 40y_2 + 60y_3$, If: $y_2 + 2y_3 \ge 100$

 $y_1 + y_2 \ge 300$

 $y_2 + y_3 \ge 150$

 $y_1, y_2, y_3 \ge 0$

So, we need to find y values that minimize this without violating any of these.

```
Objective:
                \max 100x_1 + 300x_2 + 150x_3
                                                         Objective: \min 20y_1 + 40y_2 + 60y_3
                                                         Subject to: y_2 + 2y_3 \ge 100
Subject to:
                x_2 \le 20
                x_1 + x_2 + x_3 \le 40
                                                                          y_1 + y_2 \ge 300
                 2x_1 + x_3 \le 60
                                                                          y_2 + y_3 \ge 150
                                                                          y_1, y_2, y_3 \ge 0
                 x_1, x_2 \ge 0
 y_1(Constraint A) + y_2(Constraint B) + y_3(Constraint \emptyset)
 \Rightarrow y_1x_2 + y_2x_1 + y_2x_2 + y_2x_3 + 2y_3x_1 + y_3x_3 \le 20y_1 + 40y_2 + 60y_3
 \Rightarrow (y_2 + 2y_3)x_1 + (y_1 + y_2)x_2 + (y_2 + y_3)x_3 \le 20y_1 + 40y_2 + 60y_3
          \Rightarrow 100x_1 + 300x_2 + 150x_3 \le 20y_1 + 40y_2 + 60y_3, If: y_2 + 2y_3 \ge 100
                                                                              y_1 + y_2 \ge 300
                                                                              y_2 + y_3 \ge 150
                                                                              y_1, y_2, y_3 \ge 0
```

Objective:
$$\max 100x_1 + 300x_2 + 150x_3$$
 Objective: $\min 20y_1 + 40y_2 + 60y_3$ Subject to: $x_2 \le 20$ A Subject to: $y_2 + 2y_3 \ge 100$ $x_1 + x_2 + x_3 \le 40$ B $y_1 + y_2 \ge 300$ $y_2 + y_3 \ge 150$ $x_1, x_2 \ge 0$ $y_1, y_2, y_3 \ge 0$

$$y_{1}(\text{Constraint A}) + y_{2}(\text{Constraint B}) + y_{3}(\text{Constraint C})$$

$$\Rightarrow y_{1}x_{2} + y_{2}x_{1} + y_{2}x_{2} + y_{2}x_{3} + 2y_{3}x_{1} + y_{3}x_{3} \leq 20y_{1} + 40y_{2} + 60y_{3}$$

$$\Rightarrow (y_{2} + 2y_{3})x_{1} + (y_{1} + y_{2})x_{2} + (y_{2} + y_{3})x_{3} \leq 20y_{1} + 40y_{2} + 60y_{3}$$

$$\Rightarrow 100x_{1} + 300x_{2} + 150x_{3} \leq 20y_{1} + 40y_{2} + 60y_{3}, \text{ If: } y_{2} + 2y_{3} \geq 100$$

$$y_{1} + y_{2} \geq 300$$

$$y_{2} + y_{3} \geq 150$$

 $y_1, y_2, y_3 \ge 0$

Roughly, we've made an LP that turned constraints into variables and variables into constraints.

```
Objective:
                \max 100x_1 + 300x_2 + 150x_3
                                                         Objective:
                                                                          \min 20y_1 + 40y_2 + 60y_3
Subject to:
                0x_1 + 1x_2 + 0x_3 \le 20
                                                         Subject to:
                                                                          y_2 + 2y_3 \ge 100
                                                  Α
                1x_1 + 1x_2 + 1x_3 \le 40
                                                  В
                                                                          y_1 + y_2 \ge 300
                2x_1 + 0x_2 + 1x_3 \le 60
                                                                          y_2 + y_3 \ge 150
                x_1, x_2 \ge 0
                                                                          y_1, y_2, y_3 \ge 0
 y_1(Constraint A) + y_2(Constraint B) + y_3(Constraint C)
 \Rightarrow y_1x_2 + y_2x_1 + y_2x_2 + y_2x_3 + 2y_3x_1 + y_3x_3 \le 20y_1 + 40y_2 + 60y_3
 \Rightarrow (y_2 + 2y_3)x_1 + (y_1 + y_2)x_2 + (y_2 + y_3)x_3 \le 20y_1 + 40y_2 + 60y_3
          \Rightarrow 100x_1 + 300x_2 + 150x_3 \le 20y_1 + 40y_2 + 60y_3, If: y_2 + 2y_3 \ge 100
                                                                              y_1 + y_2 \ge 300
                                                                              y_2 + y_3 \ge 150
                                                                             y_1, y_2, y_3 \ge 0
```

Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

Dual

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

Objective: max [100 300 150]
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Subject to:
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \le \begin{bmatrix} 20 \\ 40 \\ 60 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Objective: min [20 40 60]
$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Subject to:
$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \ge \begin{bmatrix} 100 \\ 300 \\ 150 \end{bmatrix}$$
$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

Dual

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem:</u> The dual of a dual is the original primal.

Proof:

Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

Dual

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem:</u> The dual of a dual is the original primal.

Proof:

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

Dual

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

Theorem: The dual of a dual is the original primal.

Proof:

Objective: $min b^T y$ Objective: $max - b^T y$

Subject to: $A^T y \ge c$ Subject to: $-A^T y \le -c$

 $y \ge 0$ $y \ge 0$

Standard Form

Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

Dual

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem:</u> The dual of a dual is the original primal.

Proof:

Objective: min b^Ty

 $y \ge 0$

Objective: max –b^Ty

 $y \ge 0$

Objective: $min - c^T z$

Subject to: $A^T y \ge c$ \longrightarrow Subject to: $-A^T y \le -c$ \longrightarrow Subject to: $-A^T z \ge -b$

z > 0

Standard Form

Dual

Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

Dual

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

Theorem: The dual of a dual is the original primal.

Proof:

Objective: min b^Ty

 $y \ge 0$

Objective: $max - b^Ty$

Subject to: $A^T y \ge c$ Subject to: $-A^T y \le -c$

 $y \ge 0$

Objective: min $-c^T z$

Subject to: $-A^{T}$ $z \ge -b$

 $z \ge 0$

Objective: $max c^T z$

 \rightarrow Subject to: A z \leq b

 $z \ge 0$

Standard Form

Dual

Standard Form

Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

Dual

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem (Weak Duality)</u>: $c^T x^* \le b^T y^*$, for all feasible solutions to the primal x^* , and all feasible solutions to the dual y^* .

Proof:

I.e., The objective value of every feasible solution to the primal is less than or equal to the objective value of every feasible solution to the dual.

Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

<u>Dual</u>

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem (Weak Duality)</u>: $c^T x^* \le b^T y^*$, for all feasible solutions to the primal x^* , and all feasible solutions to the dual y^* .

Proof:

$$c^Tx^* \leq (A^Ty^*)^Tx^*$$

Since $A^T y \ge c$

Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

<u>Dual</u>

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem (Weak Duality)</u>: $c^T x^* \le b^T y^*$, for all feasible solutions to the primal x^* , and all feasible solutions to the dual y^* .

Proof:

$$c^{T}x^{*} \leq (A^{T}y^{*})^{T}x^{*} = (y^{*T}A)x^{*}$$

Since transpose of multiplication is multiplication of transposes (reversed)

Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

<u>Dual</u>

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem (Weak Duality)</u>: $c^T x^* \le b^T y^*$, for all feasible solutions to the primal x^* , and all feasible solutions to the dual y^* .

Proof:

$$c^{T}x^{*} \leq (A^{T}y^{*})^{T}x^{*} = (y^{*T}A)x^{*} = y^{*T}(Ax^{*})$$

Since matrix multiplication is associative

Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

<u>Dual</u>

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

Theorem (Weak Duality): $c^T x^* \le b^T y^*$, for all feasible solutions to the primal x^* , and all feasible solutions to the dual y^* .

Proof:

$$c^{T}x^{*} \leq (A^{T}y^{*})^{T}x^{*} = (y^{*T}A)x^{*} = y^{*T}(Ax^{*}) \leq y^{*T}b$$

Since A $x \le b$

Primal

Objective: $\max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

Dual

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem (Weak Duality)</u>: $c^T x^* \le b^T y^*$, for all feasible solutions to the primal x^* , and all feasible solutions to the dual y^* .

Proof:

$$c^{T}x^{*} \leq (A^{T}y^{*})^{T}x^{*} = (y^{*T}A)x^{*} = y^{*T}(Ax^{*}) \leq y^{*T}b = b^{T}y^{*}$$

Since b and \overline{y} are 1-dimensional vectors.

$$\begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 20 \\ 40 \\ 60 \end{bmatrix} = \begin{bmatrix} 20 & 40 & 60 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

Dual

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem (Weak Duality)</u>: $c^T x^* \le b^T y^*$, for all feasible solutions to the primal x^* , and all feasible solutions to the dual y^* .

Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

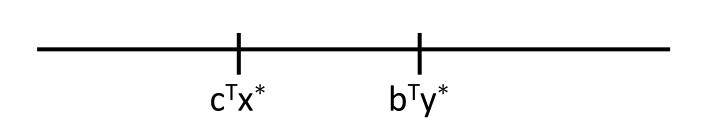
Dual

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem (Weak Duality)</u>: $c^T x^* \le b^T y^*$, for all feasible solutions to the primal x^* , and all feasible solutions to the dual y^* .



Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

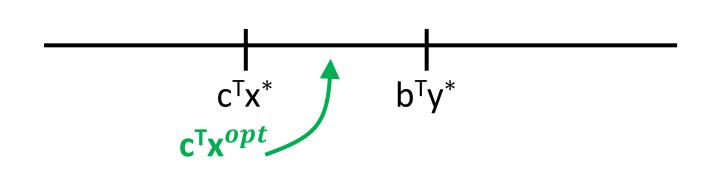
Dual

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem (Weak Duality)</u>: $c^T x^* \le b^T y^*$, for all feasible solutions to the primal x^* , and all feasible solutions to the dual y^* .



Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

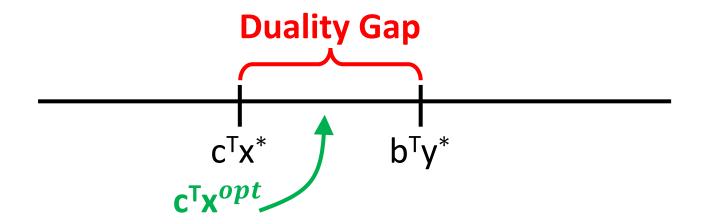
Dual

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem (Weak Duality)</u>: $c^T x^* \le b^T y^*$, for all feasible solutions to the primal x^* , and all feasible solutions to the dual y^* .



Primal

Objective: max c^T x

Subject to: A $x \le b$

 $x \ge 0$

Dual

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem (Strong Duality):</u> If either the primal or the dual has a finite optimal solution, then the other does as well, and their optimal objectives are equal.

<u>Proof:</u> A little more complicated...

Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

<u>Dual</u>

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem (Strong Duality):</u> If either the primal or the dual has a finite optimal solution, then the other does as well, and their optimal objectives are equal.

Consequences:

• The optimal objective value for the primal (dual) gives you the optimal value for the dual (primal).

Primal

Objective: $max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

<u>Dual</u>

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem (Strong Duality):</u> If either the primal or the dual has a finite optimal solution, then the other does as well, and their optimal objectives are equal.

Consequences:

- The optimal objective value for the primal (dual) gives you the optimal value for the dual (primal).
- If one is unbounded (i.e., infinite optimal solution) the other is infeasible (i.e., no optimal solutions).

Duality

Primal

Objective: $\max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

<u>Dual</u>

Objective: min b^Ty

Subject to: $A^T y \ge c$

 $y \ge 0$

<u>Theorem (Strong Duality):</u> If either the primal or the dual has a finite optimal solution, then the other does as well, and their optimal objectives are equal.

Consequences:

- The optimal objective value for the primal (dual) gives you the optimal value for the dual (primal).
- If one is unbounded (i.e., infinite optimal solution) the other is infeasible (i.e., no optimal solutions).
- Does not hold for integer linear programming.

Maximum Flow

```
x_{(u,v)} = \text{Amount of flow on edge } (u,v)

Objective: \max \sum_{(s,v) \in E} x_{(s,v)}

Subject to: x_{(u,v)} \leq c_{(u,v)}, \, \forall (u,v) \in E

\sum_{(w,u) \in E} x_{(w,u)} - \sum_{(u,x) \in E} x_{(u,x)} = 0,

\forall u \in V \setminus \{s,t\}

x_{(u,v)} \geq 0, \, \forall (u,v) \in E
```

Maximum Flow

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\max \sum_{(s,v)\in E} x_{(s,v)}$

Subject to:

$$\begin{aligned} x_{(u,v)} &\leq c_{(u,v)}, \, \forall (u,v) \in E \\ \sum_{(w,u) \in E} x_{(w,u)} - \sum_{(u,x) \in E} x_{(u,x)} &= 0, \\ \forall u \in V \setminus \{s,t\} \\ x_{(u,v)} &\geq 0, \, \forall (u,v) \in E \end{aligned}$$

Shortest Path

Maximum Flow

$x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\max \sum_{(s,v)\in E} x_{(s,v)}$

Subject to:

$$\begin{aligned} x_{(u,v)} &\leq c_{(u,v)}, \, \forall (u,v) \in E \\ \sum_{(w,u) \in E} x_{(w,u)} - \sum_{(u,x) \in E} x_{(u,x)} &= 0, \\ \forall u \in V \setminus \{s,t\} \\ x_{(u,v)} &\geq 0, \, \forall (u,v) \in E \end{aligned}$$

Shortest Path

$$x_{(u,v)} = \text{Amount of flow on edge } (u,v)$$

Objective:
$$\max \sum_{(s,v)\in E} x_{(s,v)}$$

$$x_{(u,v)} \le c_{(u,v)}, \forall (u,v) \in E$$

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$

$$\forall u \in V \setminus \{s,t\}$$

$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Maximum Flow

$x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\max \sum_{(s,v)\in E} x_{(s,v)}$

Subject to:

$$x_{(u,v)} \leq c_{(u,v)}, \forall (u,v) \in E$$

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$

$$\forall u \in V \setminus \{s,t\}$$

$$x_{(u,v)} \geq 0, \forall (u,v) \in E$$

Shortest Path

$$x_{(u,v)} = \text{Amount of flow on edge } (u,v)$$

Objective:
$$\max \sum_{(s,v)\in E} x_{(s,v)}$$

$$x_{(u,v)} \le c_{(u,v)}, \forall (u,v) \in E$$

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$

$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Maximum Flow

$x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\max \sum_{(s,v)\in E} x_{(s,v)}$

Subject to:

$$\begin{aligned} x_{(u,v)} &\leq c_{(u,v)}, \, \forall (u,v) \in E \\ \sum_{(w,u) \in E} x_{(w,u)} - \sum_{(u,x) \in E} x_{(u,x)} &= 0, \\ \forall u \in V \setminus \{s,t\} \\ x_{(u,v)} &\geq 0, \, \forall (u,v) \in E \end{aligned}$$

Shortest Path

$$x_{(u,v)} = \text{Amount of flow on edge } (u,v)$$

Objective:
$$\max \sum_{(s,v)\in E} x_{(s,v)}$$

$$x_{(u,v)} \leq c_{(u,v)}, \forall (u,v) \in E$$

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$

$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$

$$x_{(u,v)} \geq 0, \forall (u,v) \in E$$

Maximum Flow

$x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\max \sum_{(s,v)\in E} x_{(s,v)}$

Subject to:

$$\begin{aligned} x_{(u,v)} &\leq c_{(u,v)}, \, \forall (u,v) \in E \\ \sum_{(w,u) \in E} x_{(w,u)} - \sum_{(u,x) \in E} x_{(u,x)} &= 0, \\ \forall u \in V \setminus \{s,t\} \\ x_{(u,v)} &\geq 0, \, \forall (u,v) \in E \end{aligned}$$

Shortest Path

$$x_{(u,v)} = \text{Amount of flow on edge } (u,v)$$

Objective:
$$\max \sum_{(s,v)\in E} x_{(s,v)}$$

$$\begin{aligned} x_{(u,v)} &\leq c_{(u,v)}, \forall (u,v) \in E \\ \sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} &= 0, \\ \forall u \in V \setminus \{s,t\} \\ \sum_{(s,v)\in E} x_{(s,v)} &= 1 \\ x_{(u,v)} &\geq 0, \forall (u,v) \in E \end{aligned}$$

Maximum Flow

$x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\max \sum_{(s,v)\in E} x_{(s,v)}$

Subject to:

$$\begin{aligned} x_{(u,v)} &\leq c_{(u,v)}, \, \forall (u,v) \in E \\ \sum_{(w,u) \in E} x_{(w,u)} - \sum_{(u,x) \in E} x_{(u,x)} &= 0, \\ \forall u \in V \setminus \{s,t\} \\ x_{(u,v)} &\geq 0, \, \forall (u,v) \in E \end{aligned}$$

Shortest Path

$$x_{(u,v)} = \text{Amount of flow on edge } (u,v)$$

Objective:
$$\max \sum_{(s,v)\in E} x_{(s,v)}$$

$$\begin{aligned} x_{(u,v)} &\leq c_{(u,v)}, \forall (u,v) \in E \\ \sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} &= 0, \\ \forall u \in V \setminus \{s,t\} \\ \sum_{(s,v)\in E} x_{(s,v)} &= 1 \\ x_{(u,v)} &\geq 0, \forall (u,v) \in E \end{aligned}$$

Maximum Flow

$x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\max \sum_{(s,v)\in E} x_{(s,v)}$

Subject to:

$$\begin{aligned} x_{(u,v)} &\leq c_{(u,v)}, \, \forall (u,v) \in E \\ \sum_{(w,u) \in E} x_{(w,u)} - \sum_{(u,x) \in E} x_{(u,x)} &= 0, \\ \forall u \in V \setminus \{s,t\} \\ x_{(u,v)} &\geq 0, \, \forall (u,v) \in E \end{aligned}$$

Shortest Path

$$x_{(u,v)} = \text{Amount of flow on edge } (u,v)$$

Objective:
$$\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$$

$$\begin{aligned} x_{(u,v)} &\leq c_{(u,v)}, \forall (u,v) \in E \\ \sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} &= 0, \\ \forall u \in V \setminus \{s,t\} \\ \sum_{(s,v)\in E} x_{(s,v)} &= 1 \\ x_{(u,v)} &\geq 0, \forall (u,v) \in E \end{aligned}$$

```
x_{(u,v)} = \text{Amount of flow on edge } (u,v)
Objective: \min \sum_{(u,v) \in E} c_{(u,v)} x_{(u,v)}
Subject to: \sum_{(w,u) \in E} x_{(w,u)} - \sum_{(u,x) \in E} x_{(u,x)} = 0,
\forall u \in V \setminus \{s,t\}
\sum_{(s,v) \in E} x_{(s,v)} = 1
x_{(u,v)} \geq 0, \, \forall (u,v) \in E
```

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

This can be derived from standard primal/dual definitions.

Primal

Objective: $min c^T x$

Subject to: A x = b

 $x \ge 0$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

 $\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$ $\forall u \in V \setminus \{s,t\}$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

Dual Variables?

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$

$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 $y_v = \text{Conservation constraints (not } s \text{ or } t)$

z = Source outflow constraint

Dual Variables? Each constraint (other than non-negativity) from the primal corresponds to a variable in the dual.

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$

$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 $y_v = \text{Conservation constraints (not } s \text{ or } t)$

z = Source outflow constraint

Objective:

Objective?

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$

$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 $y_v = \text{Conservation constraints (not } s \text{ or } t)$

z = Source outflow constraint

Objective: max *z*

Objective? The only nonzero b values are for the source outflow constraint.

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

<u>Dual</u>

Objective: max b^Ty

Subject to: $A^T y \le c$

 $y_v = \text{Conservation constraints (not } s \text{ or } t)$

z = Source outflow constraint

Objective: max *z*

Subject to:

Constraints Turn columns of A into rows of A^T

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 $y_v = \text{Conservation constraints (not } s \text{ or } t)$

z = Source outflow constraint

Objective: max z

Subject to:

When does $x_{(u,v)}$ show up in A x?

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 $y_v = \text{Conservation constraints (not } s \text{ or } t)$

z = Source outflow constraint

Objective: max *z*

Subject to:

When does $x_{(u,v)}$ show up in A x? +1 coefficient for y_v

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$

$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 $y_v = \text{Conservation constraints (not } s \text{ or } t)$

z = Source outflow constraint

Objective: max *z*

Subject to:

When does $x_{(u,v)}$ show up in A x?

+1 coefficient for y_v

-1 coefficient for y_u

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 $y_v = \text{Conservation constraints (not } s \text{ or } t)$

z = Source outflow constraint

Objective: max *z*

Subject to:

When does $x_{(u,v)}$ show up in A x?

+1 coefficient for y_v

-1 coefficient for y_u

+1 coefficient if u = s.

When does $x_{(u,v)}$ show up in A x? +1 coefficient for y_v -1 coefficient for y_u +1 coefficient if u=s.

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 $y_v = \text{Conservation constraints (not } s \text{ or } t)$

z = Source outflow constraint

Objective: max z

$$y_v - y_s + z \le c_{(s,v)}, \forall (s,v) \in E$$

When does $x_{(u,v)}$ show up in A x? +1 coefficient for y_v -1 coefficient for y_u +1 coefficient if u=s.

<u>Primal</u>

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

$$x_{(u,v)} = \text{Amount of flow on edge } (u,v)$$

Objective:
$$\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 y_v = Conservation constraints (not s or t) z = Source outflow constraint

Objective: max z

$$y_v - y_s + z \le c_{(s,v)}, \forall (s,v) \in E$$

When does $x_{(u,v)}$ show up in A x? +1 coefficient for y_v -1 coefficient for y_u +1 coefficient if u=s.

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

$$x_{(u,v)} = \text{Amount of flow on edge } (u,v)$$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 y_v = Conservation constraints $\frac{\text{(not } s \text{ or } t)}{z}$ z = Source outflow constraint

Objective: max z

Subject to:

$$y_v - y_s + z \le c_{(s,v)}, \forall (s,v) \in E$$

We can extend the representation of flow out/in flow of a node to s and t.

When does $x_{(u,v)}$ show up in A x? +1 coefficient for y_v -1 coefficient for y_u +1 coefficient if u=s.

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$

$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 $y_v =$ Conservation constraints

z = Source outflow constraint

Objective: max z

$$y_v - y_s + z \le c_{(s,v)}, \forall (s,v) \in E$$
$$y_v - y_u \le c_{(u,v)}, \forall (u,v) \in E, u \ne s$$

When does $x_{(u,v)}$ show up in A x? +1 coefficient for y_v

-1 coefficient for y_u

+1 coefficient if u = s.

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

 $y_v =$ Conservation constraints

z = Source outflow constraint

Objective: max z

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$

$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$

Subject to: Edge Property

$$y_v - y_s + z \le c_{(s,v)}, \forall (s,v) \in E$$

$$y_v - y_u \le c_{(u,v)}, \forall (u,v) \in E, u \ne s$$

 $x_{(u,v)} \ge 0, \forall (u,v) \in E$ Vertex Property

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 $y_v =$ Conservation constraints

z = Source outflow constraint

Objective: $\max y_t - y_s$

$$y_v - y_s + z \le c_{(s,v)}, \forall (s,v) \in E$$

$$y_v - y_u \le c_{(u,v)}, \forall (u,v) \in E, u \ne s$$

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 y_v = Conservation constraints z = Source outflow constraint

Objective: $\max y_t - y_s$

$$\frac{y_v - y_s + z \le c_{(s,v)}, \forall (s,v) \in E}{y_v - y_u \le c_{(u,v)}, \forall (u,v) \in E}$$

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$

$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 $y_v =$ Conservation constraints

Objective: $\max y_t - y_s$

Subject to:

$$y_v - y_u \le c_{(u,v)}, \forall (u,v) \in E$$

The rise in value between neighboring nodes can't exceed the cost of the node.

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 $y_v =$ Roughly, the distance from v to s.

Objective: $\max y_t - y_s$

Subject to:

$$y_v - y_u \le c_{(u,v)}, \forall (u,v) \in E$$

The rise in value between neighboring nodes can't exceed the cost of the node.

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$
$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 $y_v =$ Roughly, the distance from v to s.

Objective: $\max y_t - y_s$

Subject to:

$$y_v - y_u \le c_{(u,v)}, \forall (u,v) \in E$$

Interpretation

Primal

Objective: $min c^T x$

Subject to: A x = b

$$x \ge 0$$

 $x_{(u,v)} = \text{Amount of flow on edge } (u,v)$

Objective: $\min \sum_{(u,v)\in E} c_{(u,v)} x_{(u,v)}$

Subject to:

$$\sum_{(w,u)\in E} x_{(w,u)} - \sum_{(u,x)\in E} x_{(u,x)} = 0,$$
$$\forall u \in V \setminus \{s,t\}$$

$$\sum_{(s,v)\in E} x_{(s,v)} = 1$$

$$x_{(u,v)} \ge 0, \forall (u,v) \in E$$

Dual

Objective: max b^Ty

Subject to: $A^T y \le c$

 $y_v =$ Roughly, the distance from v to s.

Objective: $\max y_t - y_s$

Subject to:

$$y_v - y_u \le c_{(u,v)}, \forall (u,v) \in E, u \ne s$$

Interpretation? How far apart can I pull s and t without exceeding edge costs.