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Optimal Value
Objective: max 𝑓(𝑥!, 𝑥")
Subject to: 𝑐!(𝑥!, 𝑥")
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Properties of optimal solutions:
1. Optimal value occurs at a vertex.
2. Local optimum is global optimum.

Algorithm to find optimal solution:
Test each vertex in order until no 
neighbors have larger (or smaller) value.



Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while ∃ neighbor v’ with better objective value

v = v’
return v

How do we find vertices?



Vertex Hunting

2𝑥! + 𝑥" = 60𝑥)

𝑥"

𝑥!

𝑥# = 20

𝑥)

𝑥"

𝑥! + 𝑥# + 𝑥" = 40

𝑥!

Definition: Two vertices are neighbors if they share 𝑛 − 1 defining 
inequalities.
Plan: Move from vertex to vertex by following line formed by intersection of 
𝑛 − 1 inequalities.
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Intersection of: 
2𝑥! + 𝑥" = 60
𝑥! + 𝑥# + 𝑥" = 40
𝑥# = 0

Intersection of: 
2𝑥! + 𝑥" = 60
𝑥! + 𝑥# + 𝑥" = 40
𝑥" = 0



Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while ∃ neighbor v’ with better objective value

v = v’
return v Objective: max cT x

Subject to: A x ≤ b
x ≥ 0Step 1: Check if current vertex is optimal. 

Let x = (𝑥!, … , 𝑥+). Feasible origin (x = (0,… , 0)) ⟹ vertex, because?



Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while ∃ neighbor v’ with better objective value

v = v’
return v Objective: max cT x

Subject to: A x ≤ b
x ≥ 0Step 1: Check if current vertex is optimal. 

Let x = (𝑥!, … , 𝑥+). Feasible origin (x = (0,… , 0)) ⟹ vertex, because 
it uniquely satisfies 𝑛 constraints (x ≥ 0).



Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while ∃ neighbor v’ with better objective value

v = v’
return v Objective: max cT x

Subject to: A x ≤ b
x ≥ 0Step 1: Check if current vertex is optimal. 

How can we tell if the origin is optimal?



Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while ∃ neighbor v’ with better objective value

v = v’
return v Objective: max cT x

Subject to: A x ≤ b
x ≥ 0Step 1: Check if current vertex is optimal. 

Origin is optimal ⟺ 𝑐, ≤ 0, for all 𝑖:



Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while ∃ neighbor v’ with better objective value

v = v’
return v Objective: max cT x

Subject to: A x ≤ b
x ≥ 0Step 1: Check if current vertex is optimal. 

Origin is optimal ⟺ 𝑐, ≤ 0, for all 𝑖:
If origin is optimal, increasing 𝑥,, for any 𝑖 will decrease objective 

⟹ 𝑐,𝑥, ≥ 𝑐, 𝑥, + 𝜀 ⟹ 𝑐,0 ≥ 𝑐, 0 + 𝜀 ⟹ 𝑐, ≤ 0



Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while ∃ neighbor v’ with better objective value

v = v’
return v Objective: max cT x

Subject to: A x ≤ b
x ≥ 0Step 1: Check if current vertex is optimal. 

Origin is optimal ⟺ 𝑐, ≤ 0, for all 𝑖:
If origin is optimal, increasing 𝑥,, for any 𝑖 will decrease objective 

⟹ 𝑐,𝑥, ≥ 𝑐, 𝑥, + 𝜀 ⟹ 𝑐,0 ≥ 𝑐, 0 + 𝜀 ⟹ 𝑐, ≤ 0
if 𝑐, ≤ 0, for all 𝑖, 𝑐, 𝑥, + 𝜀 ≤ 𝑐,𝑥,, i.e., lower objective value



Simplex Algorithm

Step 2: Move to a neighboring vertex.
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Intersection of: 
2𝑥! + 𝑥" = 60
𝑥! + 𝑥# + 𝑥" = 40
𝑥# = 0

Intersection of: 
2𝑥! + 𝑥" = 60
𝑥! + 𝑥# + 𝑥" = 40
𝑥" = 0Simplex(LP)

v = vertex in feasible region
while ∃ neighbor v’ with > objective

v = v’
return v



Simplex Algorithm

Step 2: Move to a neighboring vertex.
Relax any constraint that allows us to increase the objective function 

(i.e. 𝑥,, where 𝑐, > 0). Keep increasing 𝑥, until another constraint becomes 
tight. 
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Intersection of: 
2𝑥! + 𝑥" = 60
𝑥! + 𝑥# + 𝑥" = 40
𝑥# = 0

Intersection of: 
2𝑥! + 𝑥" = 60
𝑥! + 𝑥# + 𝑥" = 40
𝑥" = 0Simplex(LP)

v = vertex in feasible region
while ∃ neighbor v’ with > objective

v = v’
return v



Simplex Algorithm Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)

𝑥! + 2𝑥" ≤ 9 (b)
−𝑥! + 𝑥" ≤ 3 (c)
𝑥! ≥ 0 (d)
𝑥" ≥ 0 (e)
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1. Start at origin, 𝑥!, 𝑥" = (0,0).
2. Relax a tight constraint.

3. Stop when another constraint is met.

4. New vertex = intersection of new constraint.
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1. Start at origin, 𝑥!, 𝑥" = (0,0).
2. Relax a tight constraint.

Either d or e. Suppose e.
3. Stop when another constraint is met.

4. New vertex = intersection of new constraint.



Simplex Algorithm Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)
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1. Start at origin, 𝑥!, 𝑥" = (0,0).
2. Relax a tight constraint.

Either d or e. Suppose e.
3. Stop when another constraint is met.

Let 𝑥" increase until another constraint 
is met (a – never, b – 4.5, c – 3)

4. New vertex = intersection of new constraint.



Simplex Algorithm Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)

𝑥! + 2𝑥" ≤ 9 (b)
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𝑥" ≥ 0 (e)
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1. Start at origin, 𝑥!, 𝑥" = (0,0).
2. Relax a tight constraint.

Either d or e. Suppose e.
3. Stop when another constraint is met.

Let 𝑥" increase until another constraint 
is met (a – never, b – 4.5, c – 3)

4. New vertex = intersection of new constraint.
u = intersection of d and c.



Simplex Algorithm

Simplex(LP)
v = vertex in feasible region of LP
while ∃ neighbor v’ with better objective value

v = v’
return v Objective: max cT x

Subject to: A x ≤ b
x ≥ 0

Step 1: Check if current vertex is optimal. 

Step 2: Move to a neighboring vertex.

Super easy to do if starting at origin!



Simplex Algorithm

What should we do if we are not at the origin?
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Step 1: Check if current vertex is optimal. 

Step 2: Move to a neighboring vertex.

Simplex(LP)
v = vertex in feasible region
while ∃ neighbor v’ with > objective

v = v’
return v



Simplex Algorithm
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Step 1: Check if current vertex is optimal. 

Step 2: Move to a neighboring vertex.

Simplex(LP)
v = vertex in feasible region
while ∃ neighbor v’ with > objective

v = v’
return v

Step 3: Redefine coordinate system so 𝑢 is the origin.
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Step 1: Check if current vertex is optimal. 

Step 2: Move to a neighboring vertex.

Simplex(LP)
v = vertex in feasible region
while ∃ neighbor v’ with > objective

v = v’
return v

Step 3: Redefine coordinate system so 𝑢 is the origin.
For constraint 𝑎,x ≤ 𝑏,, 𝑦, = 𝑏, − 𝑎,x distance from x

to constraint 𝒊
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Step 1: Check if current vertex is optimal. 

Step 2: Move to a neighboring vertex.

Simplex(LP)
v = vertex in feasible region
while ∃ neighbor v’ with > objective

v = v’
return v

Step 3: Redefine coordinate system so 𝑢 is the origin.
For constraint 𝑎,x ≤ 𝑏,, 𝑦, = 𝑏, − 𝑎,x distance from x

to constraint 𝒊
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Step 1: Check if current vertex is optimal. 

Step 2: Move to a neighboring vertex.

Simplex(LP)
v = vertex in feasible region
while ∃ neighbor v’ with > objective

v = v’
return v

Step 3: Redefine coordinate system so 𝑢 is the origin.
For constraint 𝑎,x ≤ 𝑏,, 𝑦, = 𝑏, − 𝑎,x distance from x

to constraint 𝒊

−𝑥! + 𝑥" ≤ 3



Simplex(LP)
v = vertex in feasible region
while ∃ neighbor v’ with > objective

v = v’
return v

Simplex Algorithm
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Step 1: Check if current vertex is optimal. 

Step 2: Move to a neighboring vertex.
Step 3: Redefine coordinate system so 𝑢 is the origin.

For constraint 𝑎,x ≤ 𝑏,, 𝑦, = 𝑏, − 𝑎,x distance from x
to constraint 𝒊

−𝑥! + 𝑥" ≤ 3

𝑦"

𝑦" = 3 + 𝑥! − 𝑥"



Simplex(LP)
v = vertex in feasible region
while ∃ neighbor v’ with > objective

v = v’
return v

Simplex Algorithm
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Step 1: Check if current vertex is optimal. 

Step 2: Move to a neighboring vertex.
Step 3: Redefine coordinate system so 𝑢 is the origin.

For constraint 𝑎,x ≤ 𝑏,, 𝑦, = 𝑏, − 𝑎,x distance from x
to constraint 𝒊

−𝑥! + 𝑥" ≤ 3

𝑦"

𝑦" = 3 + 𝑥! − 𝑥"

𝑦!
𝑦! = 𝑥!



𝑢

Simplex(LP)
v = vertex in feasible region
while ∃ neighbor v’ with > objective

v = v’
return v

Simplex Algorithm
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Step 1: Check if current vertex is optimal. 

Step 2: Move to a neighboring vertex.
Step 3: Redefine coordinate system so 𝑢 is the origin.

For constraint 𝑎,x ≤ 𝑏,, 𝑦, = 𝑏, − 𝑎,x distance from x
to constraint 𝒊

−𝑥! + 𝑥" ≤ 3

𝑦"

𝑦" = 3 + 𝑥! − 𝑥"

𝑦!
𝑦! = 𝑥!

𝒙𝟏, 𝒙𝟐 = (𝟎, 𝟑) ⇒ 𝒚𝟏, 𝒚𝟐 = 𝟎, 𝟎



Simplex(LP)
v = vertex in feasible region
while ∃ neighbor v’ with > objective

v = v’
return v

Simplex Algorithm
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Step 1: Check if current vertex is optimal. 

Step 2: Move to a neighboring vertex.
Step 3: Redefine coordinate system so 𝑢 is the origin.
Step 4: ???



Simplex(LP)
v = vertex in feasible region
while ∃ neighbor v’ with > objective

v = v’
return v

Simplex Algorithm

4
𝑥!

𝑥"

0

2

1

4

321

a

bc

e

d

𝑢

Step 1: Check if current vertex is optimal. 

Step 2: Move to a neighboring vertex.
Step 3: Redefine coordinate system so 𝑢 is the origin.
Step 4: Repeat.



Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)

𝑥! + 2𝑥" ≤ 9 (b)
−𝑥! + 𝑥" ≤ 3 (c)
𝑥! ≥ 0 (d)
𝑥" ≥ 0 (e)



Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)

𝑥! + 2𝑥" ≤ 9 (b)
−𝑥! + 𝑥" ≤ 3 (c)
𝑥! ≥ 0 (d)
𝑥" ≥ 0 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex:
Objective Value: 
Relax: 
Stop at: 
Vertex Local Coordinates: 



Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)

𝑥! + 2𝑥" ≤ 9 (b)
−𝑥! + 𝑥" ≤ 3 (c)
𝑥! ≥ 0 (d)
𝑥" ≥ 0 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: Origin (d,e)
Objective Value: 
Relax: 
Stop at: 
Vertex Local Coordinates: 



Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)

𝑥! + 2𝑥" ≤ 9 (b)
−𝑥! + 𝑥" ≤ 3 (c)
𝑥! ≥ 0 (d)
𝑥" ≥ 0 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: Origin (d,e)
Objective Value: 0
Relax: 
Stop at: 
Vertex Local Coordinates: 



Objective: max2𝑥! + 5𝑥"
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v = origin
while cj > 0 for some j
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stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: Origin (d,e)
Objective Value: 0
Relax: e
Stop at: 
Vertex Local Coordinates: 
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Objective Value: 0
Relax: e
Stop at: 
Vertex Local Coordinates: 



Objective: max2𝑥! + 5𝑥"
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Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: Origin (d,e)
Objective Value: 0
Relax: e
Stop at: c,d
Vertex Local Coordinates: 



Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)
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return v
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Objective Value: 0
Relax: e
Stop at: c,d
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Objective: max2𝑥! + 5𝑥"
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Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: Origin (d,e) c,d
Objective Value: 0
Relax: e
Stop at: c,d
Vertex Local Coordinates: 

𝑥! ≥ 0 ⟹ −𝑥! ≤ 0 ⟹ 𝑦! = 𝑥!



Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)

𝑥! + 2𝑥" ≤ 9 (b)
−𝑥! + 𝑥" ≤ 3 (c)
𝑥! ≥ 0 (d)
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Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
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yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: Origin (d,e) c,d
Objective Value: 0
Relax: e
Stop at: c,d
Vertex Local Coordinates: 

𝑥! ≥ 0 ⟹ −𝑥! ≤ 0 ⟹ 𝑦! = 𝑥!
−𝑥! + 𝑥" ≤ 3 ⟹ 𝑦"= 3 + 𝑥! − 𝑥"



Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)

𝑥! + 2𝑥" ≤ 9 (b)
−𝑥! + 𝑥" ≤ 3 (c)
𝑥! ≥ 0 (d)
𝑥" ≥ 0 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: Origin (d,e) c,d
Objective Value: 0
Relax: e
Stop at: c,d
Vertex Local Coordinates: 

𝑥! ≥ 0 ⟹ −𝑥! ≤ 0 ⟹ 𝑦! = 𝑥!
−𝑥! + 𝑥" ≤ 3 ⟹ 𝑦"= 3 + 𝑥! − 𝑥"
⟹ 𝑥! = 𝑦!, 𝑥" = 3 + 𝑦! − 𝑦"



Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)

𝑥! + 2𝑥" ≤ 9 (b)
−𝑥! + 𝑥" ≤ 3 (c)
𝑥! ≥ 0 (d)
𝑥" ≥ 0 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: Origin (d,e) c,d
Objective Value: 0
Relax: e
Stop at: c,d
Vertex Local Coordinates: 

𝑥! ≥ 0 ⟹ −𝑥! ≤ 0 ⟹ 𝑦! = 𝑥!
−𝑥! + 𝑥" ≤ 3 ⟹ 𝑦"= 3 + 𝑥! − 𝑥"
⟹ 𝑥! = 𝑦!, 𝑥" = 3 + 𝑦! − 𝑦"

Objective: max
Subject to: (a)

(b)
(c)
(d)
(e)



Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)

𝑥! + 2𝑥" ≤ 9 (b)
−𝑥! + 𝑥" ≤ 3 (c)
𝑥! ≥ 0 (d)
𝑥" ≥ 0 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: Origin (d,e) c,d
Objective Value: 0
Relax: e
Stop at: c,d
Vertex Local Coordinates: 

𝑥! ≥ 0 ⟹ −𝑥! ≤ 0 ⟹ 𝑦! = 𝑥!
−𝑥! + 𝑥" ≤ 3 ⟹ 𝑦"= 3 + 𝑥! − 𝑥"
⟹ 𝑥! = 𝑦!, 𝑥" = 3 + 𝑦! − 𝑦"

Objective: max15 + 7𝑦! − 5𝑦"
Subject to: (a)

(b)
(c)
(d)
(e)

2𝑥! + 5𝑥" = 2𝑦! + 15 + 5𝑦! − 5𝑦" = 15 + 7𝑦! − 5𝑦"



Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)

𝑥! + 2𝑥" ≤ 9 (b)
−𝑥! + 𝑥" ≤ 3 (c)
𝑥! ≥ 0 (d)
𝑥" ≥ 0 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: Origin (d,e) c,d
Objective Value: 0 15
Relax: e
Stop at: c,d
Vertex Local Coordinates: 

𝑥! ≥ 0 ⟹ −𝑥! ≤ 0 ⟹ 𝑦! = 𝑥!
−𝑥! + 𝑥" ≤ 3 ⟹ 𝑦"= 3 + 𝑥! − 𝑥"
⟹ 𝑥! = 𝑦!, 𝑥" = 3 + 𝑦! − 𝑦"

Objective: max15 + 7𝑦! − 5𝑦"
Subject to: (a)

(b)
(c)
(d)
(e)

2𝑥! + 5𝑥" = 2𝑦! + 15 + 5𝑦! − 5𝑦" = 15 + 7𝑦! − 5𝑦"



Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)

𝑥! + 2𝑥" ≤ 9 (b)
−𝑥! + 𝑥" ≤ 3 (c)
𝑥! ≥ 0 (d)
𝑥" ≥ 0 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: Origin (d,e) c,d
Objective Value: 0 15
Relax: e
Stop at: c,d
Vertex Local Coordinates: 

𝑥! ≥ 0 ⟹ −𝑥! ≤ 0 ⟹ 𝑦! = 𝑥!
−𝑥! + 𝑥" ≤ 3 ⟹ 𝑦"= 3 + 𝑥! − 𝑥"
⟹ 𝑥! = 𝑦!, 𝑥" = 3 + 𝑦! − 𝑦"

Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

(b)
(c)
(d)
(e)

2𝑥! − 𝑥" = 2𝑦! − 3 − 𝑦! + 𝑦" = 𝑦! + 𝑦" − 3



Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)

𝑥! + 2𝑥" ≤ 9 (b)
−𝑥! + 𝑥" ≤ 3 (c)
𝑥! ≥ 0 (d)
𝑥" ≥ 0 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: Origin (d,e) c,d
Objective Value: 0 15
Relax: e
Stop at: c,d
Vertex Local Coordinates: 

𝑥! ≥ 0 ⟹ −𝑥! ≤ 0 ⟹ 𝑦! = 𝑥!
−𝑥! + 𝑥" ≤ 3 ⟹ 𝑦"= 3 + 𝑥! − 𝑥"
⟹ 𝑥! = 𝑦!, 𝑥" = 3 + 𝑦! − 𝑦"

Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)



Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: c,d
Objective Value: 15
Relax:
Stop at:
Vertex Local Coordinates: 



Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: c,d
Objective Value: 15
Relax:
Stop at:
Vertex Local Coordinates: 

Which constraint should we relax?



Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: c,d
Objective Value: 15
Relax: d
Stop at:
Vertex Local Coordinates: 

Which constraint should we relax?

Increasing 𝑦" worsens 
objective. Therefore, we 
should increase 𝑦!, which is 
constraint (d).

𝒚𝟏

𝒚𝟐



Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: c,d
Objective Value: 15
Relax: d
Stop at:
Vertex Local Coordinates: 

𝒚𝟏

𝒚𝟐



Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: c,d
Objective Value: 15
Relax: d
Stop at: b,c
Vertex Local Coordinates: 



Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Vertex: c,d b,c
Objective Value: 15
Relax: d
Stop at: b,c
Vertex Local Coordinates: 



Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·y ≤ bi

zi = bi – ai·y
reformulate LP in terms of zi

return v

Vertex: c,d b,c
Objective Value: 15
Relax: d
Stop at: b,c
Vertex Local Coordinates:

3𝑦! − 2𝑦" ≤ 3 ⟹ 𝑧! = 3 − 3𝑦! + 2𝑦"
𝑦" ≥ 0 ⟹ 𝑧" = 𝑦"
⟹ 𝑦! = 1 − !

#
𝑧! +

"
#
𝑧", 𝑦" = 𝑧"



Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·y ≤ bi

zi = bi – ai·y
reformulate LP in terms of zi

return v

Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)

Vertex: c,d b,c
Objective Value: 15
Relax: d
Stop at: b,c
Vertex Local Coordinates:

3𝑦! − 2𝑦" ≤ 3 ⟹ 𝑧! = 3 − 3𝑦! + 2𝑦"
𝑦" ≥ 0 ⟹ 𝑧" = 𝑦"
⟹ 𝑦! = 1 − !

#
𝑧! +

"
#
𝑧", 𝑦" = 𝑧"

𝒛𝟏 𝒛𝟐



Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)

Vertex: c,d b,c
Objective Value: 15
Relax: d
Stop at: b,c
Vertex Local Coordinates:

3𝑦! − 2𝑦" ≤ 3 ⟹ 𝑧! = 3 − 3𝑦! + 2𝑦"
𝑦" ≥ 0 ⟹ 𝑧" = 𝑦"
⟹ 𝑦! = 1 − !

#
𝑧! +

"
#
𝑧", 𝑦" = 𝑧"

Objective: max22 − #
$
𝑧! −

!
$
𝑧"

Subject to: (a)
(b)
(c)
(d)
(e)

15 + 7𝑦! − 5𝑦" = 15 + 7 −
7
3 𝑧! +

14
3 𝑧" − 5𝑧" = 22 −

7
3 𝑧! −

1
3 𝑧"

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·y ≤ bi

zi = bi – ai·y
reformulate LP in terms of zi

return v



Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)

Vertex: c,d b,c
Objective Value: 15 22
Relax: d
Stop at: b,c
Vertex Local Coordinates:

3𝑦! − 2𝑦" ≤ 3 ⟹ 𝑧! = 3 − 3𝑦! + 2𝑦"
𝑦" ≥ 0 ⟹ 𝑧" = 𝑦"
⟹ 𝑦! = 1 − !

#
𝑧! +

"
#
𝑧", 𝑦" = 𝑧"

Objective: max22 − #
$
𝑧! −

!
$
𝑧"

Subject to: (a)
(b)
(c)
(d)
(e)

15 + 7𝑦! − 5𝑦" = 15 + 7 −
7
3 𝑧! +

14
3 𝑧" − 5𝑧" = 22 −

7
3 𝑧! −

1
3 𝑧"

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·y ≤ bi

zi = bi – ai·y
reformulate LP in terms of zi

return v



Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)

Vertex: c,d b,c
Objective Value: 15 22
Relax: d
Stop at: b,c
Vertex Local Coordinates:

3𝑦! − 2𝑦" ≤ 3 ⟹ 𝑧! = 3 − 3𝑦! + 2𝑦"
𝑦" ≥ 0 ⟹ 𝑧" = 𝑦"
⟹ 𝑦! = 1 − !

#
𝑧! +

"
#
𝑧", 𝑦" = 𝑧"

Objective: max22 − #
$
𝑧! −

!
$
𝑧"

Subject to: (a)
(b)
(c)
(d)
(e)

15 + 7𝑦! − 5𝑦" = 15 + 7 −
7
3 𝑧! +

14
3 𝑧" − 5𝑧" = 22 −

7
3 𝑧! −

1
3 𝑧"

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·y ≤ bi

zi = bi – ai·y
reformulate LP in terms of zi

return v



Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)

Vertex: c,d b,c
Objective Value: 15 22
Relax: d
Stop at: b,c
Vertex Local Coordinates:

3𝑦! − 2𝑦" ≤ 3 ⟹ 𝑧! = 3 − 3𝑦! + 2𝑦"
𝑦" ≥ 0 ⟹ 𝑧" = 𝑦"
⟹ 𝑦! = 1 − !

#
𝑧! +

"
#
𝑧", 𝑦" = 𝑧"

Objective: max22 − #
$
𝑧! −

!
$
𝑧"

Subject to: (a)
(b)
(c)
(d)
(e)

15 + 7𝑦! − 5𝑦" = 15 + 7 −
7
3 𝑧! +

14
3 𝑧" − 5𝑧" = 22 −

7
3 𝑧! −

1
3 𝑧"

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·y ≤ bi

zi = bi – ai·y
reformulate LP in terms of zi

return v



Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)

Vertex: c,d b,c
Objective Value: 15 22
Relax: d
Stop at: b,c
Vertex Local Coordinates:

3𝑦! − 2𝑦" ≤ 3 ⟹ 𝑧! = 3 − 3𝑦! + 2𝑦"
𝑦" ≥ 0 ⟹ 𝑧" = 𝑦"
⟹ 𝑦! = 1 − !

#
𝑧! +

"
#
𝑧", 𝑦" = 𝑧"

Objective: max22 − #
$
𝑧! −

!
$
𝑧"

Subject to: (a)
(b)
(c)
(d)
(e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·y ≤ bi

zi = bi – ai·y
reformulate LP in terms of zi

return v



Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)

Loose Ends:
1. Starting Vertex
2. Unbounded/infeasible solution
3. Degenerate vertices
4. Running Time

Objective: max22 − #
$
𝑧! −

!
$
𝑧"

Subject to: (a)
(b)
(c)
(d)
(e)

Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·y ≤ bi

zi = bi – ai·y
reformulate LP in terms of zi

return v



Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Running Time (𝑛 = # variables, 𝑚 = # constraints defined by A):

Objective: max cT x
Subject to: A x ≤ b

x ≥ 0



Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Running Time (𝑛 = # variables, 𝑚 = # constraints defined by A):
• Number of possible neighbors for a given vertex?

Objective: max cT x
Subject to: A x ≤ b

x ≥ 0



Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Running Time (𝑛 = # variables, 𝑚 = # constraints defined by A):
• Number of possible neighbors for a given vertex?

Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

𝒏 non-negativity constraints are forming the vertex



Objective: max2𝑥! + 5𝑥"
Subject to: 2𝑥! − 𝑥" ≤ 4 (a)

𝑥! + 2𝑥" ≤ 9 (b)
−𝑥! + 𝑥" ≤ 3 (c)
𝑥! ≥ 0 (d)
𝑥" ≥ 0 (e)

Objective: max15 + 7𝑦! − 5𝑦"
Subject to: 𝑦! + 𝑦" ≤ 7 (a)

3𝑦! − 2𝑦" ≤ 3 (b)
𝑦" ≥ 0 (c)
𝑦! ≥ 0 (d)
−𝑦! + 𝑦"≤ 3 (e)

𝒚𝟏

𝒚𝟐

𝒛𝟏 𝒛𝟐

𝒏 non-negativity constraints are forming the vertex



Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Running Time (𝑛 = # variables, 𝑚 = # constraints defined by A):
• Number of possible neighbors for a given vertex?

Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

𝒏 non-negativity constraints are forming the vertex, we will replace 
one of them with one of the ‘regular’ constraints. 



Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Running Time (𝑛 = # variables, 𝑚 = # constraints defined by A):
• Number of possible neighbors for a given vertex?

Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

𝒏 non-negativity constraints are forming the vertex, we will replace 
one of them with one of the ‘regular’ constraints. Thus, 𝒏𝒎 options 
for neighboring vertices



Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Running Time (𝑛 = # variables, 𝑚 = # constraints defined by A):
• Number of possible neighbors for a given vertex?

𝒏 non-negativity constraints are forming the vertex, we will replace 
one of them with one of the ‘regular’ constraints. Thus, 𝒏𝒎 options 
for neighboring vertices, but not all combinations are feasible.

constraints (c) and 
(a) do not form a 
feasible vertex.



Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Running Time (𝑛 = # variables, 𝑚 = # constraints defined by A):
• Number of possible neighbors for a given vertex ∈ 𝑂(𝑛𝑚)

constraints (c) and 
(a) do not form a 
feasible vertex.

𝒏 non-negativity constraints are forming the vertex, we will replace 
one of them with one of the ‘regular’ constraints. Thus, 𝒏𝒎 options 
for neighboring vertices, but not all combinations are feasible.



Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Running Time (𝑛 = # variables, 𝑚 = # constraints defined by A):
• Number of possible neighbors for a given vertex ∈ 𝑂(𝑛𝑚)
• Testing if possible neighbor is feasible ∈ 𝑂(𝑛))

Objective: max cT x
Subject to: A x ≤ b

x ≥ 0



Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Running Time (𝑛 = # variables, 𝑚 = # constraints defined by A):
• Number of possible neighbors for a given vertex ∈ 𝑂(𝑛𝑚)
• Testing if possible neighbor is feasible ∈ 𝑂(𝑛))

⇒ 𝑂(𝑛/𝑚) per iteration

Objective: max cT x
Subject to: A x ≤ b

x ≥ 0



Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Running Time (𝑛 = # variables, 𝑚 = # constraints defined by A):
• Number of possible neighbors for a given vertex ∈ 𝑂(𝑛𝑚)
• Testing if possible neighbor is feasible ∈ 𝑂(𝑛))

⇒ 𝑂(𝑛/𝑚) per iteration Actually 𝑶(𝒏𝒎)

Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

Since we don’t consider all possible neighbors and swapping 
coordinate systems (rewriting the LP) can happen in 𝑶( 𝒎+ 𝒏 𝒏).



Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Running Time (𝑛 = # variables, 𝑚 = # constraints defined by A):
• Number of possible neighbors for a given vertex ∈ 𝑂(𝑛𝑚)
• Testing if possible neighbor is feasible ∈ 𝑂(𝑛))

⇒ 𝑂(𝑛/𝑚) per iteration Actually 𝑂(𝑛𝑚)

Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

• Possible number of iterations?



Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi
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Simplified_Simplex(LP)
v = origin
while cj > 0 for some j

relax tight constraint.
stop at new constraint.
v = new intersection.
for constraint ai·x ≤ bi

yi = bi – ai·x
reformulate LP in terms of yi

return v

Running Time (𝑛 = # variables, 𝑚 = # constraints defined by A):
• Number of possible neighbors for a given vertex ∈ 𝑂(𝑛𝑚)
• Testing if possible neighbor is feasible ∈ 𝑂(𝑛))

⇒ 𝑂(𝑛/𝑚) per iteration Actually 𝑂(𝑛𝑚)
• Possible number of iterations = 𝑚 + 𝑛

𝑛 ∈ Ω(2+)

Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

Simplex is Exponential!

History Lesson:
• Solving systems of linear inequalities dates back to the 1800’s.
• Linear programming was widely studied in the 1940’s.
• Simplex invented in 1947.
• Specific LPs that Simplex takes exponential time on discovered in 1972.
• Soviet mathematician found polynomial time algorithm in 1979.
• Interior point method found in 1984.
• CPLEX released in 1988.
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Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

Simplex – Starting Vertex

Objective: min 𝑧! +⋯+ 𝑧3
Subject to: A x + z = b

x ≥ 0
z ≥ 0

Simple feasible solution to new LP?
z = b, x = 0

What if optimal is 0?
𝑧, = 0 for each 𝑖, and whatever the selected 𝑥,’s are, are feasible.

What if optimal is > 0?
A x + 0 = b is not feasible, which means original LP is not feasible!!



Simplex – Unbounded Solution

How will we know if the solution is unbounded?

Objective: max cT x
Subject to: A x ≤ b

x ≥ 0



Simplex – Unbounded Solution

How will we know if the solution is unbounded?

Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

Simplex will attempt to relax a 
constraint, and it never meets 
another bounding constraint.
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Simplex – Degenerate Vertices

Can we ever have the same (non-optimal) objective value on neighboring 
vertices?

Objective: max cT x
Subject to: A x ≤ b

x ≥ 0

No. Feasible 
region would 
not be convex.

Yes. Vertex in ℝ+ can 
be intersection of > 𝑛
constraints.


