Linear Programming CSCI 532

Max Flow

Decision Variables:

- Real numbers = solvable in polynomial time (called LP).
- Integers = not (yet?) solvable in polynomial time (called integer linear program – ILP).

$$x_e =$$
Amount of flow on edge e .

Objective:
$$\max \sum_{e \in \mathsf{out}(s)} x_e$$

Subject to:
$$x_e \le \text{capacity}_e, \forall e \in E$$

$$x_e \ge 0, \forall e \in E$$

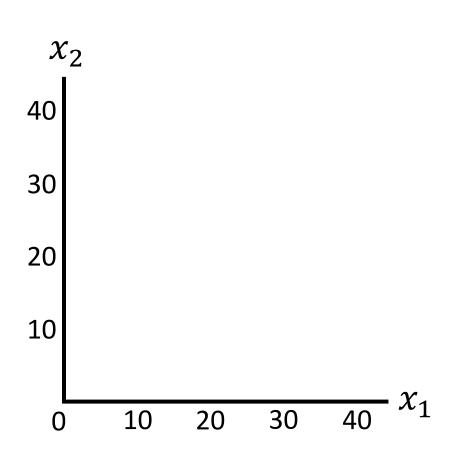
Objective:

- Can be minimization or maximization.
- Must be linear combinations of variables x_i (e.g. $a_1x_1 + \cdots + a_nx_n$ for constants a_i , not $a_i x_1 x_2$).

$$\sum_{e \in \text{in}(v)}^{\infty} x_e - \sum_{e \in \text{out}(v)}^{\infty} x_e = 0, \forall v \in V \setminus \{s, t\}$$
$$x_e \ge 0, \forall e \in E$$

Constraints:

- Can be \leq , \geq , =.
- Must be linear combinations of variables.



$$x_1, x_2 \in \mathbb{R}$$

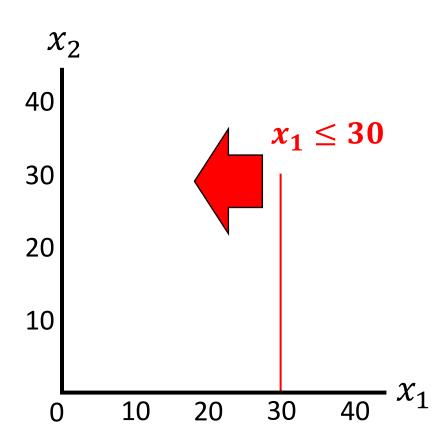
Objective: $\max 100x_1 + 300x_2$

Subject to: $x_1 \leq 30$

$$x_2 \le 20$$

$$x_1 + x_2 \le 40$$

$$x_1, x_2 \ge 0$$



$$x_1, x_2 \in \mathbb{R}$$

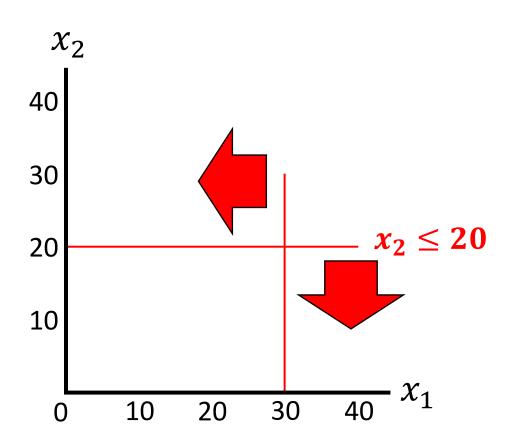
Objective: $\max 100x_1 + 300x_2$

Subject to: $x_1 \le 30$

$$x_2 \le 20$$

$$x_1 + x_2 \le 40$$

$$x_1, x_2 \ge 0$$



$$x_1, x_2 \in \mathbb{R}$$

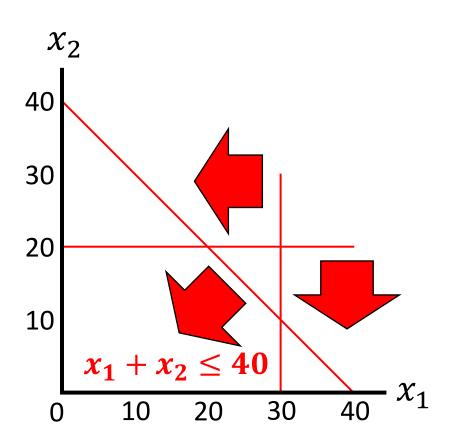
Objective: $\max 100x_1 + 300x_2$

Subject to: $x_1 \leq 30$

$$x_2 \le 20$$

$$x_1 + x_2 \le 40$$

$$x_1, x_2 \ge 0$$



 $x_1, x_2 \in \mathbb{R}$

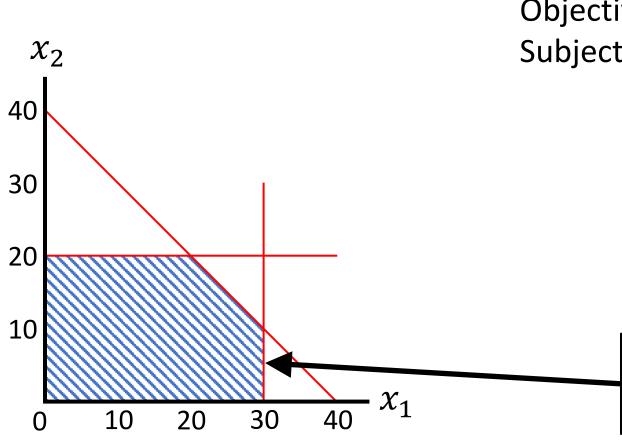
Objective: $\max 100x_1 + 300x_2$

Subject to: $x_1 \leq 30$

 $x_2 \le 20$

 $x_1 + x_2 \le 40$

 $x_1, x_2 \ge 0$



 $x_1, x_2 \in \mathbb{R}$

Objective: $\max 100x_1 + 300x_2$

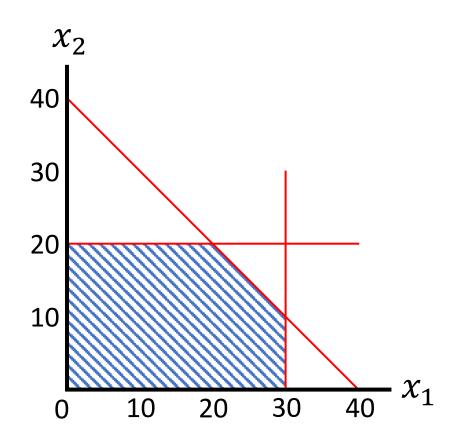
Subject to: $x_1 \leq 30$

$$x_2 \le 20$$

$$x_1 + x_2 \le 40$$

$$x_1, x_2 \ge 0$$

Feasible Region (area where *all* valid solutions lie)



$$x_1, x_2 \in \mathbb{R}$$

Objective: $\max 100x_1 + 300x_2$

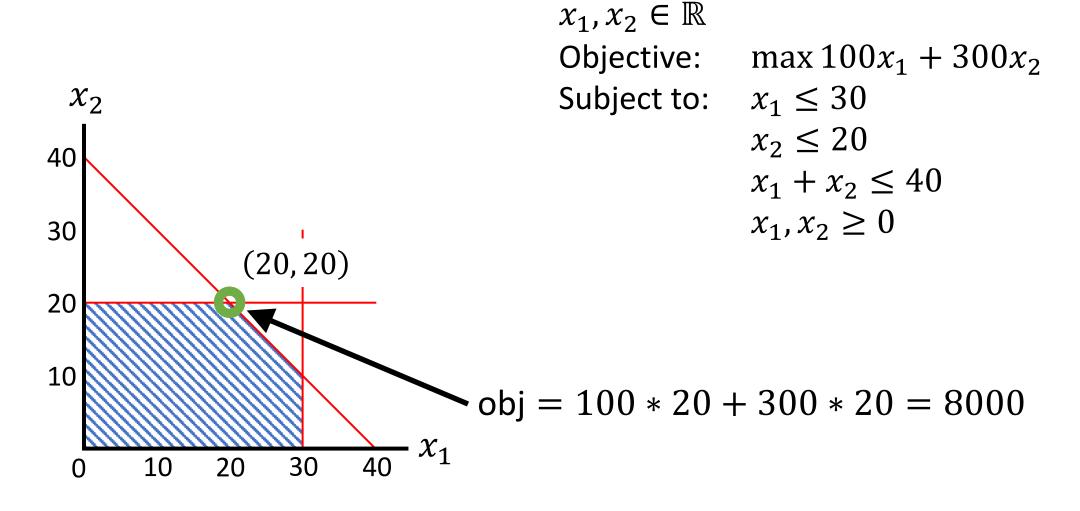
Subject to: $x_1 \leq 30$

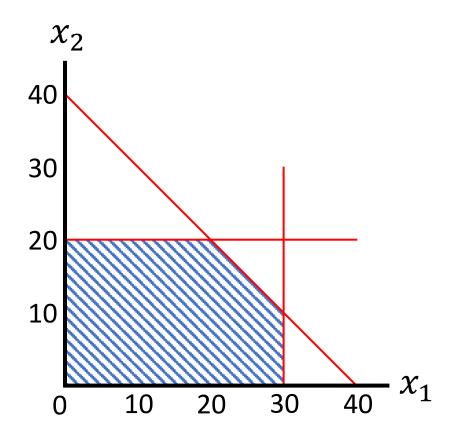
 $x_2 \le 20$

 $x_1 + x_2 \le 40$

 $x_1, x_2 \ge 0$

What is the optimal value?





Objective: $\max f(x_1, x_2)$

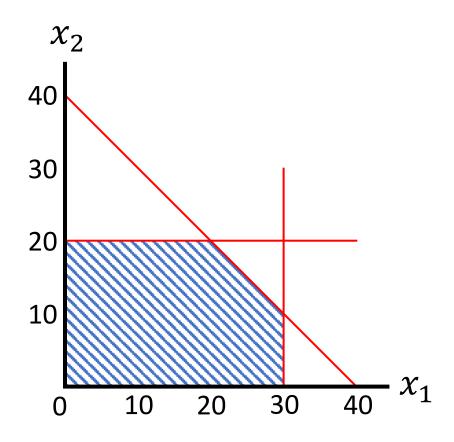
Subject to: $c_1(x_1, x_2)$

 $c_2(x_1,x_2)$

:

 $c_n(x_1, x_2)$

How can we efficiently find optimal solutions?



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

 $c_2(x_1,x_2)$

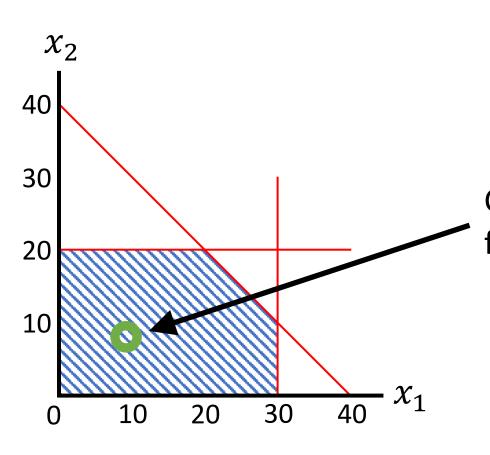
:

 $c_n(x_1, x_2)$

How can we efficiently find optimal solutions?

Identify two key properties of optimal solutions:

- 1. ?
- 2. ?



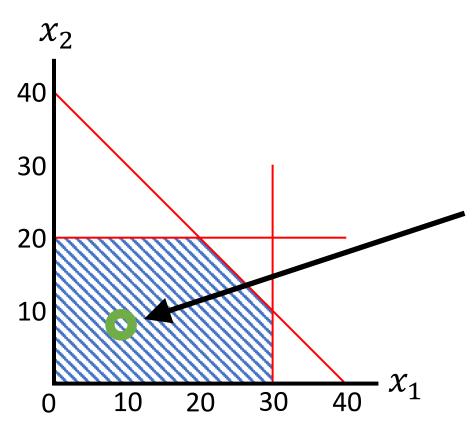
Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

$$c_2(x_1,x_2)$$

 $c_n(x_1, x_2)$

Could this ever be a maximum value of the objective function?



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

$$c_2(x_1,x_2)$$

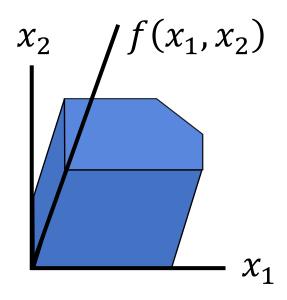
$$c_n(x_1, x_2)$$

Could this ever be a maximum value of the objective function?

Yes, if $f(x_1, x_2) = \text{constant}$.

Objective: max 5

Subject to: $c_1(x_1, x_2)$



Objective: $\max f(x_1, x_2)$

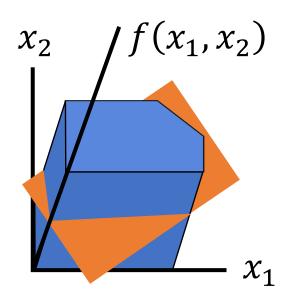
Subject to: $c_1(x_1, x_2)$

 $c_2(x_1,x_2)$ \vdots

 $c_n(x_1, x_2)$

Could this ever be a maximum value of the objective function?

Yes, if $f(x_1, x_2) = \text{constant}$.



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

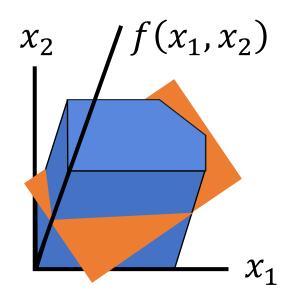
 $c_2(x_1, x_2)$ \vdots

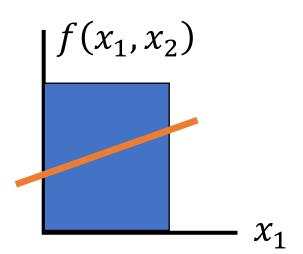
 $c_n(x_1,x_2)$

Could this ever be a maximum value of the objective function?

Yes, if $f(x_1, x_2) = \text{constant}$.

 $f(x_1, x_2)$ is a plane





Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

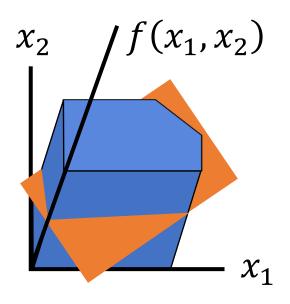
 $c_2(x_1,x_2)$

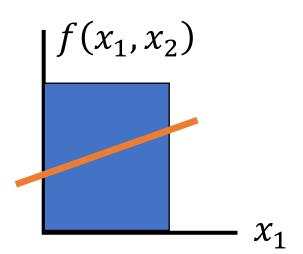
 $c_n(x_1, x_2)$

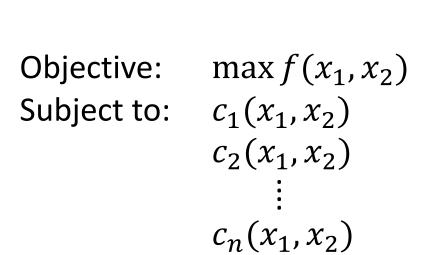
Could this ever be a maximum value of the objective function?

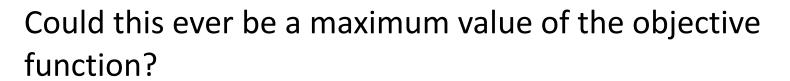
Yes, if $f(x_1, x_2) = \text{constant}$.

 $f(x_1, x_2)$ is a plane \Rightarrow a max/min of $f(x_1, x_2)$ occurs on the boundary of the feasible region.







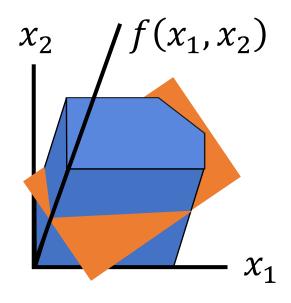


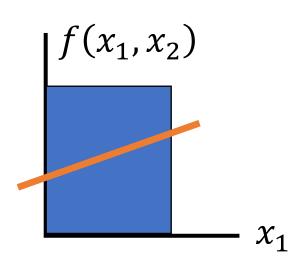
 $f(x_1,x_2)$

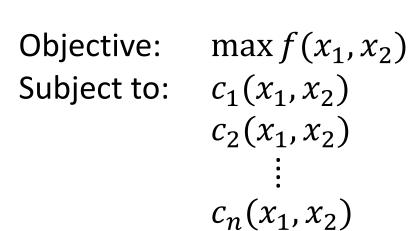
Not Linear!

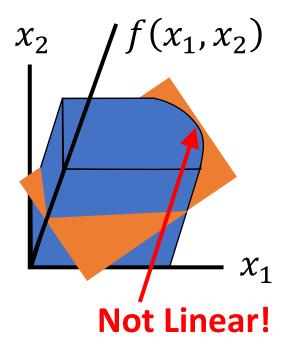
Yes, if $f(x_1, x_2) = \text{constant}$.

 $f(x_1, x_2)$ is a plane \Longrightarrow a max/min of $f(x_1, x_2)$ occurs on the boundary of the feasible region.





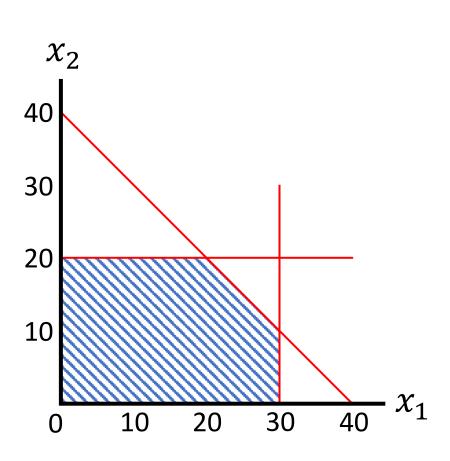




Could this ever be a maximum value of the objective function?

Yes, if $f(x_1, x_2) = \text{constant}$.

 $f(x_1, x_2)$ is a plane \Rightarrow a max/min of $f(x_1, x_2)$ occurs on the boundary of the feasible region. Since feasible region has linear boundaries, max/min must occur at a vertex in the feasible region.



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

 $c_2(x_1,x_2)$

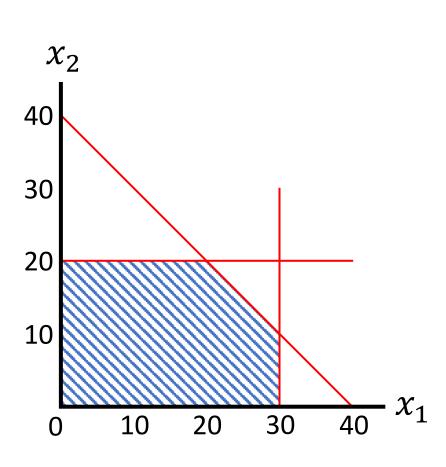
:

 $c_n(x_1, x_2)$

How can we efficiently find optimal solutions?

Identify two key properties of optimal solutions:

- 1. Optimal value occurs at a vertex.
- 2. ?



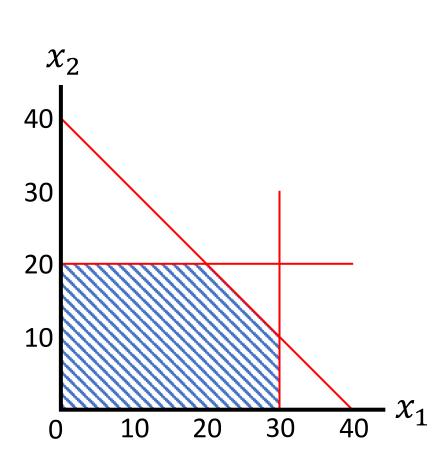
Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

 $c_2(x_1, x_2)$

 $c_n(x_1, x_2)$

Is there a relationship between a local max/min and a global max/min?



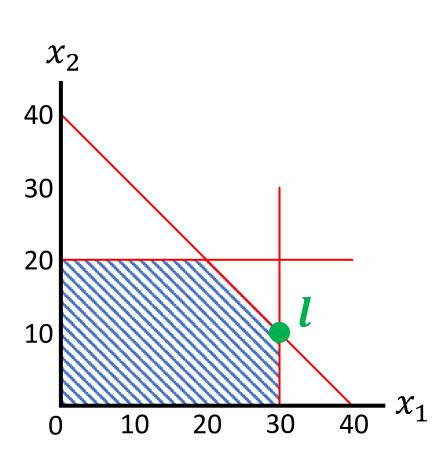
Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

 $c_2(x_1, x_2)$

 $c_n(x_1, x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.



Objective: $\max f(x_1, x_2)$

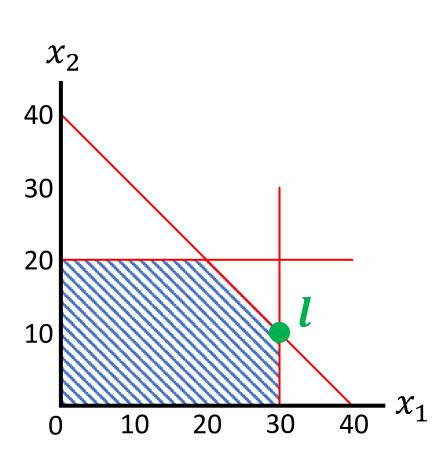
Subject to: $c_1(x_1, x_2)$

 $c_2(x_1, x_2)$ \vdots

 $c_n(x_1, x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.

 $local max \Rightarrow ?$



Objective: $\max f(x_1, x_2)$

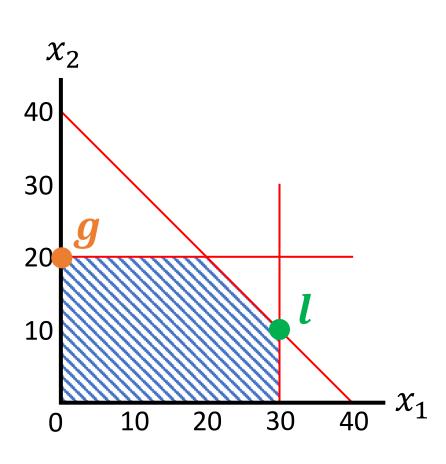
Subject to: $c_1(x_1, x_2)$

 $c_2(x_1, x_2)$ \vdots

 $c_n(x_1, x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.

local max \Rightarrow all points in ε -neighborhood of l have lower objective values.



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

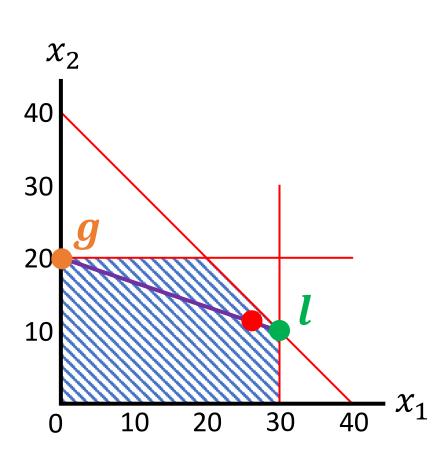
 $c_2(x_1, x_2)$ \vdots

 $c_n(x_1, x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.

local max \Rightarrow all points in ε -neighborhood of l have lower objective values.

Let g be global max.



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

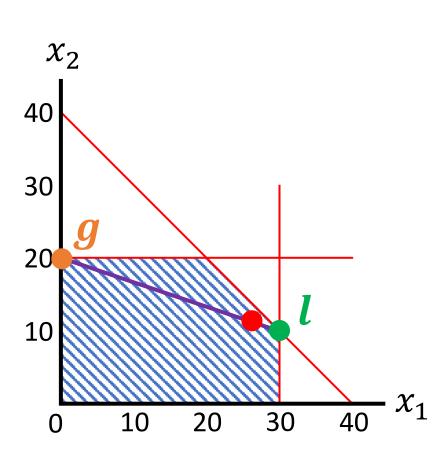
 $c_2(x_1, x_2)$

 $c_n(x_1,x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.

local max \Rightarrow all points in ε -neighborhood of l have lower objective values.

Let g be global max. Some point in ε -nbhd lies on the line between l and g and ...



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

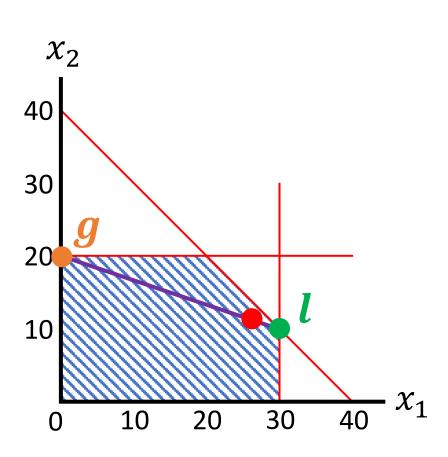
 $c_2(x_1, x_2)$

 $c_n(x_1,x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.

local max \Rightarrow all points in ε -neighborhood of l have lower objective values.

Let g be global max. Some point in ε -nbhd lies on the line between l and g and all points on that line are feasible (?).



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

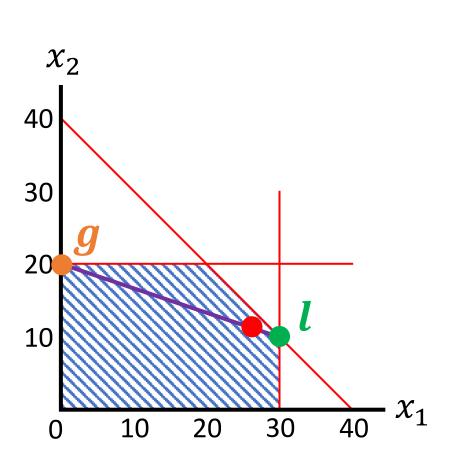
 $c_2(x_1, x_2)$

 $c_n(x_1,x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.

local max \Rightarrow all points in ε -neighborhood of l have lower objective values.

Let g be global max. Some point in ε -nbhd lies on the line between l and g and all points on that line are feasible (convex feasible region).



Objective: $\max f(x_1, x_2)$

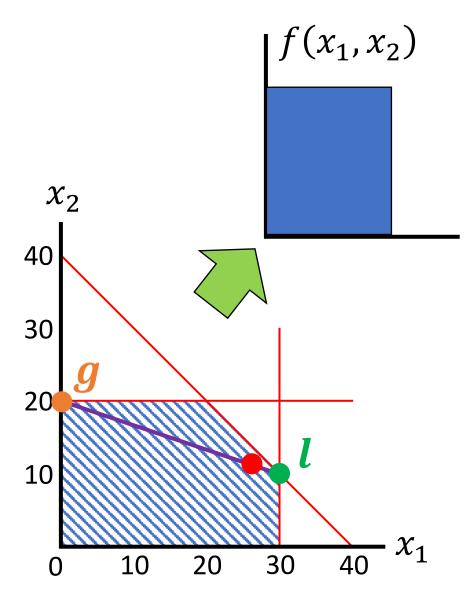
Subject to: $c_1(x_1, x_2)$

 $c_2(x_1, x_2)$

 $c_n(x_1,x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.

local max \Rightarrow all points in ε -neighborhood of l have lower objective values.



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

 χ_1

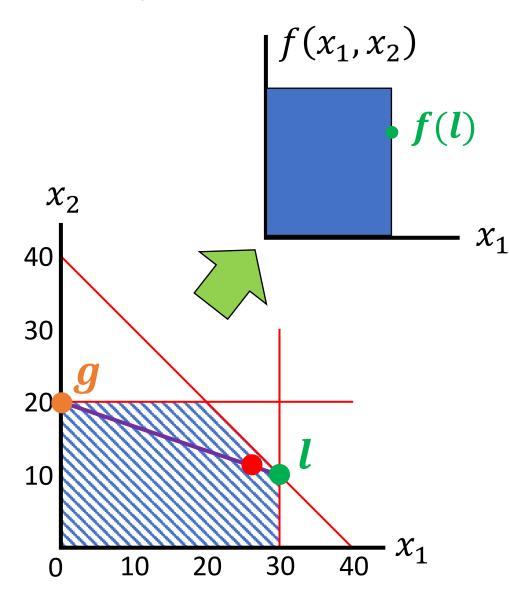
 $c_2(x_1,x_2)$

:

 $c_n(x_1, x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.

local max \Rightarrow all points in ε -neighborhood of l have lower objective values.



Objective: $\max f(x_1, x_2)$

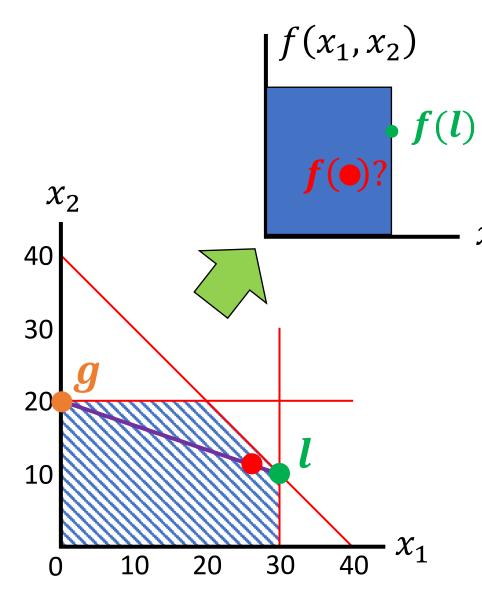
Subject to: $c_1(x_1, x_2)$

 $c_2(x_1,x_2)$

 $c_n(x_1, x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.

local max \Rightarrow all points in ε -neighborhood of l have lower objective values.



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

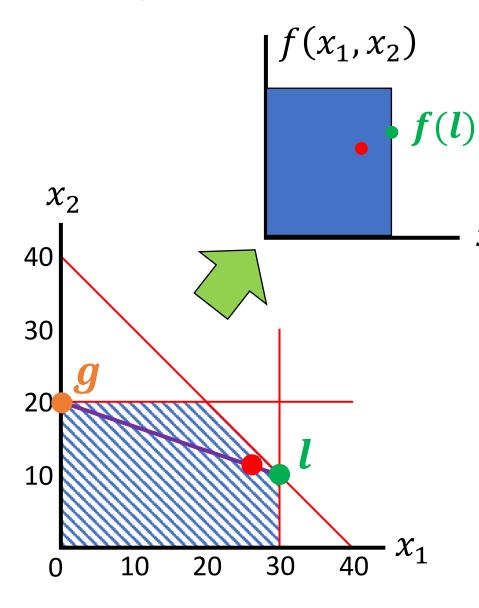
 $c_2(x_1,x_2)$

(v.

 $c_n(x_1, x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.

local max \Rightarrow all points in ε -neighborhood of l have lower objective values.



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

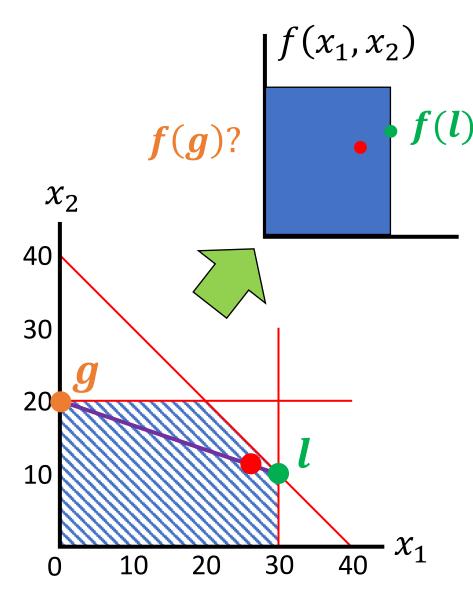
 $c_2(x_1,x_2)$

(x.

 $c_n(x_1, x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.

local max \Rightarrow all points in ε -neighborhood of l have lower objective values.



Objective: $\max f(x_1, x_2)$

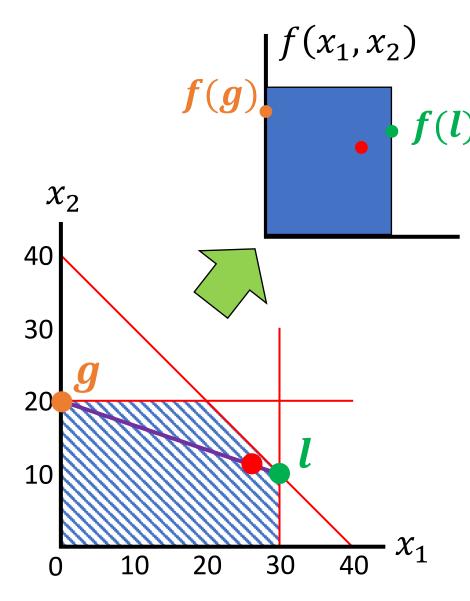
Subject to: $c_1(x_1, x_2)$

 $c_2(x_1,x_2)$

 $c_n(x_1, x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.

local max \Rightarrow all points in ε -neighborhood of l have lower objective values.



Objective: $\max f(x_1, x_2)$

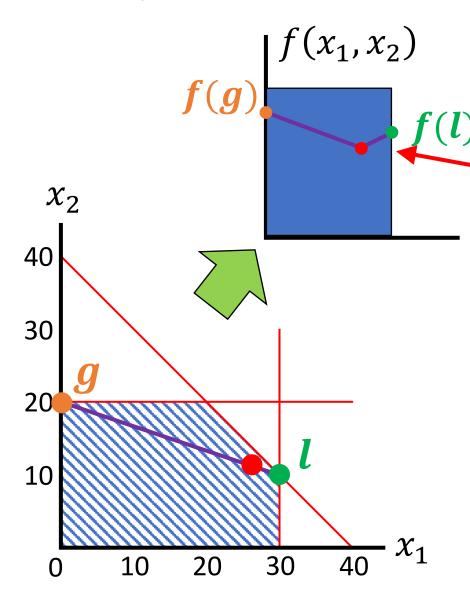
Subject to: $c_1(x_1, x_2)$

 $c_2(x_1,x_2)$

 $\vdots \\ c_n(x_1, x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.

local max \Rightarrow all points in ε -neighborhood of l have lower objective values.



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

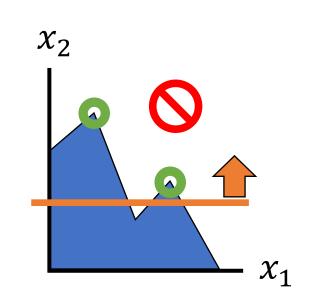
 $c_2(x_1,x_2)$

Not Linear!

 $c_n(x_1, x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.

local max \Rightarrow all points in ε -neighborhood of l have lower objective values.



The only way for local optimum ≠ global optimum and objective be linear is for feasible region to not be convex.

Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

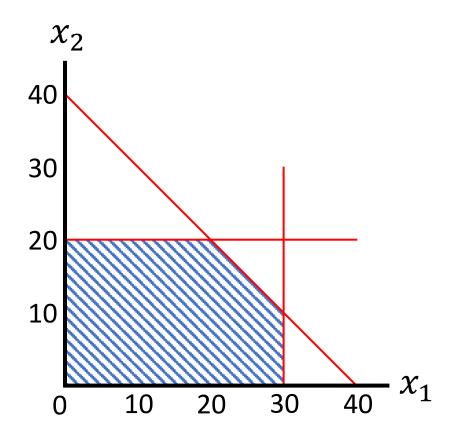
 $c_2(x_1,x_2)$

 $c_n(x_1, x_2)$

Is there a relationship between a local max/min and a global max/min? local max/min = global max/min.

local max \Rightarrow all points in ε -neighborhood of l have lower objective values.

Optimal Value



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

 $c_2(x_1,x_2)$

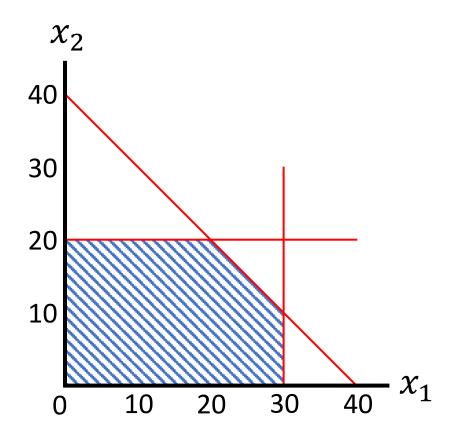
 $c_n(x_1,x_2)$

How can we efficiently find optimal solutions?

Identify two key properties of optimal solutions:

- 1. Optimal value occurs at a vertex.
- 2. Local optimum is global optimum.

Optimal Value



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

 $c_2(x_1, x_2)$

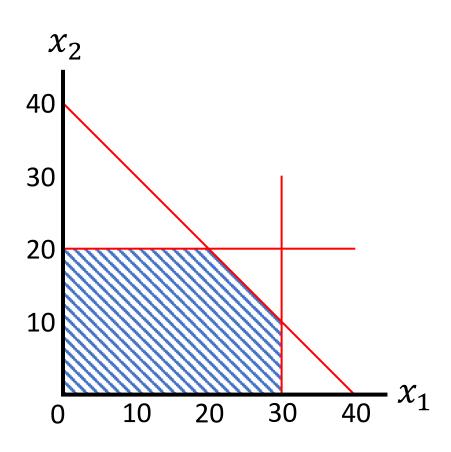
 $c_n(x_1,x_2)$

Properties of optimal solutions:

- 1. Optimal value occurs at a vertex.
- 2. Local optimum is global optimum.

Algorithm to find optimal solution:

Test each vertex in order until no neighbors have larger (or smaller) value.



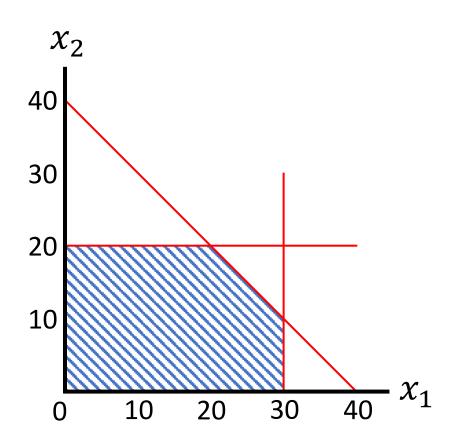
$$x_1, x_2 \in \mathbb{R}$$

Objective: $\max 100x_1 + 300x_2$

$$x_2 \le 20$$

$$x_1 + x_2 \le 40$$

$$x_1, x_2 \ge 0$$



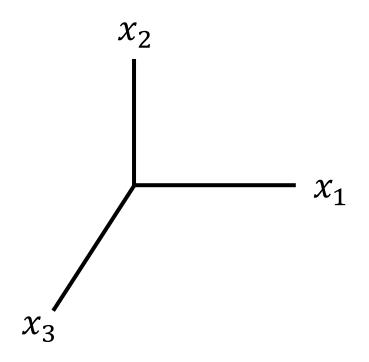
$$x_1, x_2, x_3 \in \mathbb{R}$$

Objective: $\max 100x_1 + 300x_2 + 150x_3$

$$x_1 + x_2 + x_3 \le 40$$

$$2x_1 + x_3 \le 60$$

$$x_1, x_2, x_3 \ge 0$$



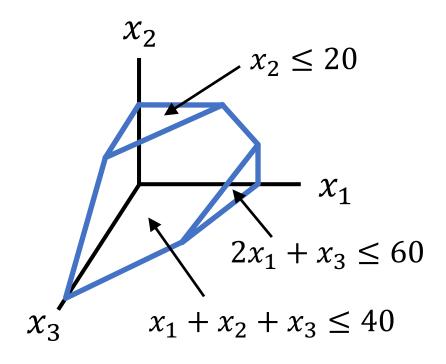
$$x_1, x_2, x_3 \in \mathbb{R}$$

Objective: $\max 100x_1 + 300x_2 + 150x_3$

$$x_1 + x_2 + x_3 \le 40$$

$$2x_1 + x_3 \le 60$$

$$x_1, x_2, x_3 \ge 0$$



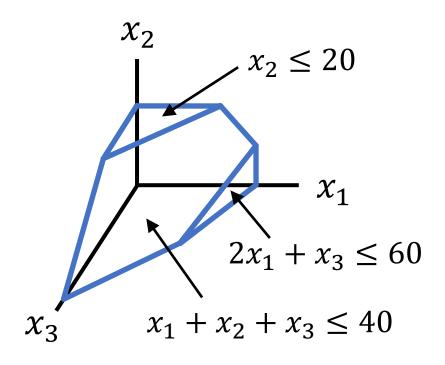
$$x_1, x_2, x_3 \in \mathbb{R}$$

Objective: $\max 100x_1 + 300x_2 + 150x_3$

$$x_1 + x_2 + x_3 \le 40$$

$$2x_1 + x_3 \le 60$$

$$x_1, x_2, x_3 \ge 0$$



$$x_1, x_2, x_3 \in \mathbb{R}$$

Objective: $\max 100x_1 + 300x_2 + 150x_3$

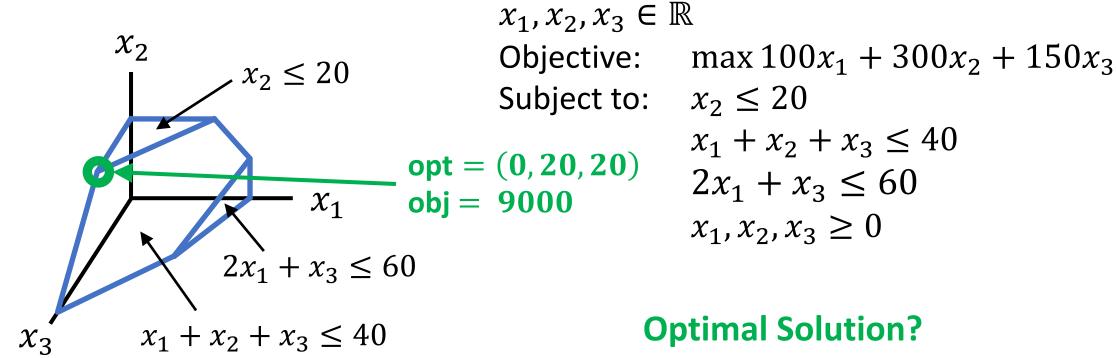
Subject to: $x_2 \le 20$

$$x_1 + x_2 + x_3 \le 40$$

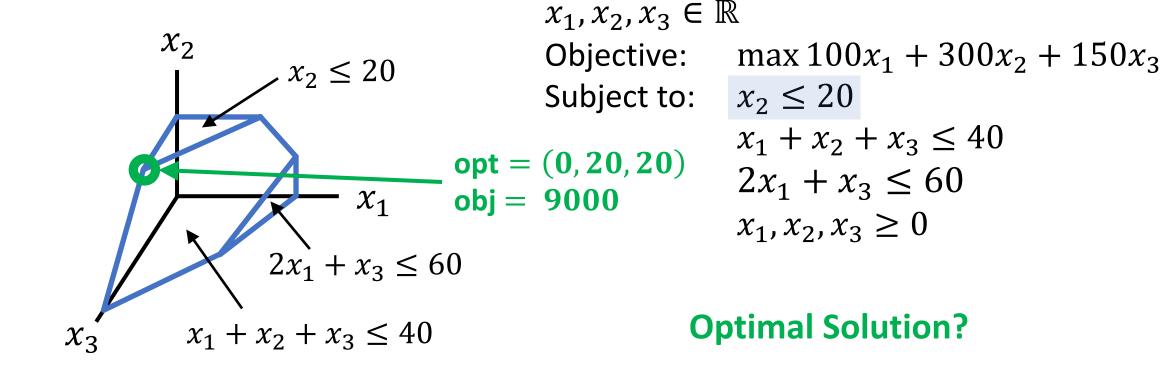
$$2x_1 + x_3 \le 60$$

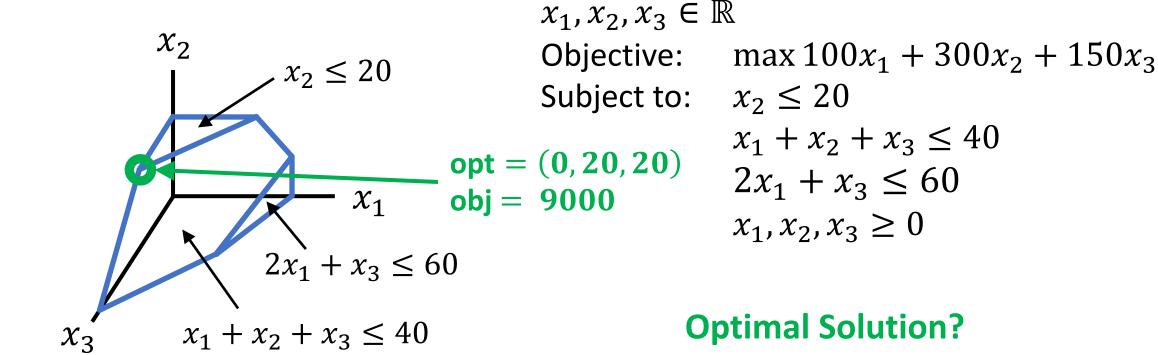
$$x_1, x_2, x_3 \ge 0$$

Optimal Solution?

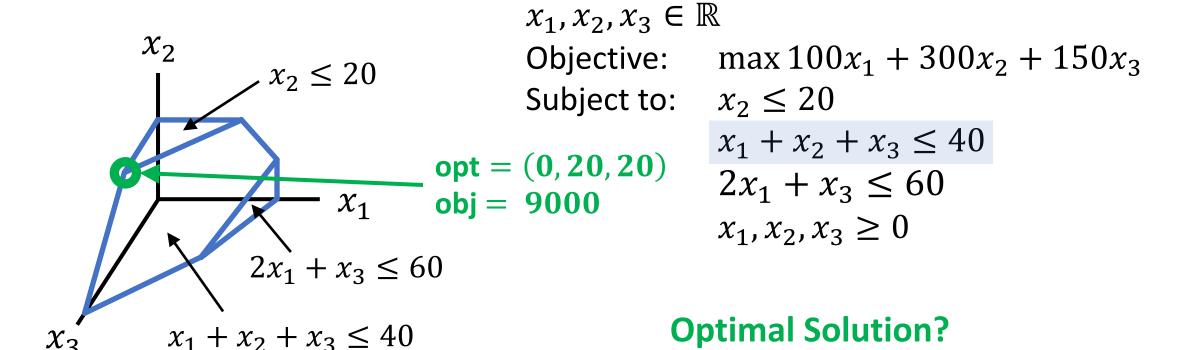


 $x_2 \le 20$

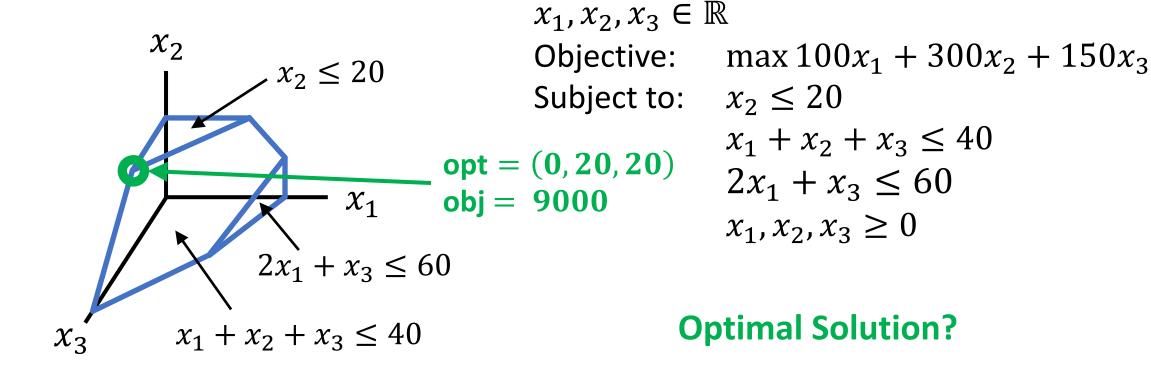




$$x_2 \le 20 \Longrightarrow 150x_2 \le 3000$$

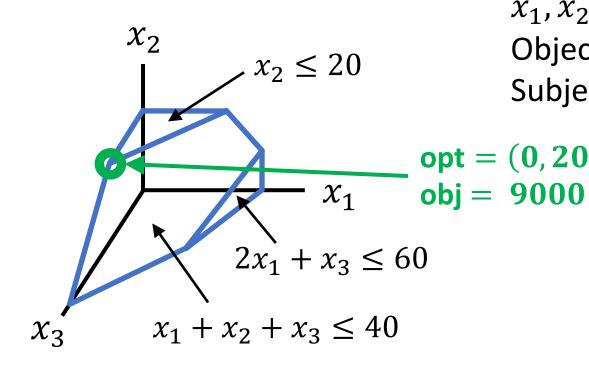


$$x_2 \le 20 \Longrightarrow 150x_2 \le 3000$$
$$x_1 + x_2 + x_3 \le 40$$



$$x_2 \le 20 \Rightarrow 150x_2 \le 3000$$

 $x_1 + x_2 + x_3 \le 40 \Rightarrow 150x_1 + 150x_2 + 150x_3 \le 6000$



$$x_1, x_2, x_3 \in \mathbb{R}$$

Objective: $\max 100x_1 + 300x_2 + 150x_3$

Subject to: $x_2 \le 20$

$$x_1 + x_2 + x_3 \le 40$$

opt =
$$(0, 20, 20)$$
 $2x_1 + x_3 \le 60$

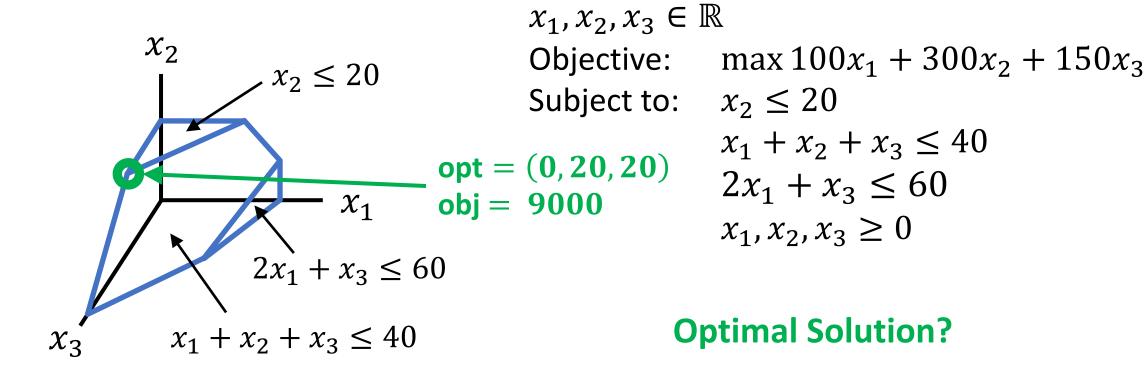
$$x_1, x_2, x_3 \ge 0$$

Optimal Solution?

$$x_2 \le 20 \Longrightarrow 150x_2 \le 3000$$

 $x_1 + x_2 + x_3 \le 40 \Longrightarrow 150x_1 + 150x_2 + 150x_3 \le 6000$

$$\Rightarrow 150x_1 + 300x_2 + 150x_3 \le 9000$$



$$x_2 \le 20 \Rightarrow 150x_2 \le 3000$$

 $x_1 + x_2 + x_3 \le 40 \Rightarrow 150x_1 + 150x_2 + 150x_3 \le 6000$

$$\Rightarrow 100x_1 + 300x_2 + 150x_3 \le 150x_1 + 300x_2 + 150x_3 \le 9000$$



$$x_2 \le 20 \Rightarrow 150x_2 \le 3000$$

 $x_1 + x_2 + x_3 \le 40 \Rightarrow 150x_1 + 150x_2 + 150x_3 \le 6000$

$$\Rightarrow 100x_1 + 300x_2 + 150x_3 \le 150x_1 + 300x_2 + 150x_3 \le 9000$$

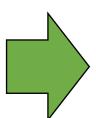
Objective: $\max 100x_1 + 300x_2$

Subject to: $x_1 \le 30$

$$x_2 \le 20$$

$$x_1 + x_2 \le 40$$

$$x_1, x_2 \ge 0$$



Objective: $\max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

Objective: $\max c^T x$

Subject to: A $x \le b$

 $x \ge 0$

Objective: $\max 100x_1 + 300x_2 + 150x_3$

$$x_1 + x_2 + x_3 \le 40$$

$$2x_1 + x_3 \le 60$$

$$x_1, x_2, x_3 \ge 0$$

Objective: max
$$\begin{bmatrix} 100 & 300 & 150 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix}$$
Subject to: $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \le \begin{bmatrix} 20 \\ 40 \\ 60 \end{bmatrix}$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

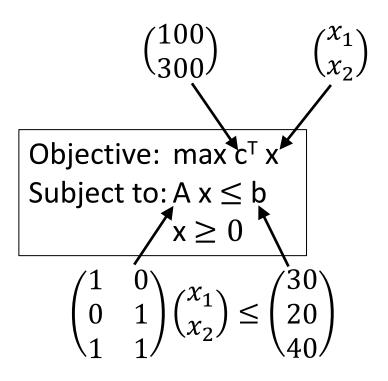
Objective: $\max 100x_1 + 300x_2$

Subject to: $x_1 \le 30$

$$x_2 \le 20$$

$$x_1 + x_2 \le 40$$

$$x_1, x_2 \ge 0$$



Every LP can be turned into standard form.

- 1.
- 2.
- 3.
- 4.

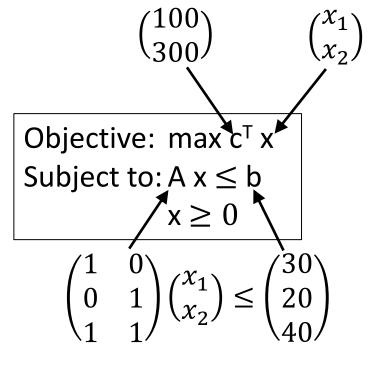
Objective: $\max 100x_1 + 300x_2$

Subject to: $x_1 \leq 30$

$$x_2 \le 20$$

$$x_1 + x_2 \le 40$$

$$x_1, x_2 \ge 0$$



Every LP can be turned into standard form.

- 1. Minimization \rightarrow Maximization: ?
- 2. \geq Constraints $\rightarrow \leq$:
- 3. Equality Constraints $\rightarrow \leq$:
- 4. Unrestricted sign $x_1 \rightarrow x_1 \ge 0$:

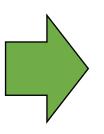
Objective: $\max 100x_1 + 300x_2$

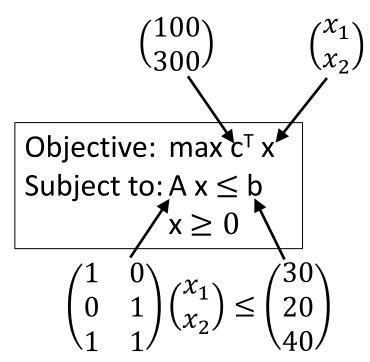
Subject to: $x_1 \leq 30$

$$x_2 \le 20$$

$$x_1 + x_2 \le 40$$

$$x_1, x_2 \ge 0$$





Every LP can be turned into standard form.

1. Minimization \rightarrow Maximization: Multiply objective coefficients by -1.

$$\min \alpha x_1 + \beta x_2 \rightarrow \max -\alpha x_1 - \beta x_2$$

- 2. \geq Constraints $\rightarrow \leq$:
- 3. Equality Constraints $\rightarrow \leq$:
- 4. Unrestricted sign $x_1 \rightarrow x_1 \ge 0$:

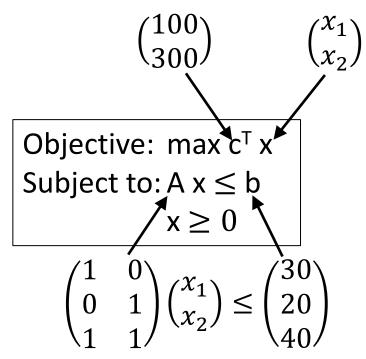
Objective: $\max 100x_1 + 300x_2$

Subject to: $x_1 \leq 30$

$$x_2 \le 20$$

$$x_1 + x_2 \le 40$$

$$x_1, x_2 \ge 0$$



Every LP can be turned into standard form.

1. Minimization \rightarrow Maximization: Multiply objective coefficients by -1.

$$\min \alpha x_1 + \beta x_2 \rightarrow \max -\alpha x_1 - \beta x_2$$

2. \geq Constraints \rightarrow \leq : Negate inequality.

$$x_1 + x_2 \ge \alpha \to -x_1 - x_2 \le -\alpha$$

- 3. Equality Constraints $\rightarrow \leq :$?
- 4. Unrestricted sign $x_1 \rightarrow x_1 \ge 0$:

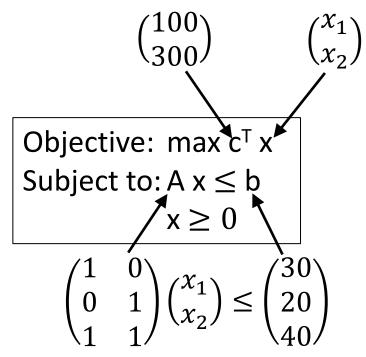
Objective: $\max 100x_1 + 300x_2$

Subject to: $x_1 \le 30$

$$x_2 \le 20$$

$$x_1 + x_2 \le 40$$

$$x_1, x_2 \ge 0$$



Every LP can be turned into standard form.

1. Minimization \rightarrow Maximization: Multiply objective coefficients by -1.

$$\min \alpha x_1 + \beta x_2 \rightarrow \max -\alpha x_1 - \beta x_2$$

2. \geq Constraints \rightarrow \leq : Negate inequality.

$$x_1 + x_2 \ge \alpha \rightarrow -x_1 - x_2 \le -\alpha$$

3. Equality Constraints \rightarrow \leq : Introduce \geq and \leq constraints.

$$x_1 + x_2 = \alpha \rightarrow x_1 + x_2 \ge \alpha$$
 and $x_1 + x_2 \le \alpha$

4. Unrestricted sign $x_1 \rightarrow x_1 \geq 0$:

Objective: $\max 100x_1 + 300x_2$

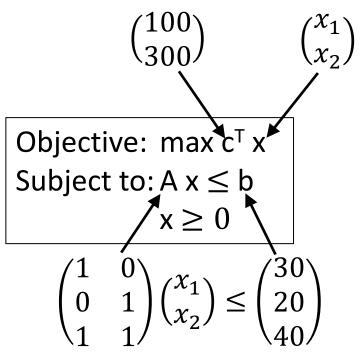
Subject to: $x_1 \leq 30$

$$x_2 \le 20$$

$$x_1 + x_2 \le 40$$

$$x_1, x_2 \ge 0$$





Every LP can be turned into standard form.

1. Minimization \rightarrow Maximization: Multiply objective coefficients by -1.

$$\min \alpha x_1 + \beta x_2 \rightarrow \max -\alpha x_1 - \beta x_2$$

2. \geq Constraints \rightarrow \leq : Negate inequality.

$$x_1 + x_2 \ge \alpha \rightarrow -x_1 - x_2 \le -\alpha$$

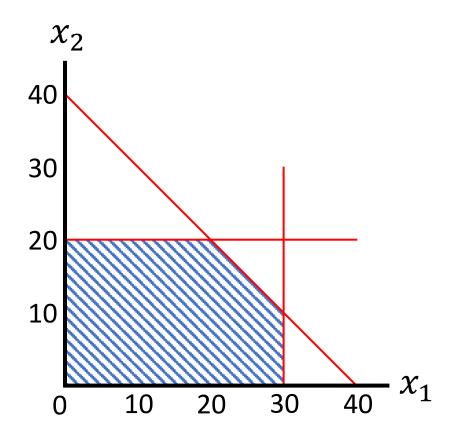
3. Equality Constraints $\rightarrow \leq$: Introduce \geq and \leq constraints.

$$x_1 + x_2 = \alpha \rightarrow x_1 + x_2 \ge \alpha$$
 and $x_1 + x_2 \le \alpha$

4. Unrestricted sign $x_1 \to x_1 \ge 0$: Replace x_1 with $x_1^+ - x_1^-$ (for $x_1^+ \ge 0$, $x_1^- \ge 0$).

$$x_1 + x_2 \le \alpha \to x_1^+ - x_1^- + x_2 \le \alpha$$

Optimal Value



Objective: $\max f(x_1, x_2)$

Subject to: $c_1(x_1, x_2)$

 $c_2(x_1, x_2)$

 $c_n(x_1,x_2)$

Properties of optimal solutions:

- 1. Optimal value occurs at a vertex.
- 2. Local optimum is global optimum.

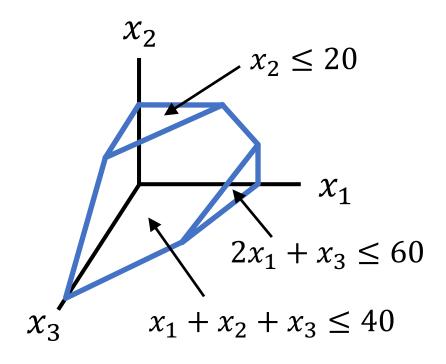
Algorithm to find optimal solution:

Test each vertex in order until no neighbors have larger (or smaller) value.

Simplex Algorithm

```
Simplex(LP)
  v = vertex in feasible region of LP
  while ∃ neighbor v' with better objective value
     v = v'
  return v
```

How do we find vertices?



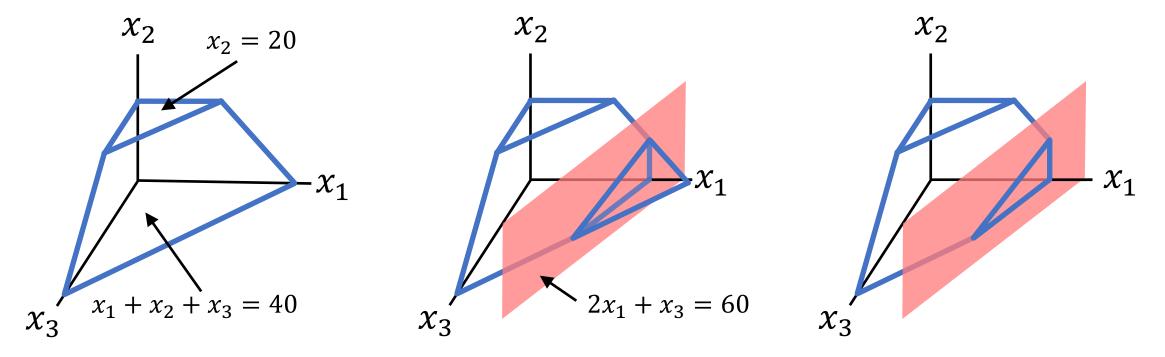
$$x_1, x_2, x_3 \in \mathbb{R}$$

Objective: $\max 100x_1 + 300x_2 + 150x_3$

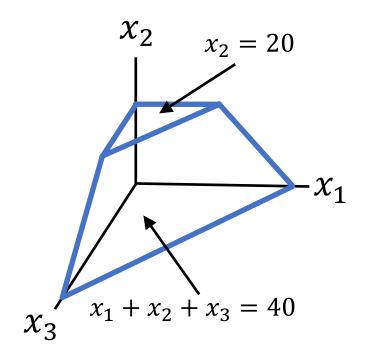
$$x_1 + x_2 + x_3 \le 40$$

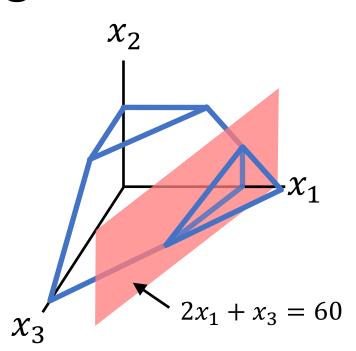
$$2x_1 + x_3 \le 60$$

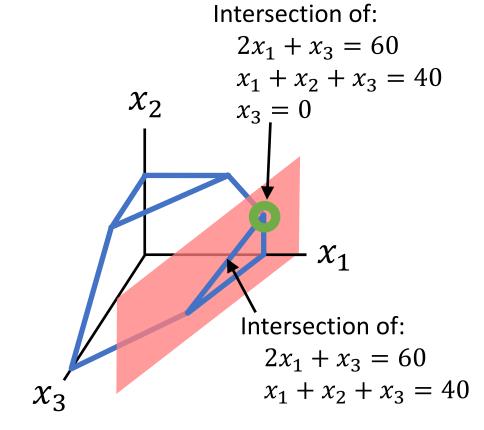
$$x_1, x_2, x_3 \ge 0$$



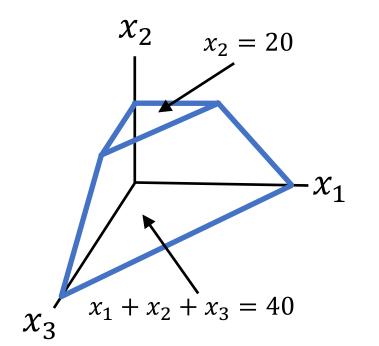
Feasible region construction: Area contained within intersection of hyperplanes represented by inequality constraints.

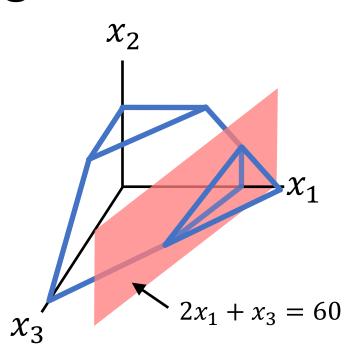


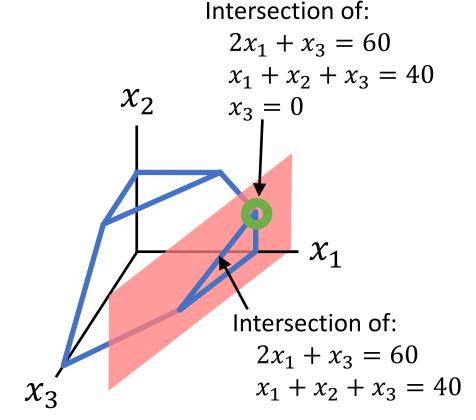




Definition: A *vertex* is a point in \mathbb{R}^n that uniquely satisfies some inequalities with equality, and is feasible.

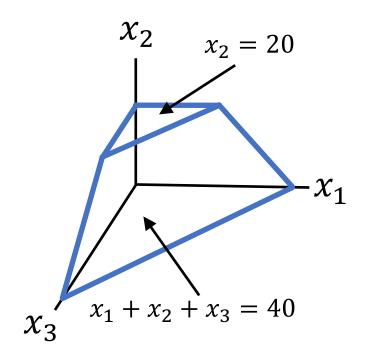


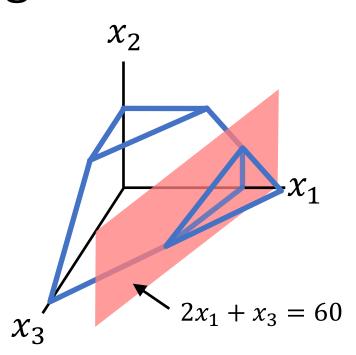


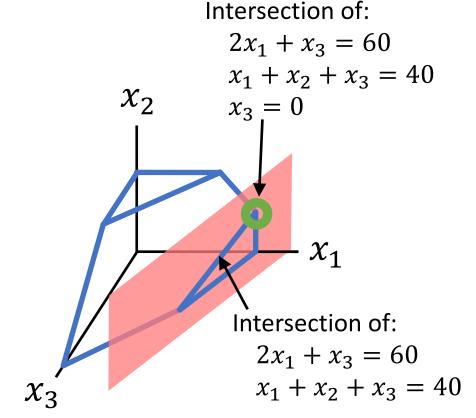


Definition: A *vertex* is a point in \mathbb{R}^n that uniquely satisfies some inequalities with equality, and is feasible.

How many (linearly independent) inequalities define a vertex?

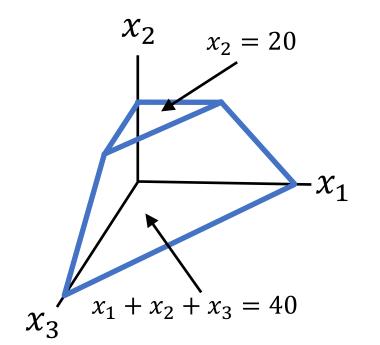


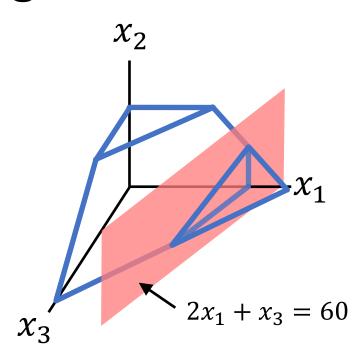




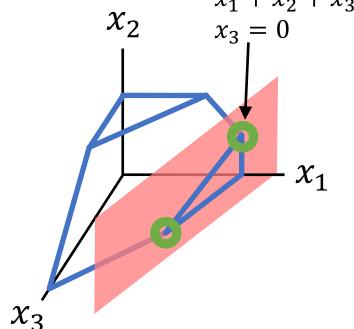
Definition: A *vertex* is a point in \mathbb{R}^n that uniquely satisfies some inequalities with equality, and is feasible.

How many (linearly independent) inequalities define a vertex? n.

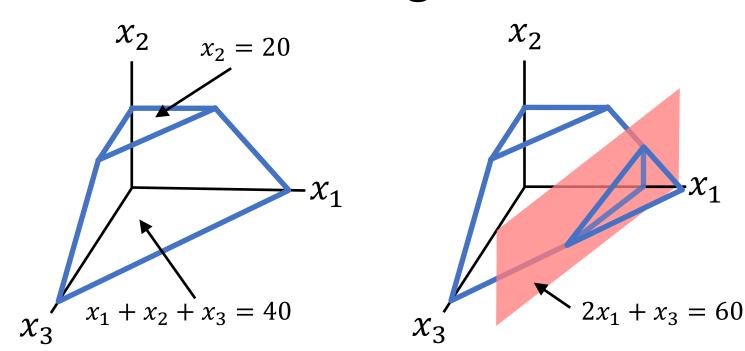


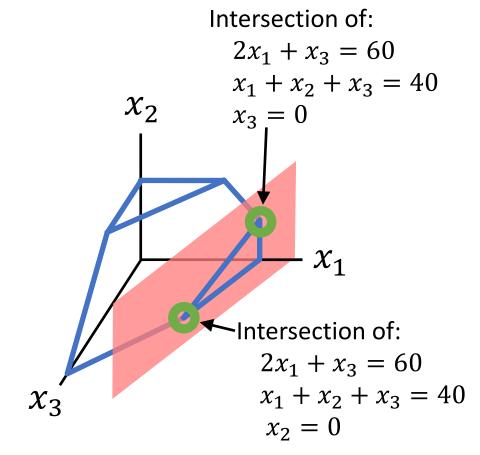


Intersection of: $2x_1 + x_3 = 60$ $x_1 + x_2 + x_3 = 40$

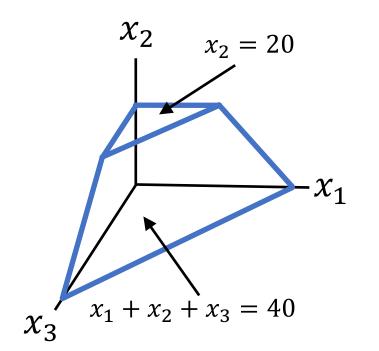


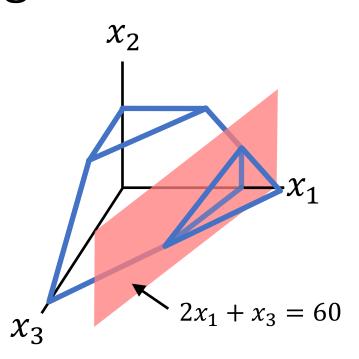
Definition: Two vertices are *neighbors* if...?

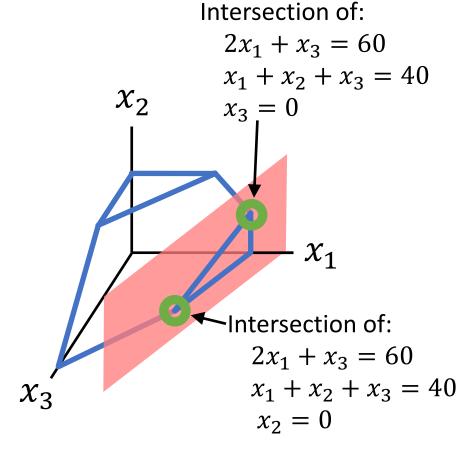




Definition: Two vertices are *neighbors* if they share n-1 defining inequalities.







Definition: Two vertices are *neighbors* if they share n-1 defining inequalities.

Plan: Move from vertex to vertex by following line formed by intersection of n-1 inequalities.