Simplex Algorithm
CSCI 532

Optimal Value

Objective: max f(xq,X,)
Subjectto: c¢1(xq,X5)
X2 C2 (X1, X2)

Cn(le xZ)

Properties of optimal solutions:

\ 1. Optimal value occurs at a vertex.
2. Local optimum is global optimum.

0 20 30 a0 1 Algorithm to find optimal solution:
Test each vertex in order until no
neighbors have larger (or smaller) value.

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while 3 neighbor v’ with better objective value

V =V
return v

How do we find vertices?

Intersection of:

Vertex Hunting 2, + x3 = 60
X1+ xy +x3 =40
X2 %, =20 X2 X2 xgl= 0
xl xl xl

¥Y~Intersection of:

\ ZX1+x3=60
x3 X1+XZ+X3=4O x3 ZX1+X3=6O x3 x1+x2+x3=40
x2=0

Definition: Two vertices are neighbors if they share n — 1 defining
inequalities.

Plan: Move from vertex to vertex by following line formed by intersection of
n — 1 inequalities.

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while 3 neighbor v’ with better objective value

V =V
return v

Objective: maxc’x
Subjectto: Ax<b
x=>0

Step 1: Check if current vertex is optimal.
Let x = (x4, ..., X;;). Feasible origin (x = (0, ..., 0)) = vertex, because?

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while 3 neighbor v’ with better objective value

V =V
return v

Objective: maxc’x
Subjectto: Ax<b
x=>0

Step 1: Check if current vertex is optimal.
Let x = (x4, ..., X;;). Feasible origin (x = (0, ..., 0)) = vertex, because
it uniquely satisfies n constraints (x = 0).

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while 3 neighbor v’ with better objective value

V =V

return v .
Objective: maxc’x

Subjectto: Ax<b
x=>0

Step 1: Check if current vertex is optimal.

How can we tell if the origin is optimal?

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while 3 neighbor v’ with better objective value

V =V

return v .
Objective: maxc’x

Subjectto: Ax<b
x=>0

Step 1: Check if current vertex is optimal.

Origin is optimal & ¢; < 0, for all i:

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while 3 neighbor v’ with better objective value

V =V

return v .
Objective: maxc’x

Subjectto: Ax<b
x=>0

Step 1: Check if current vertex is optimal.

Origin is optimal & ¢; < 0, for all i:
If origin is optimal, increasing x;, for any i will decrease objective
= cx; =2 ci(x;+e) =>c0=2¢;(0+e)=¢; <0

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while 3 neighbor v’ with better objective value

V =V

return v .
Objective: maxc’x

Subjectto: Ax<b
x=>0

Step 1: Check if current vertex is optimal.

Origin is optimal & ¢; < 0, for all i:
If origin is optimal, increasing x;, for any i will decrease objective
= cx; =2 ci(x;+e) =>c0=2¢;(0+e)=¢; <0

ifc; <0, foralli, c;(x; + €) < c;x;, i.e., lower objective value

Simplex Algorithm

Simplex(LP) X2

v = vertex in feasible region
while 3 neighbor v’ with > objective

V =V
return v

Step 2: Move to a neighboring vertex.

Intersection of:

2x1 +x3 = 60
X1+ xy +x3 =40
X3=O

|

#xl

' .
*~|Intersection of:

2x1 +x3 = 60
X1+ xy +x3 =40
X2=0

S|mp‘ex A‘gOrlthm Intersection of:

2x1 +x3 = 60
X1+ xy +x3 =40
Simplex(LP) X2 x3 =0
v = vertex in feasible region l
while 3 neighbor v’ with > objective

V = V N
return v 1

' .
*~|Intersection of:

2x1 +x3 = 60
X3 X1+ xy +x3 =40
X2=0

Step 2: Move to a neighboring vertex.

Relax any constraint that allows us to increase the objective function
(i.e. x;, where ¢; > 0). Keep increasing x; until another constraint becomes
tight.

Simp\ex A\gorithm Objective: max 2x; + 5x,
Subjectto: 2x; —x, <4 (a)
X1 +2x, <9 (b)

*2 —x; +x, <3 (c)
x;1 =0 (d)
X, = 0 (e)

1. Start at origin, (x4, x,) = (0,0).
2. Relax a tight constraint.

3. Stop when another constraint is met.

4. New vertex = intersection of new constraint.

Simp\ex A\gorithm Objective: max 2x; + 5x,
Subjectto: 2x; —x, <4 (a)
X1 +2x, <9 (b)

X2 —x; +x, <3 (c)
x;1 =0 (d)
X, = 0 (e)

1. Start at origin, (x4, x,) = (0,0).
2. Relax a tight constraint.
Either d or e. Suppose e.
3. Stop when another constraint is met.

4. New vertex = intersection of new constraint.

Simp\ex A\gorithm Objective: max 2x; + 5x,
Subjectto: 2x; —x, <4 (a)
X1 +2x, <9 (b)

*2 —x; +x, <3 (c)
x;1 =0 (d)
X, = 0 (e)

1. Start at origin, (x4, x,) = (0,0).
2. Relax a tight constraint.
Either d or e. Suppose e.
3. Stop when another constraint is met.
71 Let x, increase until another constraint
is met (a — never, b—4.5, c — 3)
4. New vertex = intersection of new constraint.

Simp\ex A\gorithm Objective: max 2x; + 5x,
Subjectto: 2x; —x, <4 (a)
X1 +2x, <9 (b)

*2 —x; +x, <3 (c)
x;1 =0 (d)
X, = 0 (e)

1. Start at origin, (x4, x,) = (0,0).

2. Relax a tight constraint.
Either d or e. Suppose e.

3. Stop when another constraint is met.

71 Let x, increase until another constraint

is met (a — never, b—4.5, c — 3)

4. New vertex = intersection of new constraint.
u = intersection of d and c.

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while 3 neighbor v’ with better objective value

V =V

return v .
Objective: maxc’x

Subjectto: Ax<b
x=>0

Step 1: Check if current vertex is optimal.

Step 2: Move to a neighboring vertex.

Super easy to do if starting at origin!

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region X5
while 3 neighbor v’ with > objective
Vv =V’
return v

Step 1: Check if current vertex is optimal.

Step 2: Move to a neighboring vertex.

What should we do if we are not at the origin?

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region
while 3 neighbor v’ with > objective

V =V
return v

Step 1: Check if current vertex is optimal.

Step 2: Move to a neighboring vertex.

Step 3: Redefine coordinate system so u is the origin.

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region X5
while 3 neighbor v’ with > objective
Vv =V’
return v

Step 1: Check if current vertex is optimal.

Step 2: Move to a neighboring vertex.

Step 3: Redefine coordinate system so u is the origin.

: distance from x
For constraint a;x < b-,@: b, — a;x
l "N e —to constraint i

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region X5
while 3 neighbor v’ with > objective
Vv =V’
return v

Step 1: Check if current vertex is optimal.

Step 2: Move to a neighboring vertex.

Step 3: Redefine coordinate system so u is the origin.

: distance from x
For constraint a;x < b-,@: b, — a;x
l "N e —to constraint i

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region
while 3 neighbor v’ with > objective

V =V
return v

Step 1: Check if current vertex is optimal.

Step 2: Move to a neighboring vertex.

Step 3: Redefine coordinate system so u is the origin.

: distance from x
For constraint a;x < b-,@: b, — a;x
l "N e —to constraint i

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region
while 3 neighbor v’ with > objective

V =V
return v

Step 1: Check if current vertex is optimal.

Step 2: Move to a neighboring vertex.

Step 3: Redefine coordinate system so u is the origin.

: distance from x
For constraint a;x < b-,@: b, — a;x
l "N e —to constraint i

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region
while 3 neighbor v’ with > objective

V =V
return v

Step 1: Check if current vertex is optimal.

Step 2: Move to a neighboring vertex.

Step 3: Redefine coordinate system so u is the origin.

: distance from x
For constraint a;x < b-,@: b, — a;x
l "N e —to constraint i

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region
while 3 neighbor v’ with > objective

V =V
return v

(x1,x2) = (0,3) = (¥y1,y2) = (0,0)

Step 1: Check if current vertex is optimal.

Step 2: Move to a neighboring vertex.

Step 3: Redefine coordinate system so u is the origin.

: distance from x
For constraint a;x < b-,@: b; — a;x
l "N e —to constraint i

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region
while 3 neighbor v’ with > objective

V =V
return v

Step 1: Check if current vertex is optimal.

Step 2: Move to a neighboring vertex.

Step 3: Redefine coordinate system so u is the origin.
Step 4: ???

Simplex Algorithm

Simplex(LP)
v = vertex in feasible region
while 3 neighbor v’ with > objective

V =V
return v

Step 1: Check if current vertex is optimal.

Step 2: Move to a neighboring vertex.

Step 3: Redefine coordinate system so u is the origin.
Step 4: Repeat.

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j
relax tight constraint.
stop at new constraint.
V = new intersection.
for constraint a;-x < b;
yi = b;y — aj-x
reformulate LP in terms of vy;
return v

Objective: max2x; + 5x,

Subjectto: 2x; —x, <4 (a)
X1+ 2x, <9 (b)
—x1+x, <3 (c)
x;1 =0 (d)

X9 >0 (E)

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

Vertex:
Objective Value:

relax tight constraint. Relax:
stop at new constraint. Stop at:
V = new intersection. Vertex Local Coordinates:

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of y;
return v

Objective: max2x; + 5x,

Subjectto: 2x; —x, <4 (a)
X1+ 2x, <9 (b)
—x1+x, <3 (c)
x;1 =0 (d)

X9 >0 (E)

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

Vertex: Origin (d,e)
Objective Value:

relax tight constraint. Relax:
stop at new constraint. Stop at:
V = new intersection. Vertex Local Coordinates:

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of y;
return v

Objective: max2x; + 5x,

Subjectto: 2x; —x, <4 (a)
X1+ 2x, <9 (b)
—x1+x, <3 (c)
x;1 =0 (d)

X9 >0 (E)

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

Vertex: Origin (d,e)
Objective Value: 0

relax tight constraint. Relax:
stop at new constraint. Stop at:
V = new intersection. Vertex Local Coordinates:

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of y;
return v

Objective: max2x; + 5x,

Subjectto: 2x; —x, <4 (a)
X1+ 2x, <9 (b)
—x1+x, <3 (c)
x;1 =0 (d)

X9 >0 (E)

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

Vertex: Origin (d,e)
Objective Value: 0

relax tight constraint. Relax: e
stop at new constraint. Stop at:
V = new intersection. Vertex Local Coordinates:

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of y;
return v

Objective: max2x; + 5x,

Subjectto: 2x; —x, <4 (a)
X1+ 2x, <9 (b)
—x1+x, <3 (c)
x;1 =0 (d)

X9 >0 (E)

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

relax tight constraint.
stop at new constraint.

V = hew intersection.

for constraint a;-x < b;

yi = b;y — aj-x

reformulate LP in terms of y;

return v

Objective: max2x; + 5x,

Subjectto: 2x; —x, <4 (a)
X1+ 2x, <9 (b)
—x1+x, <3 (c)
x;1 =0 (d)
Xy =0 (e)

Vertex: Origin (d,e)
Objective Value: 0

Relax: e

Stop at:

Vertex Local Coordinates:

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

Vertex: Origin (d,e)
Objective Value: 0

relax tight constraint. Relax: e
stop at new constraint. Stop at: c,d
V = new 1ntersection. Vertex Local Coordinates:

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of y;
return v

Objective: max2x; + 5x,

Subjectto: 2x; —x, <4 (a)
X1+ 2x, <9 (b)
—x1+x, <3 (c)
x;1 =0 (d)

X9 >0 (E)

Simplified_Simplex(LP) L
v = origin Vertex: Brigintere} c,d

while ¢; > 0 for some] Objective Value: 0

relax tight constraint. Relax: e
stop at new constraint. Stop at: c,d
V = new 1ntersection. Vertex Local Coordinates:

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of y;
return v

Objective: max2x; + 5x,

Subjectto: 2x; —x, <4 (a)
X1+ 2x, <9 (b)
—x1+x, <3 (c)
x;1 =0 (d)

X9 >0 (E)

Simplified_Simplex(LP) L
v = origin Vertex: Brigintere} c,d

while ¢; > 0 for some] Objective Value: 0

relax tight constraint. Relax: e

stop at new constraint. Stop at: c,d

V = new intersection. Vertex Local Coordinates:

for constraint a;-x < b; Xx120=-x<0=y, =x

yi = b; - ai- X
reformulate LP in terms of y;
return v

Objective: max2x; + 5x,

Subjectto: 2x; —x, <4 (a)
X1+ 2x, <9 (b)
—x1+x, <3 (c)
x;1 =0 (d)

X9 >0 (E)

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j
relax tight constraint.
stop at new constraint.
V = new 1ntersection.
for constraint a;-x < b;
yi = b;j — aj-x

reformulate LP in terms of y;

return v

Objective: max2x; + 5x,

Subjectto: 2x; —x, <4 (a)
X1+ 2x, <9 (b)
—x1+x, <3 (c)
x;1 =0 (d)
Xy =0 (e)

Vertex: O¢igintde} c,d
Objective Value: 0

Relax: e

Stop at: c,d

Vertex Local Coordinates:
Xx1=20==—-x<0=>y =x4
—X1+ X, <3=yY,=3+Xx1 — X5

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j
relax tight constraint.
stop at new constraint.
V = new 1ntersection.
for constraint a;-x < b;
yi = b;y — aj-x

reformulate LP in terms of y;

return v

Objective: max2x; + 5x,

Subjectto: 2x; —x, <4 (a)
X1+ 2x, <9 (b)
—x1+x, <3 (c)
x;1 =0 (d)
Xy =0 (e)

Vertex: O¢igintde} c,d
Objective Value: 0

Relax: e

Stop at: c,d

Vertex Local Coordinates:
Xx1=20==—-x<0=>y =x4
—X1+ X, <3=yY,=3+Xx1 — X5
= X1 =Y1, X2 =3+Yy1 =)

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j
relax tight constraint.
stop at new constraint.
V = new intersection.
for constraint a;-x < b;
yi = b;j — aj-x
reformulate LP in terms of vy;
return v

Vertex: O¢igintde} c,d
Objective Value: 0

Relax: e

Stop at: c,d

Vertex Local Coordinates:
Xx1=20==—-x<0=>y =x4
—X1+ X, <3=yY,=3+Xx1 — X5
= X1 =Y1, X2 =3+Yy1 =)

Objective:
Subject to:

max 2x1 + 5x,

2x1 — %X, <4 (3)
X1+ 2x, <9 (b)
—x1+x, <3 (c)
x;1 =0 (d)
Xy =0 (e)

Objective:
Subject to:

max
(a)
(b)
(c)
(d)

(e)

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j
relax tight constraint.
stop at new constraint.
V = new intersection.
for constraint a;-x < b;
yi = b;j — aj-x
reformulate LP in terms of vy;
return v

Vertex: O¢igintde} c,d
Objective Value: 0

Relax: e

Stop at: c,d

Vertex Local Coordinates:
Xx1=20==—-x<0=>y =x4
—X1+ X, <3=yY,=3+Xx1 — X5
= X1 =Y1, X2 =3+Y1 =)

2x1 + 5x, =2y, + 15+ 5y; — 5y, =15+ 7y, — 5y, X2

Objective: max2x; + 5x,

Subjectto: 2x; —x, <4 (a)
X1+ 2x, <9 (b)
—x1+x, <3 (c)
x;1 =0 (d)
Xy =0 (e)

Objective: max 15+ 7y; — 5y,
Subject to:

(a)
(b)
(c)
(d)

(e)

Simplified_Simplex(LP)

v = origin Ver-tex:.Q#gi-n—(-eITe-)c,d
while ¢; > 0 for some j Objective Value: 8 15
relax tight constraint. Relax: e
stop at new constraint. Stop at: c,d
V = new intersection. Coordinates:

for constraint a;-x < b; X120 = —x, 0=y, =xq

y; = b; - a;-x
reformulate LP in terms of y;
return v

2x, + 5x, = 2y, + 15+ 5y, — 5y, — 5y, X2
Objective: max2x; + 5x, Objective: max 15+ 7y; — 5y,
Subjectto: 2x; —x, <4 (a) Subject to: (a)
X1 +2x, <9 (b) (b)
—x1+x, <3 (c) (c)
x1 20 (d) (d)
X 20 (e) (e)

Simplified_Simplex(LP) A
v = origin Vertex: Brigintere} c,d

while ¢; > 0 for some j Objective Value: 8 15

relax tight constraint. Relax: e
stop at new constraint. Stop at: c,d
V = new intersection. Vertex Local Coordinates:
for constraint a;-x < b; X1 =20=-x 0=y, =xq
Y =b'i - adi-X —x1+x2S3ﬁy2=3+x1—x2
reformulate LP in terms of vy;
= X1 =Y, X, =3+ Yy —
return v 1= V1, X2 Y1— Y2
2X) =Xy =2y1 =3 —Y1tY,=Yy1tY; — 3 %
Objective: max2x; + 5x, Objective: max 15+ 7y; — 5y,
Subjectto: 2x; —x, <4 (a) Subjectto: y;+y, <7 (a)
X1 + sz <9 (b) (b)
—X1 + X9 <3 (C) (C)
x, =0 (e) (e)

Simplified_Simplex(LP) .
v = origin Vertex: Brigi-e;e} c,d

while ¢; > 0 for some j Objective Value: 8 15

relax tight constraint. Relax: e
stop at new constraint. Stop at: c,d
V = new 1ntersection. Vertex Local Coordinates:
for constraint a;-x < b; X1 =20=-x 0=y, =xq
y; = b; - a;-x —x1+x, <3 =y,=34+x — X
reformulate LP in terms of y;
= X1 =Y, X =3+ Yy —
return v 1= V1, X2 Y1— Y2
X2
Objective: max 2x; + 5x, Objective: max15 + 7y; — 5y,
Subjectto: 2x; —x, <4 (a) Subjectto: y; +y, <7 (a)
X1+ 2x, <9 (b) 3y — 2y, < 3 (b)
—X1 + X9 <3 (C) Vo >0 (C)
x; =0 (d) y1 =0 (d)
X, =0 (e) —y1 +y,<3 (e) 4

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

Vertex: c,d
Objective Value: 15

relax tight constraint. Relax:
stop at new constraint. Stop at:
V = new intersection. Vertex Local Coordinates:

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of y;
return v

Objective: max 15+ 7y; — 5y,

Subjectto: y; +y, <7 (3a)
3y1 = 2y, = 3 (b)
y220 (c)
y1 20 (d)

—y1 +y,<3 (e

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

Vertex: c,d
Objective Value: 15

relax tight constraint. Relax:
stop at new constraint. Stop at:
V = new intersection. Vertex Local Coordinates:

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of y;
return v

Which constraint should we relax?

Objective: max 15+ 7y; — 5y,

Subjectto: y; +y, <7 (3a)
3y1 = 2y, = 3 (b)
y220 (c)
y1 20 (d)

—y1 +y,<3 (e

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

relax tight constraint.
stop at new constraint.

V = hew intersection.

Vertex: c,d

Objective Value: 15
Relax: d

Stop at:

Vertex Local Coordinates:

for constraint a;-x < b;

yi = b;y — aj-x

reformulate LP in terms of y;

return v
Which

Objective: max 15+ 7y; — 5y,

Subjectto: y; +y, <7 (a)
3y1 — 2y, =3 (b)
y2 20 (c)
y1 =0 (d)
—y1+y2<3 (e

constraint should we relax?

Increasing y, worsens
objective. Therefore, we

should increase y;, which is
constraint (d).

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j
relax tight constraint.
stop at new constraint.
V = new intersection.
for constraint a;-x < b;
yi = b;y — aj-x
reformulate LP in terms of vy;
return v

Objective: max 15+ 7y; — 5y,

Subjectto: y; +y, <7 (a)
3y1 — 2y, =3 (b)
y2 20 (c)
y1 =0 (d)
—y1+y2<3 (e

Vertex: c,d

Objective Value: 15
Relax: d

Stop at:

Vertex Local Coordinates:

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j
relax tight constraint.
stop at new constraint.
V = new intersection.
for constraint a;-x < b;
yi = b;y — aj-x
reformulate LP in terms of vy;
return v

Objective: max 15+ 7y; — 5y,

Subjectto: y; +y, <7 (a)
3y1 — 2y, =3 (b)
y2 20 (c)
y1 =0 (d)
—y1+y2<3 (e

Vertex: c,d

Objective Value: 15
Relax: d

Stop at: b,c

Vertex Local Coordinates:

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

relax tight constraint.
stop at new constraint.

V = hew intersection.

for constraint a;-x < b;

yi = b;y — aj-x

reformulate LP in terms of y;

return v

Objective: max 15+ 7y; — 5y,

Subjectto: y; +y, <7 (a)
3y1 — 2y, =3 (b)
y2 20 (c)
y1 =0 (d)
—y1+y2<3 (e

Vertex: &€ b,c

Objective Value: 15
Relax: d

Stop at: b,c

Vertex Local Coordinates:

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

Vertex: &€ b,c
Objective Value: 15

relax tight constraint. Relax: d

stop at new constraint. Stop at: b,c

V = new intersection. Vertex Local Coordinates:

for constraint a;-y < b; 3y1 — 2y, <3 =2z =3 —3y; + 2y,
z; = by - aj-y Vv, =20=>2, =y,

reformulate LP in terms of z;

=y, =12 +2 =
return v Y1 = 3Z1 322,}’2 = 22

Objective: max 15+ 7y; — 5y,

Subjectto: y; +y, <7 (3a)
3y1 = 2y, = 3 (b)
y220 (c)
y1 20 (d)

—y1 +y,<3 (e

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

Vertex: &€ b,c
Objective Value: 15

relax tight constraint. Relax: d

stop at new constraint. Stop at: b,c

V = new intersection. Vertex Local Coordinates:

for constraint a;-y < b; 3y1 — 2y, <3 =2z =3 —3y; + 2y,
z; = by - aj-y Vv, =20=>2, =y,

reformulate LP in terms of z;

=y, =12 +2 =
return v Y1 = 3Z1 322,}’2 = 22

Objective: max 15+ 7y; — 5y,

Subjectto: y; +y, <7 (a)
3y1 —2y; = 3 (b)
y2 20 (c)
y1 =0 (d)
—y1+y2<3 (e

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

Vertex: &€ b,c
Objective Value: 15

relax tight constraint. Relax: d
stop at new constraint. Stop at: b,c
V = new intersection. Vertex Local Coordinates:
for constraint a;-y < b; 3y1 — 2y, <3 =2z =3 —3y; + 2y,
z: = b; - a;-y y220=2z, =Y,
reformulate LP in terms of z; 1 2
return v =N =1-s21+32,¥2=2
7 14 7 1
15+ 7y, — 5y, =15 + 7—§Zl +?ZZ — 5z, =22 —§Z1 —522 X,
Objective: max15 + 7y; — 5y, Objective: max 22 — 221 — gZZ
Subjectto: y; +y, <7 (a) Subject to: (a)
3y1 — 2y, =3 (b) (b)
y2 =0 (c) (c)
y1=0 (d) (d)
—y1+y2<3 (e (e) n

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

Vertex: &€ b,c
Objective Value: 45 22

relax tight constraint. Relax: d
stop at new constraint. Stop at: b,c
V = new intersection. Vertex Local Coordinates:
for constraint a;-y < b; 3y1 — 2y, <3 =2z =3 —3y; + 2y,
z: = b; - a;-y y220=2z, =Y,
reformulate LP in terms of z; 1 2
return v =N =1-321+322,¥2=2
7 14 7 1
15+ 7y, — 5y, =15 + 7—§Zl +?ZZ — 5z, =22 —§Z1 —522 X,
Objective: max 15+ 7y; — 5y, Objective: max 22 — 221 - gZZ
Subjectto: y; +y, <7 (a) Subject to: (a)
3y1 — 2y, =3 (b) (b)
y2 =0 (c) (c)
y1=0 (d) (d)
—y1+y2<3 (e (e) n

Simplified_Simplex(LP)

vV = origin Ver-tex:.&,d b,c
while ¢; > 0 for some j Objective Value: 45 22
relax tight constraint. Relax: d
stop at new constraint. Stop at: b,c
V = new intersection. Vertex Local Coordinates:
for constraint a;-y < b; 3y1 — 2y, <3 =2z =3 —3y; + 2y,
Z1-=b1-—a1--y_ y220:22=)’2
reformulate LP in terms of z; 1 2
return v =N =1-321+322,¥2=2
7 14 7 1
15+7y1_5y2=15+7_§Zl+?Z2_5Z2=22_—Zl_—Z2 Xy
Objective: max 15+ 7y; — 5y, Objective: max 22
Subjectto: y; +y, <7 (a) Subject to: a)
3y, — 2y, < 3 (b) b)
y2 =0 (c) c)
y1 =0 (d) d)
—V1+Y.<3 (e e) 4

Simplified_Simplex(LP)

vV = origin Ver'tex:.e,el b,c
while ¢; > 0 for some j Objective Value: 45 22
relax tight constraint. Relax: d
stop at new constraint. Stop at: b,c
V = new intersection. Vertex Local Coordinates:
for constraint a;-y < b; 3y1 — 2y, <3 =2z =3 —3y; + 2y,
Z1-=b1-—a1--y_ y220:22=)’2
reformulate LP in terms of z; 1 2
return v =N =1-321+322,¥2=2
7 14 7 1
15+7y1_5y2=15+7_§Zl+?Z2_5Z2=22_—Zl_—Z2 Xy
Objective: max 15+ 7y; — 5y, Objective: max 22
Subjectto: y; +y, <7 (a) Subject to: a)
3y, — 2y, < 3 (b) b)
y2 =0 (c) c)
y1 =0 (d) d)
—V1+Y.<3 (e e) 4

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

Vertex: &€ b,c
Objective Value: 45 22

relax tight constraint. Relax: d
stop at new constraint. Stop at: b,c
V = new intersection. Vertex Local Coordinates:
for constraint a;-y < b; 3y1 — 2y, <3 =2z =3 —3y; + 2y,
z; = by - a;-y Vv, =20=>2, =y,
reformulate LP in terms of z; 1 2
return v =N =1-321+322,¥2=2
Objective: max15 + 7y; — 5y, Objective: max 22 — 221 - gZZ
Subjectto: y; +y, <7 (a) Subject to: (a)
3y1 — 2y, =3 (b) (b)
y2 =0 (c) (c)
y1=0 (d) (d)
—y1+y2<3 (e (e) n

Simplified_Simplex(LP)

v = origin Loose Ends:
while c¢; > 0 for some j 1. Starting Vertex
relax tight constraint. 2. Unbounded/infeasible solution

stop at new constraint. 3 Degenerate vertices
V = new intersection. ‘ 5

for constraint a;-y < b; 4. Running Time
Z; = b'i — a1--y-
reformulate LP in terms of z.

return v
Objective: max 15+ 7y; — 5y, Objective: max22 — gzl — gZZ
Subjectto: y; +y, <7 (a) Subject to: (a)
3y1—2y2 = 3 (b) (b)
Y2 = 0 (C) (C)
y1=0 (d) (d)
—y1+y2<3 (e (e) n

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

relax tight constraint.
stop at new constraint.

V = hew intersection.

for constraint a;-x < b;

yi = b;y — aj-x

reformulate LP in terms of y;

return v

Objective:

Subject to:

max c' x
Ax<b
x=0

Running Time (n = # variables, m = # constraints defined by A):

Simplified_Simplex(LP)

V = origin

while c; > 0 for some j Objective: maxc' x
relax tight constraint. Subjectto: Ax<b
stop at new constraint. x> 0
V = new intersection.

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of y;
return v

Running Time (n = # variables, m = # constraints defined by A):
* Number of possible neighbors for a given vertex?

Simplified_Simplex(LP)

V = origin

while c; > 0 for some j Objective: maxc' x
relax tight constraint. Subjectto: Ax<b
stop at new constraint. x> 0
V = new intersection.

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of y;
return v

Running Time (n = # variables, m = # constraints defined by A):
* Number of possible neighbors for a given vertex?

N non-negativity constraints are forming the vertex

N non-negativity constraints are forming the vertex

Objective:
Subject to:

max 2x1 + 5x,

2x1 — %X, <4 (3)
X1+ 2x, <9 (b)
—x1+x, <3 (c)
x;1 =0 (d)
x, =0 (e)

Objective:
Subject to:

max 15 + 7y1 — 5y2
ity <7 (a)

3y1 — 2y, = 3 (b)
y, =0 (c)
y1=0 (d)
—y1+y2<3 (e)

Simplified_Simplex(LP)
V = origin

while c; > 0 for some j Objective: maxc' x
relax tight constraint. Subjectto: Ax<b
stop at new constraint. x> 0
V = new intersection.

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of y;
return v

Running Time (n = # variables, m = # constraints defined by A):
* Number of possible neighbors for a given vertex?

N non-negativity constraints are forming the vertex, we will replace
one of them with one of the ‘regular’ constraints.

Simplified_Simplex(LP)
V = origin

while c; > 0 for some j Objective: maxc' x
relax tight constraint. Subjectto: Ax<b
stop at new constraint. x> 0
V = new intersection.

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of y;
return v

Running Time (n = # variables, m = # constraints defined by A):
* Number of possible neighbors for a given vertex?

N non-negativity constraints are forming the vertex, we will replace
one of them with one of the ‘regular’ constraints. Thus, nm options
for neighboring vertices

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

relax tight constraint.
stop at new constraint.

V = hew intersection.

for constraint a;-x < b;

yi = b;y — aj-x

reformulate LP in terms of y;

return v

constraints (c) and
(a) do not form a
feasible vertex.

Running Time (n = # variables, m = # constraints defined by A):
* Number of possible neighbors for a given vertex?

N non-negativity constraints are forming the vertex, we will replace
one of them with one of the ‘regular’ constraints. Thus, nm options
for neighboring vertices, but not all combinations are feasible.

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

relax tight constraint.
stop at new constraint.

V = hew intersection.

for constraint a;-x < b;

yi = b;y — aj-x

reformulate LP in terms of y;

return v

constraints (c) and
(a) do not form a
feasible vertex.

Running Time (n = # variables, m = # constraints defined by A):
* Number of possible neighbors for a given vertex € O(nm)

N non-negativity constraints are forming the vertex, we will replace
one of them with one of the ‘regular’ constraints. Thus, nm options
for neighboring vertices, but not all combinations are feasible.

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

relax tight constraint.
stop at new constraint.

V = hew intersection.

for constraint a;-x < b;

yi = b;y — aj-x

reformulate LP in terms of y;

return v

Objective: maxc' x
Subjectto: Ax<b
x=0

Running Time (n = # variables, m = # constraints defined by A):
* Number of possible neighbors for a given vertex € O(nm)
 Testing if possible neighbor is feasible € 0 (n?3)

Simplified_Simplex(LP)

V = origin

while c; > 0 for some j Objective: maxc' x
relax tight constraint. Subjectto: Ax<b
stop at new constraint. x> 0
V = new intersection.

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of y;
return v

Running Time (n = # variables, m = # constraints defined by A):
* Number of possible neighbors for a given vertex € O(nm)
 Testing if possible neighbor is feasible € 0 (n?3)

= 0(n*m) per iteration

Simplified_Simplex(LP)
V = origin

while c; > 0 for some j Objective: maxc' x
relax tight constraint. Subjectto: Ax<b
stop at new constraint. x> 0
V = new intersection.

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of y;
return v

Running Time (n = # variables, m = # constraints defined by A):
* Number of possible neighbors for a given vertex € O(nm)
 Testing if possible neighbor is feasible € 0 (n?3)

= O{ntm)-periteration Actually O(nm)

Since we don’t consider all possible neighbors and swapping
coordinate systems (rewriting the LP) can happen in O((m + n)n).

Simplified_Simplex(LP)
V = origin
while c; > 0 for some j

relax tight constraint.
stop at new constraint.

V = hew intersection.

for constraint a;-x < b;

yi = b;y — aj-x

reformulate LP in terms of y;

return v

Objective: maxc' x
Subjectto: Ax<b
x=0

Running Time (n = # variables, m = # constraints defined by A):
* Number of possible neighbors for a given vertex € O(nm)
 Testing if possible neighbor is feasible € 0 (n?3)

= O{ntm)-periteration Actually O(nm)

e Possible number of iterationsf?

Simplified_Simplex(LP)

V = origin

while c; > 0 for some j Objective: maxc' x
relax tight constraint. Subjectto: Ax<b
stop at new constraint. x> 0
V = new intersection.

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of y;
return v

Running Time (n = # variables, m = # constraints defined by A):
* Number of possible neighbors for a given vertex € O(nm)
 Testing if possible neighbor is feasible € 0 (n?3)

= O{ntm)-periteration Actually O(nm)

e Possible number of iterations?

Possible number of feasible vertices

Simplified_Simplex(LP)
V = origin

while c; > 0 for some j Objective: maxc' x
relax tight constraint. Subjectto:;/’ Ax<b
stop at new constraint. x> 0
V = new intersection.

for constraint a;-x < b;
yi = by - ai- X
reformulate LP in terms of vy.)

m + n constraints

Running Time (n = # variables, m = # constraints defined by A):
* Number of possible neighbors for a given vertex € O(nm)
 Testing if possible neighbor is feasible € 0 (n?3)

= O{ntm)-periteration Actually O(nm)
e Possible number of iterations = (m: n)

Possible number of feasible vertices

Simplified_Simplex(LP)

V = origin

while c; > 0 for some j Objective: maxc' x
relax tight constraint. Subjectto;/’Ax<b
stop at new constraint. x> 0
V = new intersection.

for constraint a;-x

Yi F (m + Tl) (;)b (2n)! _ (2n)(2n-1)(2n-2)(2n-3)(2n—4)...

18

reformi nin! nn-1D)m-2)..nn-1)Mn-2)..
return v _ 2n(2n-1)2—-1(2n-3)2H-2)..
 ae—1DEa—2)>n(n-1)1n-2)..
Runnir > 28@n-1)@n=3).. _ Hn
. — n! B

 Testing if possible neighbor is feasible € 0 (n?3)

= 0t m)-periteration Actually O(nm)
e Possible number of iterations = (m: n)

Possible number of feasible vertices

Simplified_Simplex(LP)

V = origin

while c; > 0 for some j Objective: maxc' x
relax tight constraint. Subjectto;/’Ax<b
stop at new constraint. x> 0
V = new intersection.

for constraint a;-x

Yi F (m + Tl) (;)b (2n)! _ (2n)(2n-1)(2n-2)(2n-3)(2n—4)...

18

reformi nin! nn-1D)m-2)..nn-1)Mn-2)..
return v _ 2n(2n-1)2—-1(2n-3)2H-2)..
 ae—1DEa—2)>n(n-1)1n-2)..
Runnir > 28@n-1)@n=3).. _ Hn
. — n! B

 Testing if possible neighbor is feasible € 0 (n?3)

= 0t m)-periteration Actually O(nm)

m +n) € Q(2")

e Possible number of iterations = (n

Possible number of feasible vertices

Simplified_Simplex(LP)

V = origin : —

while c; > 0 for some j max c' X
relax tight constraint. Ax<Db
stop at new cons ' x>0

V = new

for co

Yi =

reformu
return v

€ LP 1n terms of y;

Running Time (n = # variables, m = # constraints defined by A):
* Number of possible neighbors for a given vertex € O(nm)
 Testing if possible neighbor is feasible € 0 (n?3)

= O{ntm)-periteration Actually O(nm)
* Possible number of iterations = (m: n) e Q(2")

Simplified_Simplex(LP)
V = origin : - -
while c; > 0 for some j \ max c’ X
relax tight constraint.
stop at new cons '

Yi =
reformu

€ LP in terms of y;

History Lesson:
* Solving systems of linear inequalities dates back to the 1800’s.
* Linear programming was widely studied in the 1940’s.
* Simplex invented in 1947.
* Specific LPs that Simplex takes exponential time on discovered in 1972.
* Soviet mathematician found polynomial time algorithm in 1979.
* Interior point method found in 1984.
* CPLEX released in 1988.

Simplex — Starting Vertex

Objective: maxc'x
Subjectto: Ax<b
x=0

The origin is not always feasible!

Simplex — Starting Vertex

»

Objective: maxc'x
Subjectto: Ax<b
x=0

Ensure b = 0. (Negate equality if not)

Objective:
Subject to:

minz; + -+ 7,
Ax+z=b
Xx=0

z=>0

Simplex — Starting Vertex

»

Objective: maxc'x
Subjectto: Ax<b
x=0

Simple feasible solution to new LP?

Objective:
Subject to:

minz; + -+ 7,
Ax+z=b
Xx=0

z=>0

Simplex — Starting Vertex

»

Objective: maxc'x
Subjectto: Ax<b
x=0

Simple feasible solution to new LP?
z=b,x=0
What if optimal is 0?

Objective:
Subject to:

minz; + -+ 7,
Ax+z=b
Xx=0

z=>0

Simplex — Starting Vertex

»

Objective: minz; + -+ z,,
Subjectto: Ax+z=b
Xx=0
z=>0

Objective: maxc'x
Subjectto: Ax<b
x=0

Simple feasible solution to new LP?
z=b,x=0
What if optimal is 0?
z; = 0 for each i, and whatever the selected x;’s are, are feasible.

What if optimal is > 07?

Simplex — Starting Vertex

»

Objective: minz; + -+ z,,
Subjectto: Ax+z=b
Xx=0
z=>0

Objective: maxc'x
Subjectto: Ax<b
x=0

Simple feasible solution to new LP?
z=b,x=0
What if optimal is 0?
z; = 0 for each i, and whatever the selected x;’s are, are feasible.

What if optimal is > 07?
A x + 0 = b is not feasible, which means original LP is not feasible!!

Simplex — Unbounded Solution

Objective: maxc’x
Subjectto: Ax<b
x=>0

How will we know if the solution is unbounded?

Simplex — Unbounded Solution

Objective: maxc’x
Subjectto: Ax<b
x=>0

How will we know if the solution is unbounded?

Simplex will attempt to relax a
constraint, and it never meets
another bounding constraint.

Simplex — Degenerate Vertices

Objective: maxc’x
Subjectto: Ax<b
x=>0

Can we ever have the same (non-optimal) objective value on neighboring
vertices?

Simplex — Degenerate Vertices

Objective: maxc’x
Subjectto: Ax<b
x=>0

Can we ever have the same (non-optimal) objective value on neighboring
vertices?

* No. Feasible
region would

not be convex.

30

20

10

0 10 20 30 40 1

Simplex — Degenerate Vertices

Objective: maxc’x
Subjectto: Ax<b
x=>0

Can we ever have the same (non-optimal) objective value on neighboring
vertices?
X2
40

Yes. Vertex in R™ can

be intersection of > n
" constraints.

No. Feasible
region would
not be convex.

30

20

10

0 10 20 30 40 1

