
Flow Networks
CSCI 532

Optimality

s

a

c

edb t

1
1

1

5

𝒔 − 𝒕 cut: Segmentation of vertices
(a cut) such that 𝒔 and 𝒕 are in
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.
2. Given a flow where there are no 𝑠 − 𝑡 paths left in the residual

graph, there is a specific cut whose capacity = flow value.
⇒ The algorithm is optimal

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡
flow. Then, |𝑓| = ∑!∈out # 𝑓 𝑒 − ∑!∈in # 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Optimality

Optimality

s

a

c

edb t

1
1

1

5

𝒔 − 𝒕 cut: Segmentation of vertices
(a cut) such that 𝒔 and 𝒕 are in
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.
2. Given a flow where there are no 𝑠 − 𝑡 paths left in the residual

graph, there is a specific cut whose capacity = flow value.

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof:

Optimality

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof:

s t

a

b 20

1020

𝐺!:

c
20

10 10

20
10

10
s t

a

b 20

1030

𝐺:

c
20

30 1010

Optimality

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.

s t

a

b 20

1020

𝐺!:

c
20

10 10

20
10

10
s t

a

b 20

1030

𝐺:

c
20

30 1010

Optimality

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.

s t

a

b 20

1020

𝐺!:

c
20

10 10

s t

a

b 20

1030

𝐺:

c
20

30 10

10
20

1010

Optimality

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

s t

a

b 20

1020

𝐺!:

c
20

10 10

s t

a

b 20

1030

𝐺:

c
20

30 10

10
20

1010

Optimality

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

Need to compare flow across cut to capacity of cut.

s t

a

b 20

1020

𝐺!:

c
20

10 10

s t

a

b 20

1030

𝐺:

c
20

30 10

10
20

1010

Optimality

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵.
What can we say about 𝑓(𝑒) related to its capacity?

s t

a

b 20

1020

𝐺!:

c
20

10 10

s t

a

b 20

1030

𝐺:

c
20

30 10

10
20

1010

Optimality

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵.
𝑓(𝑒) = 𝑐! (since (𝑢, 𝑣) ∉ 𝐺$, otherwise 𝑣 would be in 𝐴)

s t

a

b 20

1020

𝐺!:

c
20

10 10

s t

a

b 20

1030

𝐺:

c
20

30 10

10
20

1010

Optimality

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵.
𝑓(𝑒) = 𝑐! (since (𝑢, 𝑣) ∉ 𝐺$, otherwise 𝑣 would be in 𝐴)

Let 𝑒’ = (𝑢’, 𝑣’) ∈ 𝐸 (directed edge) such that 𝑢’ ∈ 𝐵 and 𝑣’ ∈ 𝐴.
What can we say about 𝑓(𝑒’)?

Optimality

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵.
𝑓(𝑒) = 𝑐! (since (𝑢, 𝑣) ∉ 𝐺$, otherwise 𝑣 would be in 𝐴)

Let 𝑒’ = (𝑢’, 𝑣’) ∈ 𝐸 (directed edge) such that 𝑢’ ∈ 𝐵 and 𝑣’ ∈ 𝐴.
𝑓(𝑒’) = 0 (since (𝑣’, 𝑢’) ∉ 𝐺$, otherwise 𝑢’ would be in 𝐴)

Optimality

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵.
𝑓(𝑒) = 𝑐! (since (𝑢, 𝑣) ∉ 𝐺$, otherwise 𝑣 would be in 𝐴)

Let 𝑒’ = (𝑢’, 𝑣’) ∈ 𝐸 (directed edge) such that 𝑢’ ∈ 𝐵 and 𝑣’ ∈ 𝐴.
𝑓(𝑒’) = 0 (since (𝑣’, 𝑢’) ∉ 𝐺$, otherwise 𝑢’ would be in 𝐴)

Therefore, |𝑓| = ∑!∈out # 𝑓 𝑒 − ∑!∈in # 𝑓 𝑒 (Theorem 1)

Optimality

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵.
𝑓(𝑒) = 𝑐! (since (𝑢, 𝑣) ∉ 𝐺$, otherwise 𝑣 would be in 𝐴)

Let 𝑒’ = (𝑢’, 𝑣’) ∈ 𝐸 (directed edge) such that 𝑢’ ∈ 𝐵 and 𝑣’ ∈ 𝐴.
𝑓(𝑒’) = 0 (since (𝑣’, 𝑢’) ∉ 𝐺$, otherwise 𝑢’ would be in 𝐴)

Therefore, |𝑓| = ∑!∈out # 𝑓 𝑒 − ∑!∈in # 𝑓 𝑒 (Theorem 1)
= ∑!∈out # 𝑐! − 0 = 𝑐(𝐴, 𝐵)

Optimality

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof:

??

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡
flow on 𝐺, and (𝐴, 𝐵) is an 𝑠 − 𝑡 cut. Then, |𝑓| ≤
𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡
path exists in residual graph 𝐺!, then there is an 𝑠 − 𝑡
cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Optimality

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof: Since the Ford-Fulkerson algorithm finishes when no 𝑠 − 𝑡 paths
remain in 𝐺$, Theorem 2 says there must be an 𝑠 − 𝑡 cut such that the
value of flow found equals the capacity of the cut.

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡
flow on 𝐺, and (𝐴, 𝐵) is an 𝑠 − 𝑡 cut. Then, |𝑓| ≤
𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡
path exists in residual graph 𝐺!, then there is an 𝑠 − 𝑡
cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Optimality

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof: Since the Ford-Fulkerson algorithm finishes when no 𝑠 − 𝑡 paths
remain in 𝐺$, Theorem 2 says there must be an 𝑠 − 𝑡 cut such that the
value of flow found equals the capacity of the cut.

By the Corollary, there cannot be a flow with a larger value.

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡
flow on 𝐺, and (𝐴, 𝐵) is an 𝑠 − 𝑡 cut. Then, |𝑓| ≤
𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡
path exists in residual graph 𝐺!, then there is an 𝑠 − 𝑡
cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Optimality

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof: Since the Ford-Fulkerson algorithm finishes when no 𝑠 − 𝑡 paths
remain in 𝐺$, Theorem 2 says there must be an 𝑠 − 𝑡 cut such that the
value of flow found equals the capacity of the cut.

By the Corollary, there cannot be a flow with a larger value.

Therefore, the flow found by the Ford-Fulkerson algorithm is the
maximum flow.

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡
flow on 𝐺, and (𝐴, 𝐵) is an 𝑠 − 𝑡 cut. Then, |𝑓| ≤
𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡
path exists in residual graph 𝐺!, then there is an 𝑠 − 𝑡
cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Optimality

Linear Programming
CSCI 532

Linear Programming

A very structured (details to follow) way to optimize a goal by turning knobs
and following certain rules.

Linear Programming

A very structured (details to follow) way to optimize a goal by turning knobs
and following certain rules.

Goal: Become as rich as possible

Knobs: Job Hunting, Education, Risk

Rules: Don’t rob a bank, get enough sleep to feel human, see your kids
more than once a month

Linear Programming

A very structured (details to follow) way to optimize a goal by turning knobs
and following certain rules.

Objective Decision
VariablesConstraints

Goal: Become as rich as possible

Knobs: Job Hunting, Education, Risk

Rules: Don’t rob a bank, get enough sleep to feel human, see your kids
more than once a month

Linear Programming

A very structured (details to follow) way to optimize a goal by turning knobs
and following certain rules.

Objective Decision
VariablesConstraints

Vertex Cover:
Goal: Select the smallest subset of vertices

Knobs: Select vertex 1? Select vertex 2?...

Rules: Every edge needs a selected vertex.

Max Flow
s 10 a b c t105 5

5

Max Flow = ?

Max Flow
s 10 a b c t105 5

5

Max Flow = 5

Max Flow
s 10 a b c t105 5

5

Decision Variable (“knob”). The LP solver can
change these values to better optimize the goal.

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a)

Decision Variable (“knob”). The LP solver can
change these values to better optimize the goal.

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

𝑐=> = Capacity of edge (s,a) 𝑐?@ = Capacity of edge (c,t)
𝑐>A = Capacity of edge (a,b) 𝑐?> = Capacity of edge (c,a)
𝑐A? = Capacity of edge (b,c)

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

𝑐=> = Capacity of edge (s,a) 𝑐?@ = Capacity of edge (c,t)
𝑐>A = Capacity of edge (a,b) 𝑐?> = Capacity of edge (c,a)
𝑐A? = Capacity of edge (b,c)

Not decision variables!!
The solver is not allowed to modify
capacities to influence the solution

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: ???

Objective (“goal”). The LP solver will do whatever
it can to make this as good as possible.

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: max 𝑥?@

Objective (“goal”). The LP solver will do whatever
it can to make this as good as possible.

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: max 𝑥?@

Good to go?

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: max 𝑥?@

Good to go? No! We need rules or else
the solver is going to become not helpful

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: max 𝑥?@
Subject to:

Constraints (“rules”). The solver is not
allowed to break these rules.

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: max 𝑥?@
Subject to: 𝑥=> ≤ 10

Constraints (“rules”). The solver is not
allowed to break these rules.

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: max 𝑥?@
Subject to: 𝑥=> ≤ 10, 𝑥>A ≤ 5, 𝑥A? ≤ 5, 𝑥?@ ≤ 10, 𝑥?> ≤ 5

Constraints (“rules”). The solver is not
allowed to break these rules.

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: max 𝑥?@
Subject to: 𝑥=> ≤ 10, 𝑥>A ≤ 5, 𝑥A? ≤ 5, 𝑥?@ ≤ 10, 𝑥?> ≤ 5

𝑥=> + 𝑥?> − 𝑥>A = 0

Constraints (“rules”). The solver is not
allowed to break these rules.

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: max 𝑥?@
Subject to: 𝑥=> ≤ 10, 𝑥>A ≤ 5, 𝑥A? ≤ 5, 𝑥?@ ≤ 10, 𝑥?> ≤ 5

𝑥=> + 𝑥?> − 𝑥>A = 0, 𝑥>A − 𝑥A? = 0, 𝑥A? − 𝑥?> − 𝑥?@ = 0

Constraints (“rules”). The solver is not
allowed to break these rules.

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: max 𝑥?@
Subject to: 𝑥=> ≤ 10, 𝑥>A ≤ 5, 𝑥A? ≤ 5, 𝑥?@ ≤ 10, 𝑥?> ≤ 5

𝑥=> + 𝑥?> − 𝑥>A = 0, 𝑥>A − 𝑥A? = 0, 𝑥A? − 𝑥?> − 𝑥?@ = 0
Any problems with this?

Max Flow = 5

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: max 𝑥?@
Subject to: 𝑥=> ≤ 10, 𝑥>A ≤ 5, 𝑥A? ≤ 5, 𝑥?@ ≤ 10, 𝑥?> ≤ 5

𝑥=> + 𝑥?> − 𝑥>A = 0, 𝑥>A − 𝑥A? = 0, 𝑥A? − 𝑥?> − 𝑥?@ = 0

s 10 a b c t105 5

-5

Any problems with this? Yes! The
solver will make some flow values
negative to increase the max flow.

Max Flow = 5

Max Flow = 10

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: max 𝑥?@
Subject to: 𝑥=> ≤ 10, 𝑥>A ≤ 5, 𝑥A? ≤ 5, 𝑥?@ ≤ 10, 𝑥?> ≤ 5

𝑥=> + 𝑥?> − 𝑥>A = 0, 𝑥>A − 𝑥A? = 0, 𝑥A? − 𝑥?> − 𝑥?@ = 0

s 10 a b c t105 5

-5

Any problems with this? Yes! The
solver will make some flow values
negative to increase the max flow.

Max Flow = 5

Max Flow = 10

Our responsibility is to model the problem
well enough that the solver has no choice but
to give us the correct answer to the problem.

Unknown
Problem

Linear
Program LP Solver Optimal LP

Var Values

Optimal
Problem
Solution

Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: max 𝑥?@
Subject to: 𝑥=> ≤ 10, 𝑥>A ≤ 5, 𝑥A? ≤ 5, 𝑥?@ ≤ 10, 𝑥?> ≤ 5

𝑥=> + 𝑥?> − 𝑥>A = 0, 𝑥>A − 𝑥A? = 0, 𝑥A? − 𝑥?> − 𝑥?@ = 0
𝑥=> , 𝑥>A , 𝑥A? , 𝑥?@ , 𝑥?> ≥ 0

Max Flow

𝑥! = Amount of flow on edge 𝑒.

Objective: max∑!∈out = 𝑥!
Subject to: 𝑥! ≤ capacity!, ∀𝑒 ∈ 𝐸

∑!∈in(B) 𝑥! − ∑!∈out B 𝑥! = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}
𝑥! ≥ 0, ∀𝑒 ∈ 𝐸

Max Flow

𝑥! = Amount of flow on edge 𝑒.

Objective: max∑!∈out = 𝑥!
Subject to: 𝑥! ≤ capacity!, ∀𝑒 ∈ 𝐸

∑!∈in(B) 𝑥! − ∑!∈out B 𝑥! = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}
𝑥! ≥ 0, ∀𝑒 ∈ 𝐸

Decision Variables:
• Real numbers = solvable in polynomial time (called LP).
• Integers = not (yet?) solvable in polynomial time

(called integer linear program – ILP).

Max Flow

𝑥! = Amount of flow on edge 𝑒.

Objective: max∑!∈out = 𝑥!
Subject to: 𝑥! ≤ capacity!, ∀𝑒 ∈ 𝐸

∑!∈in(B) 𝑥! − ∑!∈out B 𝑥! = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}
𝑥! ≥ 0, ∀𝑒 ∈ 𝐸

Decision Variables:
• Real numbers = solvable in polynomial time (called LP).
• Integers = not (yet?) solvable in polynomial time

(called integer linear program – ILP).

Objective:
• Can be minimization or maximization.
• Must be linear combinations of

variables 𝑥! (e.g. 𝑎"𝑥" +⋯+ 𝑎#𝑥# for
constants 𝑎!, not 𝑎!𝑥"𝑥$).

Max Flow

𝑥! = Amount of flow on edge 𝑒.

Objective: max∑!∈out = 𝑥!
Subject to: 𝑥! ≤ capacity!, ∀𝑒 ∈ 𝐸

∑!∈in(B) 𝑥! − ∑!∈out B 𝑥! = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}
𝑥! ≥ 0, ∀𝑒 ∈ 𝐸

Constraints:
• Can be ≤, ≥, =.
• Must be linear combinations of variables.

Decision Variables:
• Real numbers = solvable in polynomial time (called LP).
• Integers = not (yet?) solvable in polynomial time

(called integer linear program – ILP).

Objective:
• Can be minimization or maximization.
• Must be linear combinations of

variables 𝑥! (e.g. 𝑎"𝑥" +⋯+ 𝑎#𝑥# for
constants 𝑎!, not 𝑎!𝑥"𝑥$).

