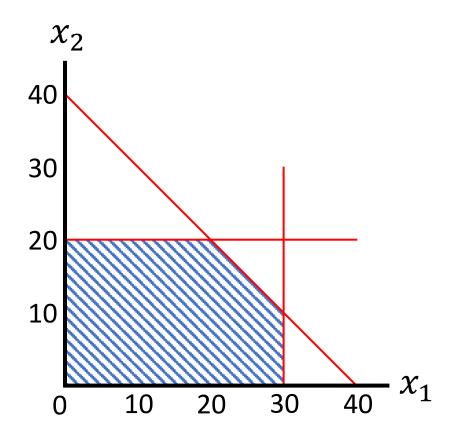
Simplex Algorithm CSCI 532

Optimal Value



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

 $c_2(x_1, x_2)$

 $c_n(x_1,x_2)$

Properties of optimal solutions:

- 1. Optimal value occurs at a vertex.
- 2. Local optimum is global optimum.

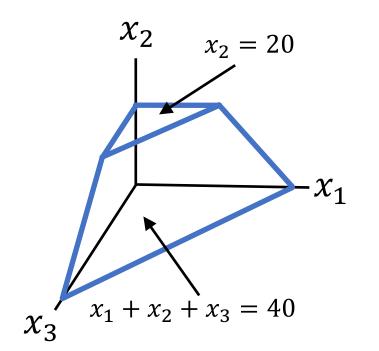
Algorithm to find optimal solution:

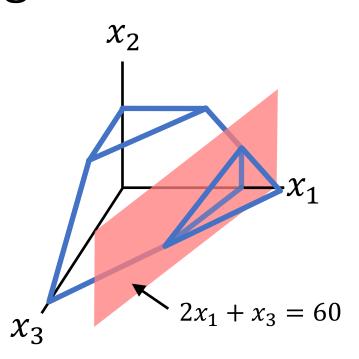
Test each vertex in order until no neighbors have larger (or smaller) value.

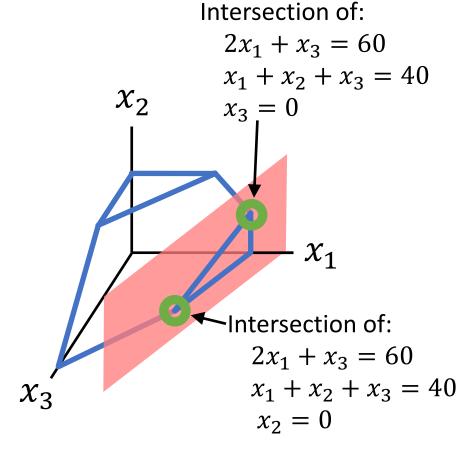
```
Simplex(LP)
  v = vertex in feasible region of LP
  while ∃ neighbor v' with better objective value
     v = v'
  return v
```

How do we find vertices?

Vertex Hunting







Definition: Two vertices are *neighbors* if they share n-1 defining inequalities.

Plan: Move from vertex to vertex by following line formed by intersection of n-1 inequalities.

```
Simplex(LP)

V = Vertex in feasible region of LP

while \exists neighbor V' with better objective value

V = V'

return V

Objective: max c^T x

Subject to: A x \le b

x \ge 0
```

Step 1: Check if current vertex is optimal.

Let $x = (x_1, ..., x_n)$. Feasible origin $(x = (0, ..., 0)) \Longrightarrow vertex$, because?

```
Simplex(LP)

v = vertex in feasible region of LP

while \exists neighbor v' with better objective value

v = v'

return v

Objective: max c^T x

Subject to: A x \le b

x \ge 0
```

Step 1: Check if current vertex is optimal.

Let $x = (x_1, ..., x_n)$. Feasible origin $(x = (0, ..., 0)) \Longrightarrow$ vertex, because it uniquely satisfies n constraints $(x \ge 0)$.

```
Simplex(LP)
  v = vertex in feasible region of LP
  while ∃ neighbor v' with better objective value
       v = v'
  return v
```

Step 1: Check if current vertex is optimal. How can we tell if the origin is optimal?

Objective: $\max c^T x$

Subject to: $A x \leq b$

 $x \ge 0$

```
Simplex(LP)
  v = vertex in feasible region of LP
  while ∃ neighbor v' with better objective value
       v = v'
  return v
```

Step 1: Check if current vertex is optimal. Origin is optimal $\iff c_i \le 0$, for all i:

Objective: $\max c^T x$

Subject to: $A x \leq b$

 $x \ge 0$

```
Simplex(LP)
  v = vertex in feasible region of LP
  while ∃ neighbor v' with better objective value
     v = v'
  return v
```

Objective: $\max c^T x$

Subject to: $A x \leq b$

 $x \ge 0$

Step 1: Check if current vertex is optimal.

Origin is optimal \iff $c_i \le 0$, for all i:

If origin is optimal, increasing x_i , for any i will decrease objective

$$\implies c_i x_i \ge c_i (x_i + \varepsilon) \implies c_i 0 \ge c_i (0 + \varepsilon) \implies c_i \le 0$$

```
Simplex(LP)
V = Vertex in feasible region of LP
while \exists neighbor V' with better objective value
V = V'
return V

Objective: max c^T x
Subject to: A x \le b
```

Step 1: Check if current vertex is optimal.

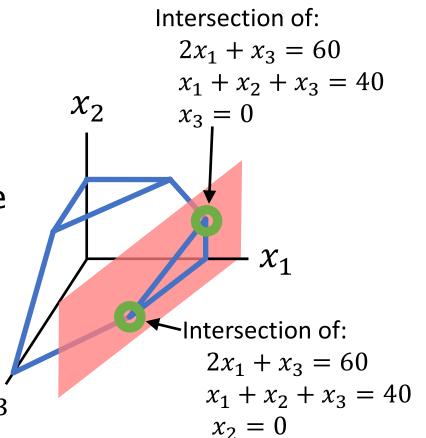
Origin is optimal \iff $c_i \le 0$, for all i:

If origin is optimal, increasing x_i , for any i will decrease objective $\Rightarrow c_i x_i \ge c_i (x_i + \varepsilon) \Rightarrow c_i 0 \ge c_i (0 + \varepsilon) \Rightarrow c_i \le 0$ if $c_i \le 0$, for all $i, c_i (x_i + \varepsilon) \le c_i x_i$, i.e., lower objective value

 $x \ge 0$

```
Simplex(LP)
    v = vertex in feasible region
    while ∃ neighbor v' with > objective
         v = v'
    return v
```

Step 2: Move to a neighboring vertex.

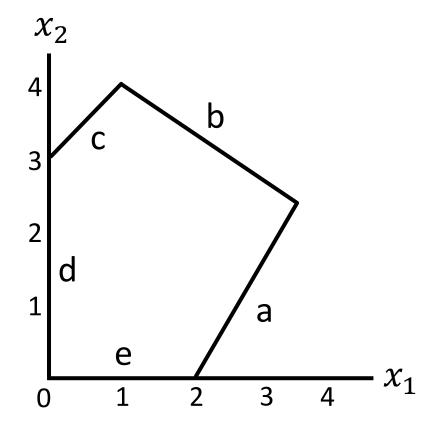


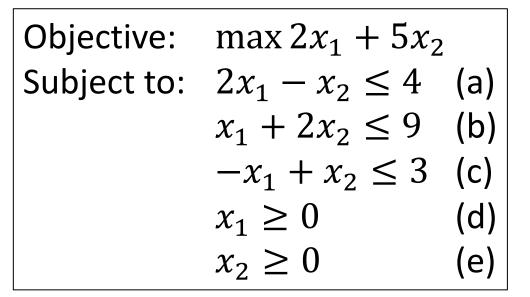
 $2x_1 + x_3 = 60$ $x_1 + x_2 + x_3 = 40$ $x_3 = 0$ Simplex(LP) v = vertex in feasible region while ∃ neighbor v' with > objective V = V' χ_1 return v Intersection of: $2x_1 + x_3 = 60$ $x_1 + x_2 + x_3 = 40$ $x_2 = 0$

Intersection of:

Step 2: Move to a neighboring vertex.

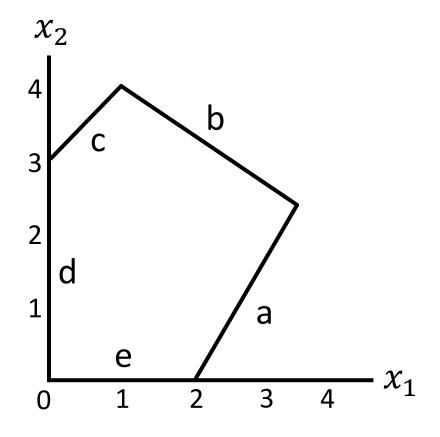
Relax any constraint that allows us to increase the objective function (i.e. x_i , where $c_i > 0$). Keep increasing x_i until another constraint becomes tight.





- 1. Start at origin, $(x_1, x_2) = (0,0)$.
- 2. Relax a tight constraint.
- 3. Stop when another constraint is met.

4. New vertex = intersection of new constraint.

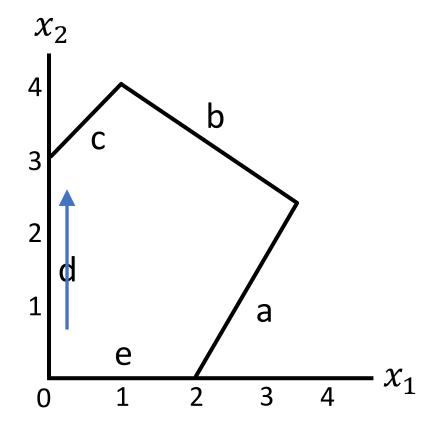


Objective:
$$\max 2x_1 + 5x_2$$

Subject to: $2x_1 - x_2 \le 4$ (a) $x_1 + 2x_2 \le 9$ (b) $-x_1 + x_2 \le 3$ (c) $x_1 \ge 0$ (d) $x_2 \ge 0$ (e)

- 1. Start at origin, $(x_1, x_2) = (0,0)$.
- 2. Relax a tight constraint. Either d or e. Suppose e.
- 3. Stop when another constraint is met.

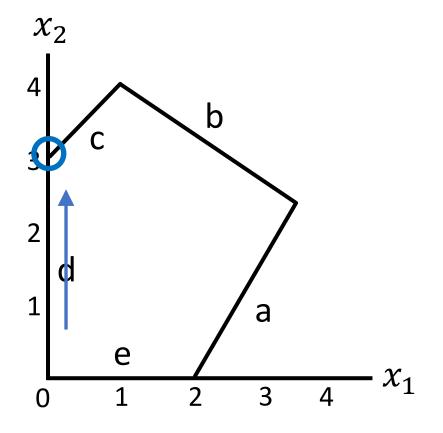
4. New vertex = intersection of new constraint.



Objective:
$$\max 2x_1 + 5x_2$$

Subject to: $2x_1 - x_2 \le 4$ (a) $x_1 + 2x_2 \le 9$ (b) $-x_1 + x_2 \le 3$ (c) $x_1 \ge 0$ (d) $x_2 \ge 0$ (e)

- 1. Start at origin, $(x_1, x_2) = (0,0)$.
- 2. Relax a tight constraint. Either d or e. Suppose e.
- 3. Stop when another constraint is met. Let x_2 increase until another constraint is met (a – never, b – 4.5, c – 3)
- 4. New vertex = intersection of new constraint.



Objective:
$$\max 2x_1 + 5x_2$$

Subject to: $2x_1 - x_2 \le 4$ (a) $x_1 + 2x_2 \le 9$ (b) $-x_1 + x_2 \le 3$ (c) $x_1 \ge 0$ (d) $x_2 \ge 0$ (e)

- 1. Start at origin, $(x_1, x_2) = (0,0)$.
- 2. Relax a tight constraint. Either d or e. Suppose e.
- 3. Stop when another constraint is met. Let x_2 increase until another constraint is met (a – never, b – 4.5, c – 3)
- 4. New vertex = intersection of new constraint. u = intersection of d and c.

```
Simplex(LP)
  v = vertex in feasible region of LP
  while ∃ neighbor v' with better objective value
      v = v'
  return v
```

Objective: $\max c^T x$

Subject to: $A x \leq b$

 $x \ge 0$

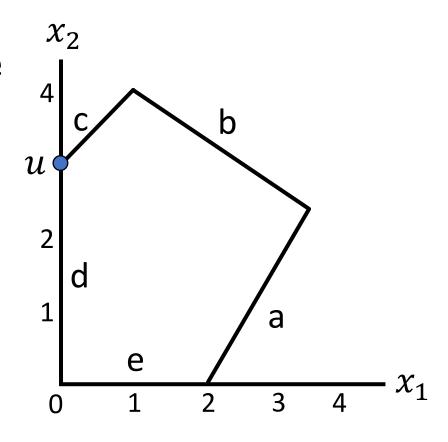
Step 1: Check if current vertex is optimal.

Step 2: Move to a neighboring vertex.

Super easy to do if starting at origin!

```
Simplex(LP)
  v = vertex in feasible region
  while ∃ neighbor v' with > objective
   v = v'
  return v
```

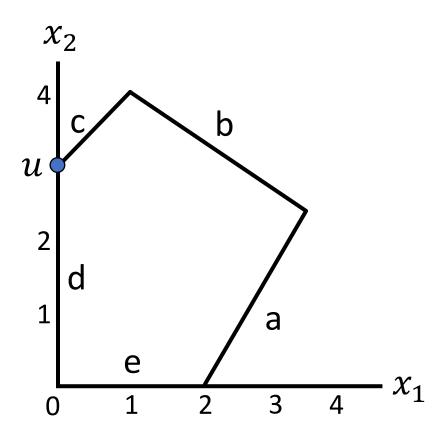

Step 2: Move to a neighboring vertex.



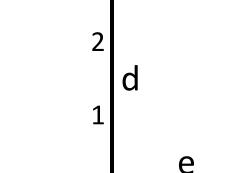
What should we do if we are not at the origin?

```
Simplex(LP)
  v = vertex in feasible region
  while ∃ neighbor v' with > objective
  v = v'
  return v
```


Step 2: Move to a neighboring vertex.



```
Simplex(LP)
  v = vertex in feasible region
  while ∃ neighbor v' with > objective
  v = v'
  return v
```



 χ_2

- Step 1: Check if current vertex is optimal.
- Step 2: Move to a neighboring vertex.
- Step 3: Redefine coordinate system so u is the origin.

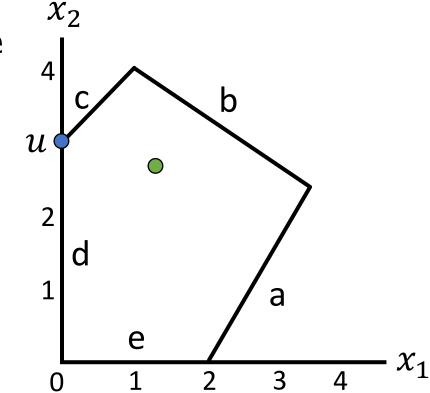
For constraint
$$a_i x \leq b_i$$
, $y_i = b_i - a_i x$

distance from x to constraint *i*

a

3

```
Simplex(LP)
  v = vertex in feasible region
  while ∃ neighbor v' with > objective
     v = v'
  return v
```



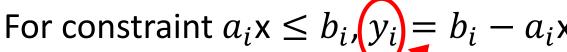
- Step 1: Check if current vertex is optimal.
- Step 2: Move to a neighboring vertex.
- Step 3: Redefine coordinate system so u is the origin.

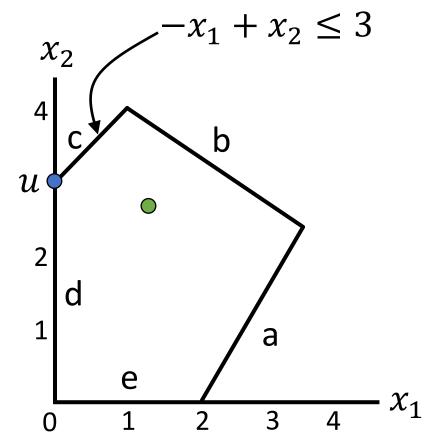
For constraint
$$a_i x \leq b_i$$
, $y_i = b_i - a_i x$

```
Simplex(LP)
  v = vertex in feasible region
  while ∃ neighbor v' with > objective
   v = v'
  return v
```


Step 2: Move to a neighboring vertex.

Step 3: Redefine coordinate system so u is the origin.



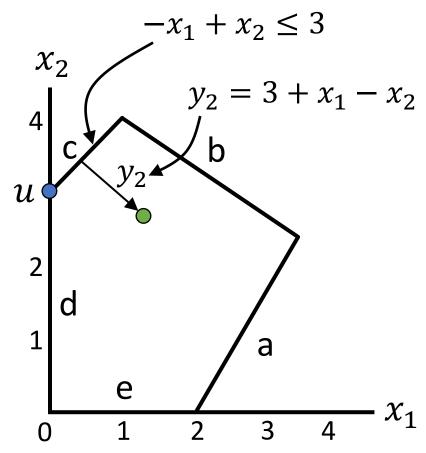


```
Simplex(LP)
  v = vertex in feasible region
  while ∃ neighbor v' with > objective
       v = v'
  return v
```


Step 2: Move to a neighboring vertex.

Step 3: Redefine coordinate system so u is the origin.

For constraint
$$a_i x \leq b_i$$
, $y_i = b_i - a_i x$

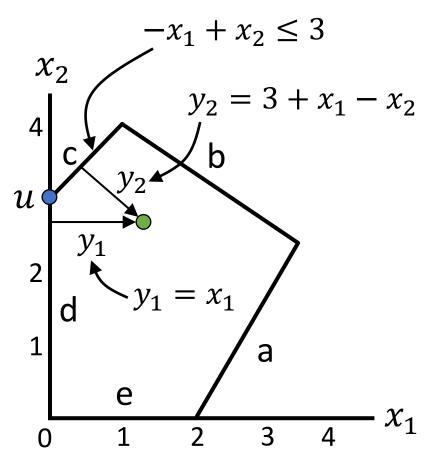


```
Simplex(LP)
  v = vertex in feasible region
  while ∃ neighbor v' with > objective
   v = v'
  return v
```


Step 2: Move to a neighboring vertex.

Step 3: Redefine coordinate system so u is the origin.

For constraint $a_i x \leq b_i$, $y_i = b_i - a_i x$



```
Simplex(LP)
  v = vertex in feasible region
  while ∃ neighbor v' with > objective
  v = v'
  return v
```

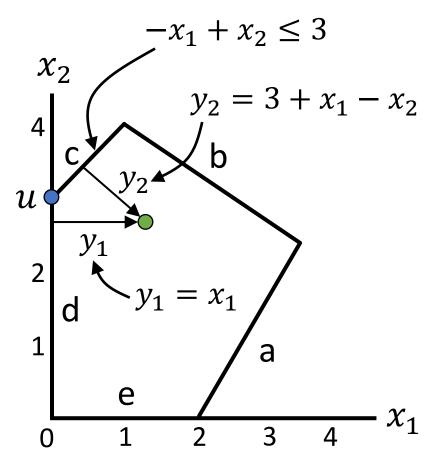
$$(x_1, x_2) = (0, 3) \Rightarrow (y_1, y_2) = (0, 0)$$

Step 1: Check if current vertex is optimal.

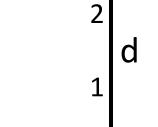
Step 2: Move to a neighboring vertex.

Step 3: Redefine coordinate system so u is the origin.

For constraint $a_i x \leq b_i$, $y_i = b_i - a_i x$



```
Simplex(LP)
  v = vertex in feasible region
  while ∃ neighbor v' with > objective
     V = V'
  return v
```

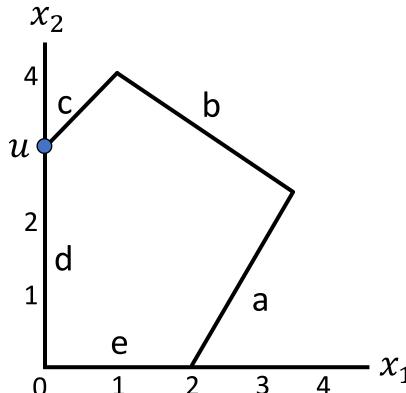


Step 1: Check if current vertex is optimal.

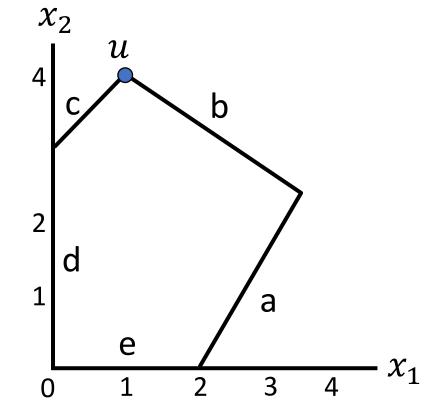
Step 2: Move to a neighboring vertex.

Step 3: Redefine coordinate system so u is the origin.

Step 4: ???



```
Simplex(LP)
  v = vertex in feasible region
  while ∃ neighbor v' with > objective
  v = v'
  return v
```



Step 1: Check if current vertex is optimal.

Step 2: Move to a neighboring vertex.

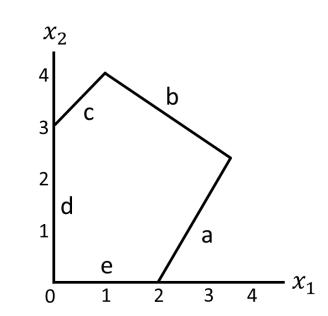
Step 3: Redefine coordinate system so u is the origin.

Step 4: Repeat.

```
Simplified_Simplex(LP) v = \text{origin} \text{while } c_j > 0 \text{ for some } j \text{relax tight constraint.} \text{stop at new constraint.} v = \text{new intersection.} \text{for constraint } a_i \cdot x \leq b_i y_i = b_i - a_i \cdot x \text{reformulate LP in terms of } y_i \text{return } v
```

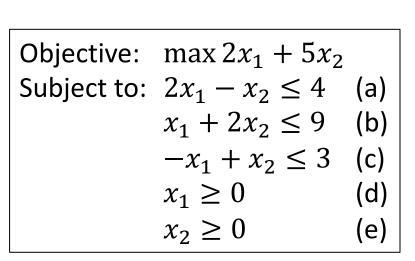
```
Objective: \max 2x_1 + 5x_2

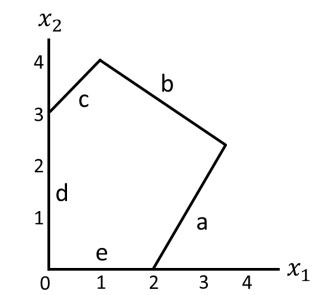
Subject to: 2x_1 - x_2 \le 4 (a) x_1 + 2x_2 \le 9 (b) -x_1 + x_2 \le 3 (c) x_1 \ge 0 (d) x_2 \ge 0 (e)
```



```
Simplified_Simplex(LP) v = \text{origin} while \ c_j > 0 \ \text{for some j} relax \ tight \ constraint. stop \ at \ new \ constraint. v = new \ intersection. for \ constraint \ a_i \cdot x \le b_i y_i = b_i - a_i \cdot x reformulate \ LP \ in \ terms \ of \ y_i return \ v
```

Vertex:
Objective Value:
Relax:
Stop at:





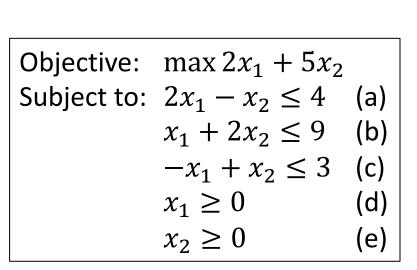
```
Simplified_Simplex(LP)
   v = origin
   while c_i > 0 for some j
      relax tight constraint.
      stop at new constraint.
      v = new intersection.
      for constraint a_i \cdot x \leq b_i
         y_i = b_i - a_i \cdot x
      reformulate LP in terms of y<sub>i</sub>
   return v
```

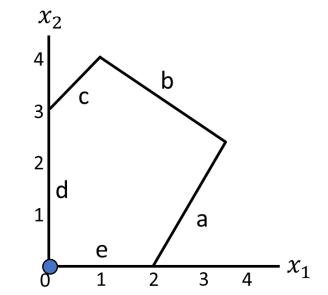
Vertex: Origin (d,e)

Objective Value:

Relax:

Stop at:

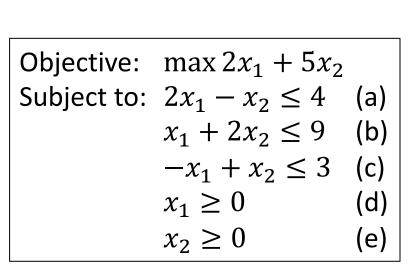


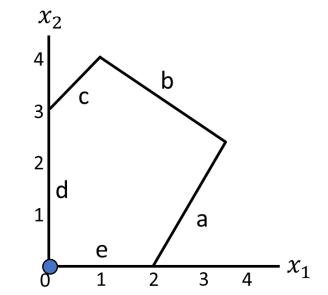


```
Simplified_Simplex(LP)
   v = origin
   while c_i > 0 for some j
      relax tight constraint.
      stop at new constraint.
      v = new intersection.
      for constraint a_i \cdot x \leq b_i
         y_i = b_i - a_i \cdot x
      reformulate LP in terms of y<sub>i</sub>
   return v
```

Relax:

Stop at:

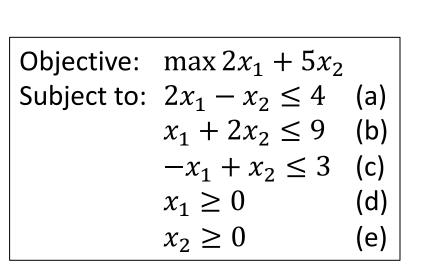


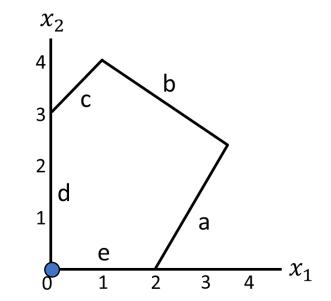


```
Simplified_Simplex(LP)
   v = origin
   while c_i > 0 for some j
      relax tight constraint.
      stop at new constraint.
      v = new intersection.
      for constraint a_i \cdot x \leq b_i
         y_i = b_i - a_i \cdot x
      reformulate LP in terms of y<sub>i</sub>
   return v
```

Relax: e

Stop at:

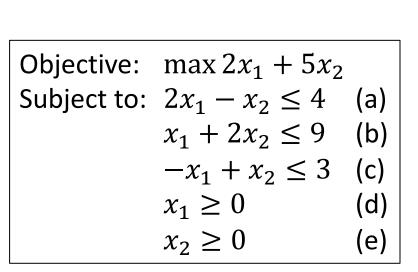


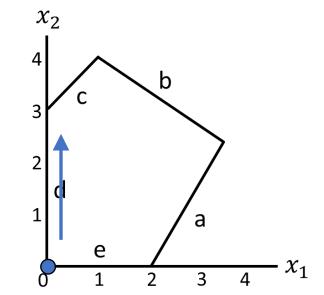


```
Simplified_Simplex(LP)
   v = origin
   while c_i > 0 for some j
      relax tight constraint.
      stop at new constraint.
      v = new intersection.
      for constraint a_i \cdot x \leq b_i
         y_i = b_i - a_i \cdot x
      reformulate LP in terms of y<sub>i</sub>
   return v
```

Relax: e

Stop at:

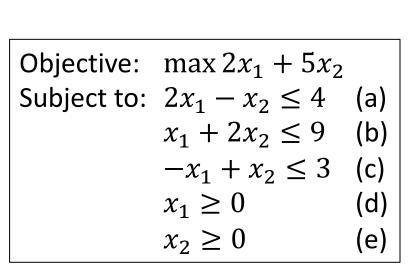


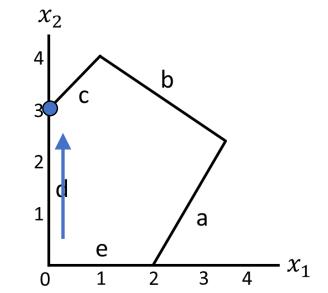


```
Simplified_Simplex(LP)
   v = origin
   while c_i > 0 for some j
      relax tight constraint.
      stop at new constraint.
      v = new intersection.
      for constraint a_i \cdot x \leq b_i
         y_i = b_i - a_i \cdot x
      reformulate LP in terms of y<sub>i</sub>
   return v
```

Relax: e

Stop at: c,d





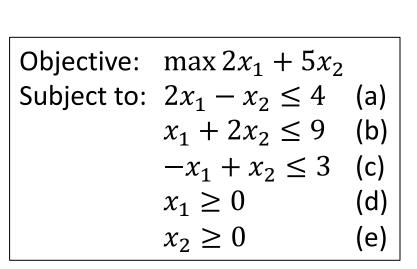
```
Simplified_Simplex(LP)
   v = origin
   while c_i > 0 for some j
      relax tight constraint.
      stop at new constraint.
      v = new intersection.
      for constraint a_i \cdot x \leq b_i
         y_i = b_i - a_i \cdot x
      reformulate LP in terms of y<sub>i</sub>
   return v
```

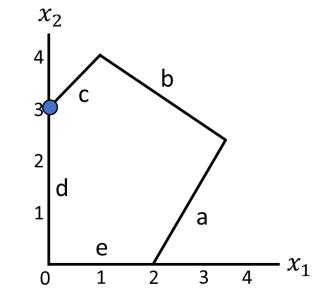
Vertex: Origin (d,e) c,d

Objective Value: 0

Relax: e

Stop at: c,d





Simplified_Simplex(LP)

$$v = origin$$

while $c_j > 0$ for some j

relax tight constraint.

stop at new constraint.

 $v = new intersection$.

for constraint $a_i \cdot x \le b_i$
 $y_i = b_i - a_i \cdot x$

reformulate LP in terms of

reformulate LP in terms of y_i return v

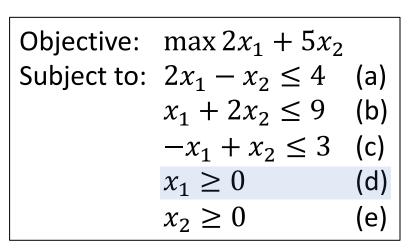
Vertex: Origin (d,e) c,d

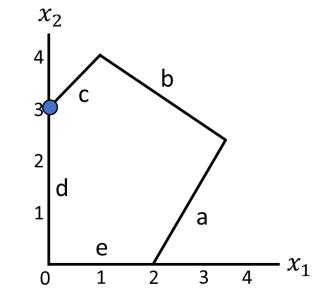
Objective Value: 0

Relax: e

Stop at: c,d

$$x_1 \ge 0 \Longrightarrow -x_1 \le 0 \Longrightarrow y_1 = x_1$$





Simplified_Simplex(LP)

$$v = origin$$

while $c_j > 0$ for some j

relax tight constraint.

stop at new constraint.

 $v = new intersection$

for constraint $a_i \cdot x \le b_i$
 $y_i = b_i - a_i \cdot x$

reformulate LP in terms of

reformulate LP in terms of y_i return v

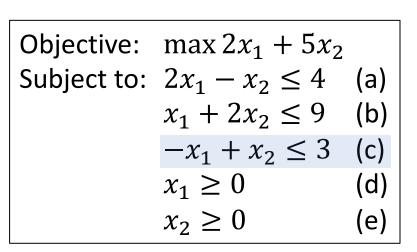
Objective Value: 0

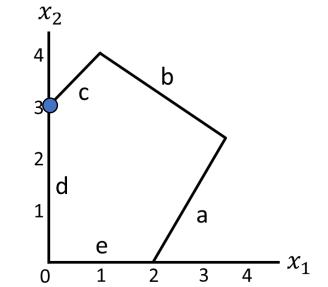
Relax: e

Stop at: c,d

$$x_1 \ge 0 \Longrightarrow -x_1 \le 0 \Longrightarrow y_1 = x_1$$

 $-x_1 + x_2 \le 3 \Longrightarrow y_2 = 3 + x_1 - x_2$





```
Simplified_Simplex(LP)
   v = origin
   while c_i > 0 for some j
      relax tight constraint.
      stop at new constraint.
      v = new intersection.
      for constraint a_i \cdot x \leq b_i
         y_i = b_i - a_i \cdot x
      reformulate LP in terms of y<sub>i</sub>
   return v
```

Vertex: Origin (d,e) c,d

Objective Value: 0

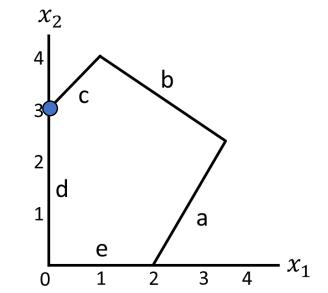
Relax: e

Stop at: c,d

$$x_1 \ge 0 \Longrightarrow -x_1 \le 0 \Longrightarrow y_1 = x_1$$
$$-x_1 + x_2 \le 3 \Longrightarrow y_2 = 3 + x_1 - x_2$$
$$\Longrightarrow x_1 = y_1, x_2 = 3 + y_1 - y_2$$

Objective:
$$\max 2x_1 + 5x_2$$

Subject to: $2x_1 - x_2 \le 4$ (a)
 $x_1 + 2x_2 \le 9$ (b)
 $-x_1 + x_2 \le 3$ (c)
 $x_1 \ge 0$ (d)
 $x_2 \ge 0$ (e)



```
Simplified_Simplex(LP) v = \text{origin} \text{while } c_j > 0 \text{ for some } j \text{relax tight constraint.} \text{stop at new constraint.} v = \text{new intersection.} \text{for constraint } a_i \cdot x \leq b_i y_i = b_i - a_i \cdot x \text{reformulate LP in terms of } y_i \text{return } v
```

Vertex: Origin (d,e) c,d

Objective Value: 0

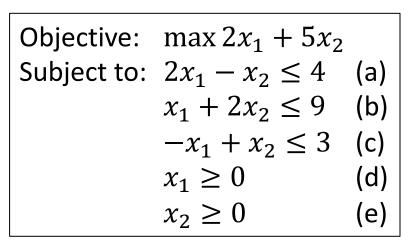
Relax: e

Stop at: c,d

Vertex Local Coordinates:

$$x_1 \ge 0 \Longrightarrow -x_1 \le 0 \Longrightarrow y_1 = x_1$$

 $-x_1 + x_2 \le 3 \Longrightarrow y_2 = 3 + x_1 - x_2$
 $\Longrightarrow x_1 = y_1, x_2 = 3 + y_1 - y_2$



Objective: max

Subject to:

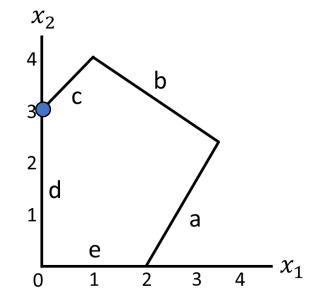
(a)

(b)

(c)

(d)

(e)



Simplified_Simplex(LP)
$$v = \text{origin}$$

$$\text{while } c_j > 0 \text{ for some } j$$

$$\text{relax tight constraint.}$$

$$\text{stop at new constraint.}$$

$$v = \text{new intersection.}$$

$$\text{for constraint } a_i \cdot x \leq b_i$$

$$y_i = b_i - a_i \cdot x$$

$$\text{reformulate LP in terms of } y_i$$

$$\text{return } v$$

Objective Value: 0

Relax: e

Stop at: c,d

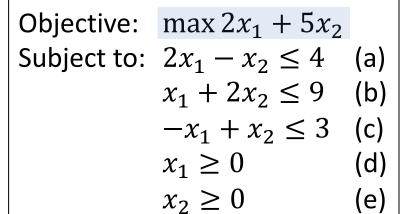
Vertex Local Coordinates:

$$x_1 \ge 0 \Longrightarrow -x_1 \le 0 \Longrightarrow y_1 = x_1$$

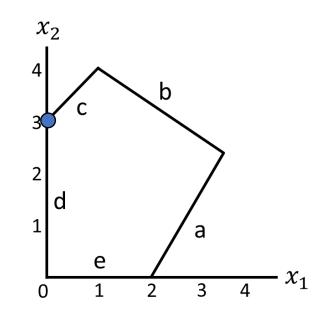
$$-x_1 + x_2 \le 3 \Longrightarrow y_2 = 3 + x_1 - x_2$$

$$\Longrightarrow x_1 = y_1, x_2 = 3 + y_1 - y_2$$

$$2x_1 + 5x_2 = 2y_1 + 15 + 5y_1 - 5y_2 = 15 + 7y_1 - 5y_2$$



Objective: $\max 15 + 7y_1 - 5y_2$ Subject to: (a)



Simplified_Simplex(LP)
$$v = \text{origin}$$

$$\text{while } c_j > 0 \text{ for some } j$$

$$\text{relax tight constraint.}$$

$$\text{stop at new constraint.}$$

$$v = \text{new intersection.}$$

$$\text{for constraint } a_i \cdot x \leq b_i$$

$$y_i = b_i - a_i \cdot x$$

$$\text{reformulate LP in terms of } y_i$$

$$\text{return } v$$

Vertex: Origin (d,e) c,d
Objective Value: 0 15
Relax: e
Stop at: c,d
Vertex Local Coordinates:
$$x_1 \ge 0 \Rightarrow -x_1 \le 0 \Rightarrow y_1 = x_1$$

 $-x_1 + x_2 \le 3 \implies y_2 = 3 + x_1 - x_2$

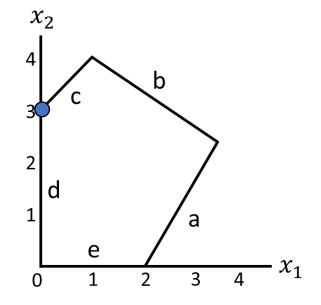
 $\Rightarrow x_1 = y_1, x_2 = 3 + y_1 - y_2$

$$2x_1 + 5x_2 = 2y_1 + 15 + 5y_1 - 5y_2 = 15 + 7y_1 - 5y_2$$

Objective: $\max 2x_1 + 5x_2$ Subject to: $2x_1 - x_2 \le 4$ (a) $x_1 + 2x_2 \le 9$ (b) $-x_1 + x_2 \le 3$ (c) $x_1 \ge 0$ (d) $x_2 \ge 0$ (e)

Objective: $\max 15 + 7y_1 - 5y_2$ Subject to: (a) (b)

(c) (d) (e)



Simplified_Simplex(LP)
$$v = \text{origin}$$

$$while \ c_j > 0 \ \text{for some j}$$

$$relax \ tight \ constraint.$$

$$stop \ at \ new \ constraint.$$

$$v = new \ intersection.$$

$$for \ constraint \ a_i \cdot x \le b_i$$

$$y_i = b_i - a_i \cdot x$$

$$reformulate \ LP \ in \ terms \ of \ y_i$$

$$return \ v$$

$$x_1 \ge 0 \Longrightarrow -x_1 \le 0 \Longrightarrow y_1 = x_1$$

$$-x_1 + x_2 \le 3 \Longrightarrow y_2 = 3 + x_1 - x_2$$

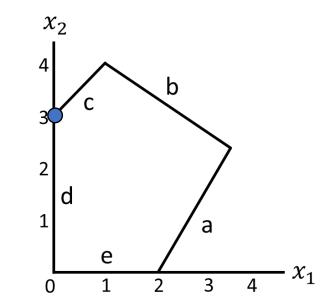
$$\Longrightarrow x_1 = y_1, x_2 = 3 + y_1 - y_2$$

$$2x_1 - x_2 = 2y_1 - 3 - y_1 + y_2 = y_1 + y_2 - 3$$

Objective:
$$\max 2x_1 + 5x_2$$

Subject to: $2x_1 - x_2 \le 4$ (a) $x_1 + 2x_2 \le 9$ (b) $-x_1 + x_2 \le 3$ (c) $x_1 \ge 0$ (d) $x_2 \ge 0$ (e)

Objective: $\max 15 + 7y_1 - 5y_2$ Subject to: $y_1 + y_2 \le 7$ (a) (b)



Simplified_Simplex(LP)
$$v = origin$$

$$while c_j > 0 \text{ for some } j$$

$$relax tight constraint.$$

$$stop at new constraint.$$

$$v = new intersection.$$

$$for constraint a_i \cdot x \leq b_i$$

$$y_i = b_i - a_i \cdot x$$

$$reformulate LP in terms of y_i$$

$$return v$$

Vertex: Origin (d,e) c,d
Objective Value: 0 15
Relax: e
Stop at: c,d
Vertex Local Coordinates:

$$x_1 \ge 0 \Longrightarrow -x_1 \le 0 \Longrightarrow y_1 = x_1$$

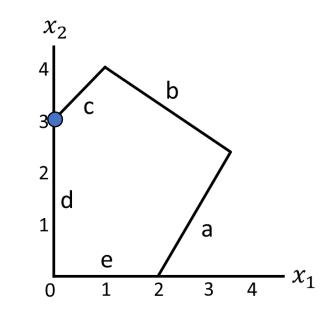
$$-x_1 + x_2 \le 3 \Longrightarrow y_2 = 3 + x_1 - x_2$$

$$\Longrightarrow x_1 = y_1, x_2 = 3 + y_1 - y_2$$

Objective:
$$\max 2x_1 + 5x_2$$

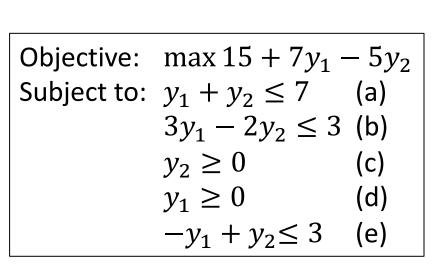
Subject to: $2x_1 - x_2 \le 4$ (a) $x_1 + 2x_2 \le 9$ (b) $-x_1 + x_2 \le 3$ (c) $x_1 \ge 0$ (d) $x_2 \ge 0$ (e)

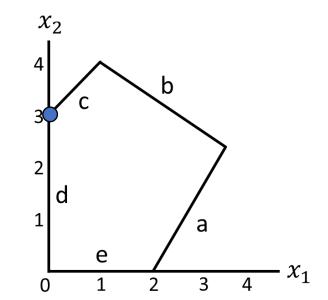
Objective: $\max 15 + 7y_1 - 5y_2$ Subject to: $y_1 + y_2 \le 7$ (a) $3y_1 - 2y_2 \le 3$ (b) $y_2 \ge 0$ (c) $y_1 \ge 0$ (d) $-y_1 + y_2 \le 3$ (e)



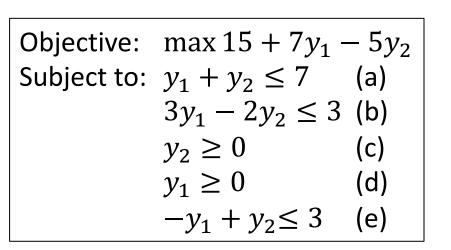
```
Simplified_Simplex(LP)
   v = origin
   while c_i > 0 for some j
      relax tight constraint.
      stop at new constraint.
      v = new intersection.
      for constraint a_i \cdot x \leq b_i
         y_i = b_i - a_i \cdot x
      reformulate LP in terms of y<sub>i</sub>
   return v
```

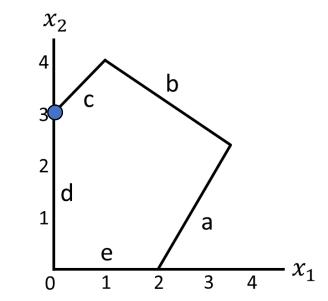
Vertex: c,d Objective Value: 15 Relax: Stop at:





Which constraint should we relax?





```
Simplified_Simplex(LP) v = origin while c_j > 0 \text{ for some } j relax tight constraint. stop at new constraint. v = new intersection. for constraint a_i \cdot x \le b_i y_i = b_i - a_i \cdot x reformulate LP in terms of y_i return v
```

Vertex: c,d

Objective Value: 15

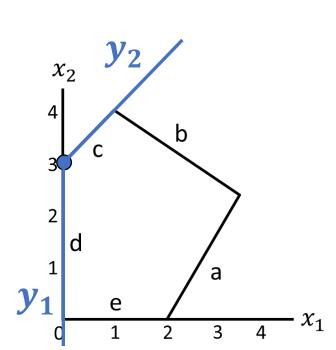
Relax: d

Stop at:

Vertex Local Coordinates:

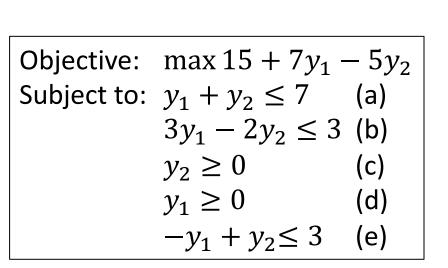
Which constraint should we relax?

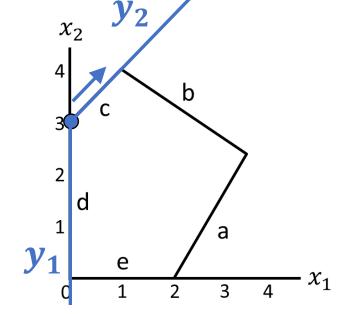
Objective: $\max 15 + 7y_1 - 5y_2$ Subject to: $y_1 + y_2 \le 7$ (a) $3y_1 - 2y_2 \le 3$ (b) $y_2 \ge 0$ (c) $y_1 \ge 0$ (d) $-y_1 + y_2 \le 3$ (e) Increasing y_2 worsens objective. Therefore, we should increase y_1 , which is constraint (d).



```
Simplified_Simplex(LP)
   v = origin
   while c_i > 0 for some j
      relax tight constraint.
      stop at new constraint.
      v = new intersection.
      for constraint a_i \cdot x \leq b_i
         y_i = b_i - a_i \cdot x
      reformulate LP in terms of y<sub>i</sub>
   return v
```

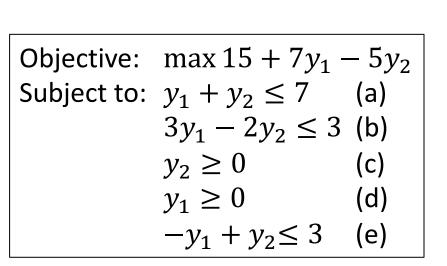
Vertex: c,d
Objective Value: 15
Relax: d
Stop at:
Vertex Local Coordinates:

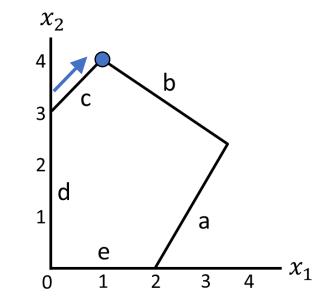




```
Simplified_Simplex(LP)
   v = origin
   while c_i > 0 for some j
      relax tight constraint.
      stop at new constraint.
      v = new intersection.
      for constraint a_i \cdot x \leq b_i
         y_i = b_i - a_i \cdot x
      reformulate LP in terms of y<sub>i</sub>
   return v
```

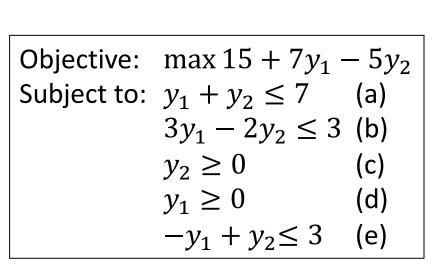
Vertex: c,d Objective Value: 15 Relax: d Stop at: b,c

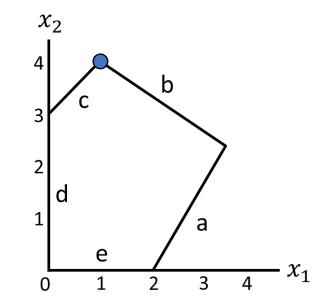




```
Simplified_Simplex(LP)
   v = origin
   while c_i > 0 for some j
      relax tight constraint.
      stop at new constraint.
      v = new intersection.
      for constraint a_i \cdot x \leq b_i
         y_i = b_i - a_i \cdot x
      reformulate LP in terms of y<sub>i</sub>
   return v
```

Vertex: c,d b,c Objective Value: 15 Relax: d Stop at: b,c





Simplified_Simplex(LP)

$$v = origin$$

while $c_j > 0$ for some j

relax tight constraint.

stop at new constraint.

 $v = new intersection$

for constraint $a_i \cdot y \le b_i$
 $z_i = b_i - a_i \cdot y$

reformulate LP in terms of

reformulate LP in terms of z_i return v

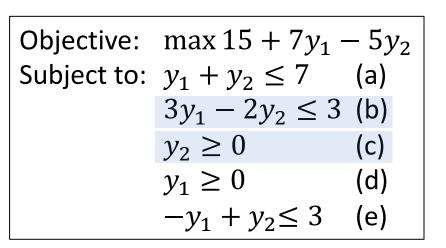
Objective Value: 15

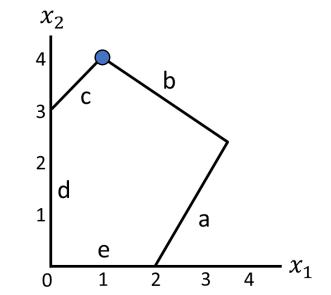
Relax: d

Stop at: b,c

$$3y_1 - 2y_2 \le 3 \implies z_1 = 3 - 3y_1 + 2y_2$$

 $y_2 \ge 0 \implies z_2 = y_2$
 $\implies y_1 = 1 - \frac{1}{3}z_1 + \frac{2}{3}z_2, y_2 = z_2$





Simplified_Simplex(LP)
$$v = \text{origin}$$

$$\text{while } c_j > 0 \text{ for some } j$$

$$\text{relax tight constraint.}$$

$$\text{stop at new constraint.}$$

$$v = \text{new intersection.}$$

$$\text{for constraint } a_i \cdot y \leq b_i$$

$$z_i = b_i - a_i \cdot y$$

$$\text{reformulate LP in terms of } z_i$$

return v

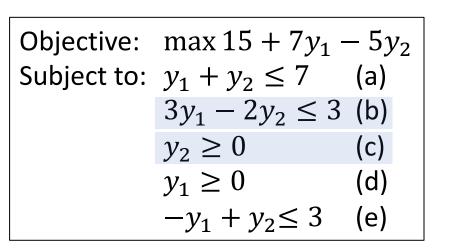
Objective Value: 15

Relax: d

Stop at: b,c

$$3y_1 - 2y_2 \le 3 \implies z_1 = 3 - 3y_1 + 2y_2$$

 $y_2 \ge 0 \implies z_2 = y_2$
 $\implies y_1 = 1 - \frac{1}{3}z_1 + \frac{2}{3}z_2, y_2 = z_2$





Simplified_Simplex(LP)

$$v = origin$$

while $c_j > 0$ for some j

relax tight constraint.

 $v = a_1 \cdot v$

stop at new constraint.

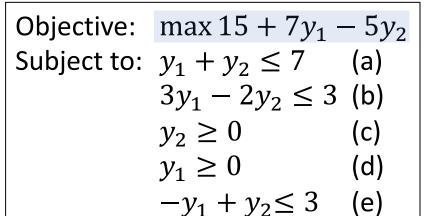
 $v = a_2 \cdot v \cdot v$

reformulate LP in terms of $z_1 \cdot v$

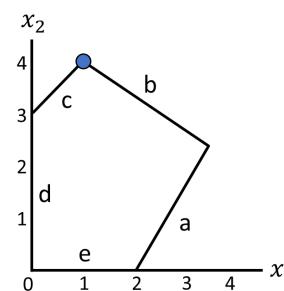
return v
 $v = a_1 \cdot v \cdot v$
 $v = a_2 \cdot v \cdot v$
 $v = a_3 \cdot v \cdot v$
 $v = a_4 \cdot v \cdot v$
 $v = a_5 \cdot v \cdot v$

Vertex:
$$\frac{c}{c}$$
 b,c
Objective Value: 15
Relax: d
Stop at: b,c
Vertex Local Coordinates:
 $3y_1 - 2y_2 \le 3 \Rightarrow z_1 = 3 - 3y_1 + 2y_2$
 $y_2 \ge 0 \Rightarrow z_2 = y_2$
 $\Rightarrow y_1 = 1 - \frac{1}{3}z_1 + \frac{2}{3}z_2, y_2 = z_2$

$$15 + 7y_1 - 5y_2 = 15 + 7 - \frac{7}{3}z_1 + \frac{14}{3}z_2 - 5z_2 = 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2$$



Objective: $\max 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2$ Subject to: (b) (d) (e)



Simplified_Simplex(LP)
$$v = \text{origin} \\ \text{while } c_j > 0 \text{ for some } j \\ \text{relax tight constraint.} \\ \text{stop at new constraint.} \\ \text{for constraint } a_i \cdot y \leq b_i \\ z_i = b_i - a_i \cdot y \\ \text{reformulate LP in terms of } z_i \\ \text{return } v \\ \\ 15 + 7y_1 - 5y_2 = 15 + 7 - \frac{7}{3}z_1 + \frac{14}{3}z_2 - 5z_2 = 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2 \\ \text{Subject to: } y_1 + y_2 \leq 7 \\ \text{Subject to: } y_1 + y_2 \leq 7 \\ \text{Subject to: } y_1 + y_2 \leq 3 \\ \text{Subject to: } y_2 + y_2 \leq 3 \\ \text{Subject to: } y_1 + y_2 \leq 3 \\ \text{Subject to: } y_2 + y_2 \leq 3 \\ \text{Subject to: } y_1 + y_2 \leq 3 \\ \text{Subject to: } y_2 + y_2 \leq 3 \\ \text{Subject to: } y_1 + y_2 \leq 3 \\ \text{Subject to: } y_2 + y_2 \leq 3 \\ \text{Subject to: } y_1 + y_2 \leq 3 \\ \text{Subject to: } y_2 + y_2 \leq 3 \\ \text{Subject to: } y_1 + y_2 \leq 3 \\ \text{Subject to: } y_2 + y_2 \leq 3 \\ \text{Subject to: } y_1 + y_2 \leq 3 \\ \text{Subject to: } y_2 + y_2 \leq 3 \\ \text{Subject to: } y_2 + y_2 \leq 3 \\ \text{Subject to: } y_2 + y_2 \leq 3 \\ \text{Subject to: } y_2 + y_2 \leq 3 \\ \text{Subject to: } y_2 + y_2 \leq 3 \\ \text{Subject t$$

(d)

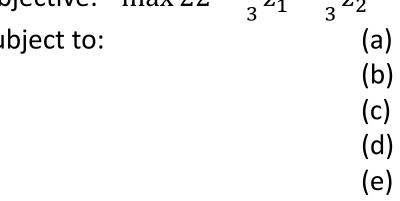
 $y_1 \ge 0$

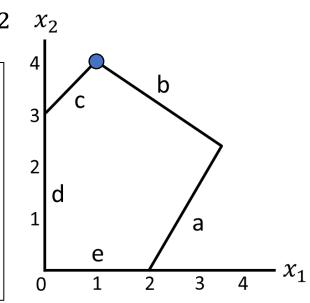
 $-y_1 + y_2 \le 3$

Vertex: c,d b,c Objective Value: 15 22 Stop at: b,c **Vertex Local Coordinates:** $3y_1 - 2y_2 \le 3 \implies z_1 = 3 - 3y_1 + 2y_2$ $y_2 \ge 0 \Longrightarrow z_2 = y_2$ $\implies y_1 = 1 - \frac{1}{3}z_1 + \frac{2}{3}z_2, y_2 = z_2$

Objective:
$$\max 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2$$

Subject to: (a)





 $-y_1 + y_2 \le 3$ (e)

Objective Value: 15 22 **Vertex Local Coordinates:** $3y_1 - 2y_2 \le 3 \implies z_1 = 3 - 3y_1 + 2y_2$ $y_2 \ge 0 \Longrightarrow z_2 = y_2$ $\Rightarrow y_1 = 1 - \frac{1}{3}z_1 + \frac{2}{3}z_2, y_2 = z_2$ (b)

(d)

(e)

Simplified_Simplex(LP)
$$v = \text{origin}$$

$$while \ c_j > 0 \ \text{for some j}$$

$$relax \ tight \ constraint.$$

$$stop \ at \ new \ constraint.$$

$$v = new \ intersection.$$

$$for \ constraint \ a_i \cdot y \le b_i$$

$$z_i = b_i - a_i \cdot y$$

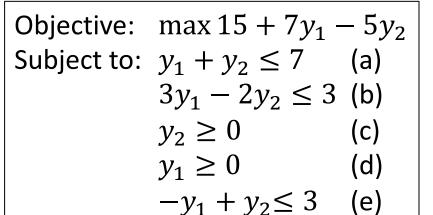
$$reformulate \ LP \ in \ terms \ of \ z_i$$

$$return \ v$$

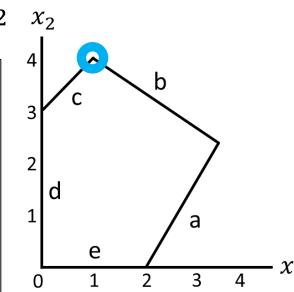
$$15 + 7y_1 - 5y_2 = 15 + 7 - \frac{7}{3}z_1 + \frac{14}{3}z_2 - \frac{14}{3}z_2 - \frac{14}{3}z_3 - \frac{14}{3}z_4 - \frac{14}{3}z_5 - \frac{14}{3$$

Vertex: c,d b,c Objective Value: 15 22 Relax: d Stop at: b,c **Vertex Local Coordinates:** $3y_1 - 2y_2 \le 3 \implies z_1 = 3 - 3y_1 + 2y_2$ $y_2 \ge 0 \Longrightarrow z_2 = y_2$ $\Rightarrow y_1 = 1 - \frac{1}{3}z_1 + \frac{2}{3}z_2, y_2 = z_2$

$$15 + 7y_1 - 5y_2 = 15 + 7 - \frac{7}{3}z_1 + \frac{14}{3}z_2 - 5z_2 = 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2$$



Objective: $\max 22 - \frac{7}{3}z$ Subject to: (b) (d) (e)



Simplified_Simplex(LP)

$$v = origin$$

while $c_j > 0$ for some j

relax tight constraint.

stop at new constraint.

 $v = new intersection.$

for constraint $a_i \cdot y \le b_i$
 $z_i = b_i - a_i \cdot y$

reformulate LP in terms of z_i

return v

Vertex: c,d b,c

Objective Value: 15 22

Relax: d

Stop at: b,c

Vertex Local Coordinates:

$$3y_1 - 2y_2 \le 3 \Rightarrow z_1 = 3 - 3y_1 + 2y_2$$

 $y_2 \ge 0 \Rightarrow z_2 = y_2$
 $\Rightarrow y_1 = 1 - \frac{1}{3}z_1 + \frac{2}{3}z_2, y_2 = z_2$

(b)

(c)

(d)

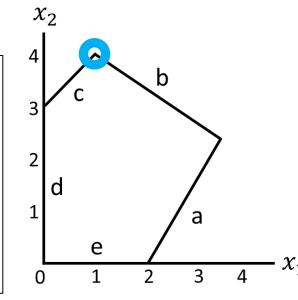
(e)

Objective:
$$\max 15 + 7y_1 - 5y_2$$

Subject to: $y_1 + y_2 \le 7$ (a) $3y_1 - 2y_2 \le 3$ (b) $y_2 \ge 0$ (c) $y_1 \ge 0$ (d) $-y_1 + y_2 \le 3$ (e)

Objective: $\max 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2$ (a)

Subject to:



```
Simplified_Simplex(LP) v = \text{origin} while \ c_j > 0 \ \text{for some j} relax \ tight \ constraint. stop \ at \ new \ constraint. v = new \ intersection. for \ constraint \ a_i \cdot y \leq b_i z_i = b_i - a_i \cdot y reformulate \ LP \ in \ terms \ of \ z_i return \ v
```

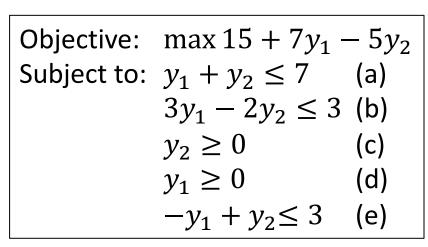
Loose Ends:

- 1. Starting Vertex
- 2. Unbounded/infeasible solution

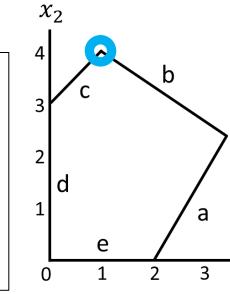
(d)

(e)

- 3. Degenerate vertices
- 4. Running Time



Objective: $\max 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2$ Subject to: (a) (b) (c)



```
Simplified_Simplex(LP) v = \text{origin} \text{while } c_j > 0 \text{ for some } j \text{relax tight constraint.} \text{stop at new constraint.} v = \text{new intersection.} \text{for constraint } a_i \cdot x \leq b_i y_i = b_i - a_i \cdot x \text{reformulate LP in terms of } y_i \text{return } v
```

Subject to: $A x \le b$

 $x \ge 0$

Running Time (n = # variables, m = # constraints defined by A):

```
Simplified_Simplex(LP) v = \text{origin} while \ c_j > 0 \ \text{for some j} relax \ tight \ constraint. stop \ at \ new \ constraint. v = new \ intersection. for \ constraint \ a_i \cdot x \le b_i y_i = b_i - a_i \cdot x reformulate \ LP \ in \ terms \ of \ y_i return \ v
```

Subject to: $A x \le b$

 $x \ge 0$

Running Time (n = # variables, m = # constraints defined by A):

Number of possible neighbors for a given vertex?

```
Simplified_Simplex(LP)

V = origin

while c_j > 0 for some j

relax tight constraint.

stop at new constraint.

V = new intersection.

for constraint a_i \cdot x \le b_i

y_i = b_i - a_i \cdot x

reformulate LP in terms of y_i

return V
```

Subject to: $A x \le b$

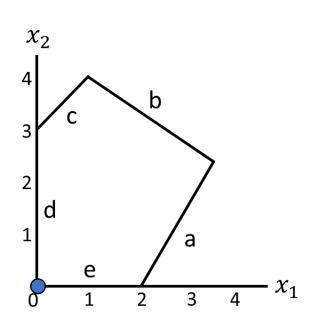
 $x \ge 0$

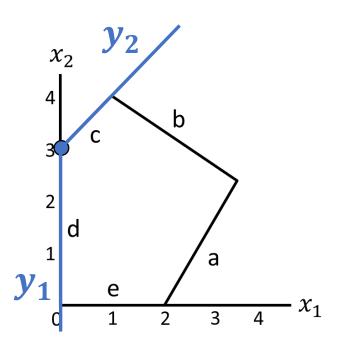
Running Time (n = # variables, m = # constraints defined by A):

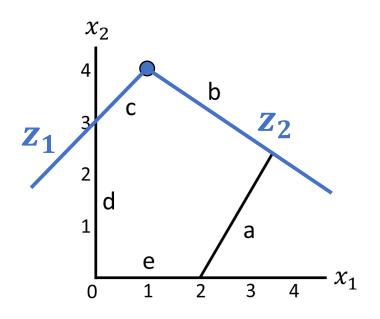
Number of possible neighbors for a given vertex?

 $oldsymbol{n}$ non-negativity constraints are forming the vertex

n non-negativity constraints are forming the vertex







Objective:
$$\max 2x_1 + 5x_2$$

Subject to: $2x_1 - x_2 \le 4$ (a) $x_1 + 2x_2 \le 9$ (b) $-x_1 + x_2 \le 3$ (c) $x_1 \ge 0$ (d) $x_2 \ge 0$ (e)

Objective:
$$\max 15 + 7y_1 - 5y_2$$

Subject to: $y_1 + y_2 \le 7$ (a) $3y_1 - 2y_2 \le 3$ (b) $y_2 \ge 0$ (c) $y_1 \ge 0$ (d) $-y_1 + y_2 \le 3$ (e)

```
Simplified_Simplex(LP) v = \text{origin} \text{while } c_j > 0 \text{ for some } j \text{relax tight constraint.} \text{stop at new constraint.} v = \text{new intersection.} \text{for constraint } a_i \cdot x \leq b_i y_i = b_i - a_i \cdot x \text{reformulate LP in terms of } y_i \text{return } v
```

Subject to: $A x \le b$

 $x \ge 0$

Running Time (n = # variables, m = # constraints defined by A):

Number of possible neighbors for a given vertex?

n non-negativity constraints are forming the vertex, we will replace one of them with one of the 'regular' constraints.

```
Simplified_Simplex(LP)

v = origin

while c_j > 0 for some j

relax tight constraint.

stop at new constraint.

v = new intersection.

for constraint a_i \cdot x \le b_i

y_i = b_i - a_i \cdot x

reformulate LP in terms of y_i

return v
```

Subject to: $A x \le b$

 $x \ge 0$

Running Time (n = # variables, m = # constraints defined by A):

Number of possible neighbors for a given vertex?

n non-negativity constraints are forming the vertex, we will replace one of them with one of the 'regular' constraints. Thus, nm options for neighboring vertices

```
Simplified_Simplex(LP)

v = origin

while c_j > 0 for some j

relax tight constraint.

stop at new constraint.

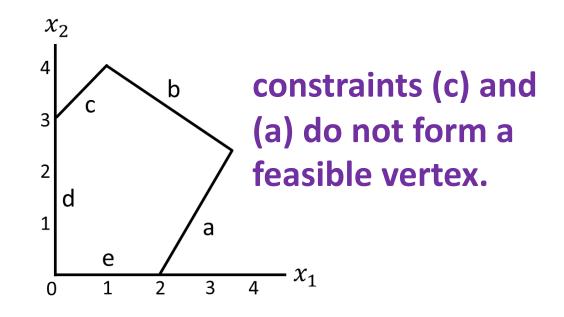
v = new intersection.

for constraint a_i \cdot x \le b_i

y_i = b_i - a_i \cdot x

reformulate LP in terms of y_i

return v
```



Running Time (n = # variables, m = # constraints defined by A):

Number of possible neighbors for a given vertex?

n non-negativity constraints are forming the vertex, we will replace one of them with one of the 'regular' constraints. Thus, nm options for neighboring vertices, but not all combinations are feasible.

```
Simplified_Simplex(LP)

v = origin

while c_j > 0 for some j

relax tight constraint.

stop at new constraint.

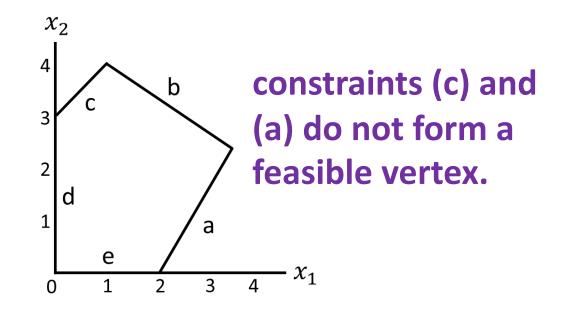
v = new intersection.

for constraint a_i \cdot x \le b_i

y_i = b_i - a_i \cdot x

reformulate LP in terms of y_i

return v
```



Running Time (n = # variables, m = # constraints defined by A):

• Number of possible neighbors for a given vertex $\in O(nm)$

n non-negativity constraints are forming the vertex, we will replace one of them with one of the 'regular' constraints. Thus, nm options for neighboring vertices, but not all combinations are feasible.

```
Simplified_Simplex(LP) v = \text{origin} while \ c_j > 0 \ \text{for some } j relax \ tight \ constraint. stop \ at \ new \ constraint. v = new \ intersection. for \ constraint \ a_i \cdot x \le b_i y_i = b_i - a_i \cdot x reformulate \ LP \ in \ terms \ of \ y_i return \ v
```

Subject to: $A x \le b$

 $x \ge 0$

Running Time (n = # variables, m = # constraints defined by A):

- Number of possible neighbors for a given vertex $\in O(nm)$
- Testing if possible neighbor is feasible $\in O(n^3)$

```
Simplified_Simplex(LP)

v = origin

while c_j > 0 for some j

relax tight constraint.

stop at new constraint.

v = new intersection.

for constraint a_i \cdot x \le b_i

y_i = b_i - a_i \cdot x

reformulate LP in terms of y_i

return v
```

Subject to: $A x \le b$

 $x \ge 0$

Running Time (n = # variables, m = # constraints defined by A):

- Number of possible neighbors for a given vertex $\in O(nm)$
- Testing if possible neighbor is feasible $\in O(n^3)$ $\Rightarrow O(n^4m)$ per iteration

```
Simplified_Simplex(LP)

v = origin

while c_j > 0 for some j

relax tight constraint.

stop at new constraint.

v = new intersection.

for constraint a_i \cdot x \le b_i

y_i = b_i - a_i \cdot x

reformulate LP in terms of y_i

return v
```

Subject to: $A x \leq b$

 $x \ge 0$

Running Time (n = # variables, m = # constraints defined by A):

- Number of possible neighbors for a given vertex $\in O(nm)$
- Testing if possible neighbor is feasible $\in O(n^3)$ $\Rightarrow O(n^4m)$ per iteration Actually O(nm)

Since we don't consider all possible neighbors and swapping coordinate systems (rewriting the LP) can happen in O((m+n)n).

```
Simplified_Simplex(LP)

v = origin

while c_j > 0 for some j

relax tight constraint.

stop at new constraint.

v = new intersection.

for constraint a_i \cdot x \le b_i

y_i = b_i - a_i \cdot x

reformulate LP in terms of y_i

return v
```

Subject to: $A x \le b$

 $x \ge 0$

Running Time (n = # variables, m = # constraints defined by A):

- Number of possible neighbors for a given vertex $\in O(nm)$
- Testing if possible neighbor is feasible $\in O(n^3)$ $\Rightarrow O(n^4m)$ per iteration Actually O(nm)
- Possible number of iterations?

```
Simplified_Simplex(LP)

v = origin

while c_j > 0 for some j

relax tight constraint.

stop at new constraint.

v = new intersection.

for constraint a_i \cdot x \le b_i

y_i = b_i - a_i \cdot x

reformulate LP in terms of y_i

return v
```

Subject to: $A x \le b$

 $x \ge 0$

Running Time (n = # variables, m = # constraints defined by A):

- Number of possible neighbors for a given vertex $\in O(nm)$
- Testing if possible neighbor is feasible $\in O(n^3)$ $\Rightarrow O(n^4m)$ per iteration Actually O(nm)
- Possible number of iterations?

Possible number of feasible vertices

```
Simplified_Simplex(LP)

v = origin

while c_j > 0 for some j

relax tight constraint.

stop at new constraint.

v = new intersection.

for constraint a_i \cdot x \le b_i

y_i = b_i - a_i \cdot x

reformulate LP in terms of y_i

return v
```

Objective: $\max c^T x$ Subject to: $A x \le b$ $x \ge 0$

m+n constraints in total.

Running Time (n = # variables, m = # constraints defined by A):

- Number of possible neighbors for a given vertex $\in O(nm)$
- Testing if possible neighbor is feasible $\in O(n^3)$ $\Rightarrow O(n^4m)$ per iteration Actually O(nm)
- Possible number of iterations = $\binom{m+n}{n}$

Possible number of feasible vertices

```
Simplified_Simplex(LP)

v = origin

while c<sub>j</sub> > 0 for some j

relax tight constraint.

stop at new constraint.

v = new intersection.

for constraint a<sub>i</sub>·x ≤ b<sub>i</sub>
```

Objective: $\max c^T x$ Subject to: $A x \le b$ $x \ge 0$

its

reform return v

Runnir

$$\begin{cases}
y_i = \\ n \\ n
\end{cases} = \frac{(2n)!}{n!n!} = \frac{(2n)!}{n!n!} = \frac{(2n)(2n-1)(2n-2)(2n-3)(2n-4)...}{n(n-1)(n-2)...n(n-1)(n-2)...} \\
= \frac{2n(2n-1)2(n-1)(2n-3)2(n-2)...}{n(n-1)(n-2)...n(n-1)(n-2)...} \\
\geq \frac{2^n(2n-1)(2n-3)...}{n!} \geq 2^n$$

- Testing if possible neighbor is feasible $\in O(n^3)$ $\Rightarrow O(n^4m)$ per iteration Actually O(nm)
- Possible number of iterations = $\binom{m+n}{n}$

Possible number of feasible vertices

```
Simplified_Simplex(LP)
    v = origin
    while c<sub>j</sub> > 0 for some j
        relax tight constraint.
        stop at new constraint.
        v = new intersection.
        for constraint a<sub>i</sub>·x ≤ b<sub>i</sub>
```

Objective: $\max c^T x$ Subject to: $A x \le b$ $x \ge 0$

its

reform return v

Runnir

$$\begin{cases}
y_i = \\ n \\ n
\end{cases} \ge \binom{2n}{n} = \frac{(2n)!}{n!n!} = \frac{(2n)!}{n(n-1)(n-2)...n(n-1)(n-2)...} = \frac{(2n)(2n-1)(2n-2)(2n-3)(2n-4)...}{n(n-1)(n-2)...n(n-1)(n-2)...} = \frac{2n(2n-1)2(n-1)(2n-3)2(n-2)...}{n(n-1)(n-2)...n(n-1)(n-2)...} = \frac{2^n(2n-1)(2n-3)...}{n!} \ge 2^n$$

- Testing if possible neighbor is feasible $\in O(n^3)$ $\Rightarrow O(n^4m)$ per iteration Actually O(nm)
- Possible number of iterations = $\binom{m+n}{n} \in \Omega(2^n)$

Possible number of feasible vertices

```
Simplified_Simplex(LP)  v = \text{origin} \\  \text{while } c_j > 0 \text{ for some } j \\  \text{relax tight constraint.} \\  \text{stop at new constraint.} \\  v = \text{new intro} \\  v = \text{new intro} \\  \text{for cor } \\  y_i = \\  \text{reformulate LP in terms of } y_i \\  \text{return } v
```

Running Time (n = # variables, m = # constraints defined by A):

- Number of possible neighbors for a given vertex $\in O(nm)$
- Testing if possible neighbor is feasible $\in O(n^3)$ $\Rightarrow O(n^4m)$ per iteration Actually O(nm)
- Possible number of iterations = $\binom{m+n}{n} \in \Omega(2^n)$

```
Simplified_Simplex(LP)  v = \text{origin} \\  \text{while } c_j > 0 \text{ for some } j \\  \text{relax tight constraint.} \\  \text{stop at new constraint.} \\  v = \text{new intro} \\  v = \text{new intro} \\  y_i = \\  \text{reformulate LP in terms of } y_i
```

History Lesson:

- Solving systems of linear inequalities dates back to the 1800's.
- Linear programming was widely studied in the 1940's.
- Simplex invented in 1947.
- Specific LPs that Simplex takes exponential time on discovered in 1972.
- Soviet mathematician found polynomial time algorithm in 1979.
- Interior point method found in 1984.
- CPLEX released in 1988.

Objective: $\max c^T x$

Subject to: $A x \leq b$

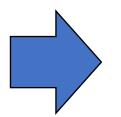
 $x \ge 0$

The origin is not always feasible!

Objective: $\max c^T x$

Subject to: $A x \leq b$

 $x \ge 0$



Objective: $\min z_1 + \cdots + z_m$

Subject to: Ax + z = b

 $x \ge 0$

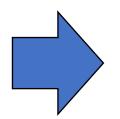
 $z \ge 0$

Ensure $b \ge 0$. (Negate equality if not)

Objective: $\max c^T x$

Subject to: $A x \le b$

 $x \ge 0$



Objective: $\min z_1 + \cdots + z_m$

Subject to: Ax + z = b

 $x \ge 0$

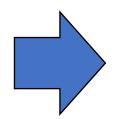
 $z \ge 0$

Simple feasible solution to new LP?

Objective: $\max c^T x$

Subject to: $A x \leq b$

 $x \ge 0$



Objective: $\min z_1 + \cdots + z_m$

Subject to: Ax + z = b

 $x \ge 0$

 $z \ge 0$

Simple feasible solution to new LP?

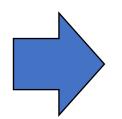
$$z = b, x = 0$$

What if optimal is 0?

Objective: $\max c^T x$

Subject to: $A x \le b$

 $x \ge 0$



Objective: $\min z_1 + \cdots + z_m$

Subject to: Ax + z = b

 $x \ge 0$

 $z \ge 0$

Simple feasible solution to new LP?

$$z = b, x = 0$$

What if optimal is 0?

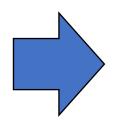
 $z_i = 0$ for each i, and whatever the selected x_i 's are, are feasible.

What if optimal is > 0?

Objective: $\max c^T x$

Subject to: $A x \leq b$

 $x \ge 0$



Objective: $\min z_1 + \cdots + z_m$

Subject to: Ax + z = b

$$x \ge 0$$

$$z \ge 0$$

Simple feasible solution to new LP?

$$z = b, x = 0$$

What if optimal is 0?

 $z_i = 0$ for each i, and whatever the selected x_i 's are, are feasible.

What if optimal is > 0?

A x + 0 = b is not feasible, which means original LP is not feasible!!

Simplex – Unbounded Solution

Objective: $\max c^T x$

Subject to: $A x \le b$

 $x \ge 0$

How will we know if the solution is unbounded?

Simplex – Unbounded Solution

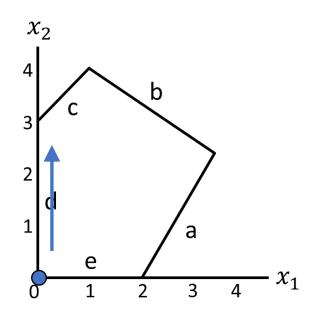
Objective: $\max c^T x$

Subject to: $A x \leq b$

 $x \ge 0$

How will we know if the solution is unbounded?

Simplex will attempt to relax a constraint, and it never meets another bounding constraint.



Simplex – Degenerate Vertices

Objective: $\max c^T x$

Subject to: $A x \le b$

 $x \ge 0$

Can we ever have the same (non-optimal) objective value on neighboring vertices?

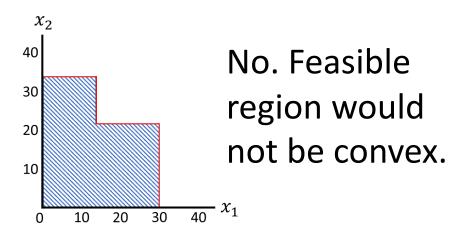
Simplex – Degenerate Vertices

Objective: $\max c^T x$

Subject to: $A x \le b$

 $x \ge 0$

Can we ever have the same (non-optimal) objective value on neighboring vertices?



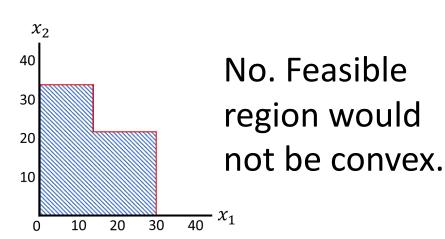
Simplex – Degenerate Vertices

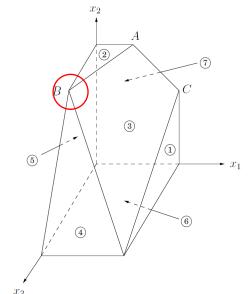
Objective: $\max c^T x$

Subject to: $A x \le b$

 $x \ge 0$

Can we ever have the same (non-optimal) objective value on neighboring vertices?





Yes. Vertex in \mathbb{R}^n can be intersection of > n constraints.