Flow Networks
CSCI 532

Optima | Ity S — t cut: Segmentation of vertices

/ (a cut) such that s and t are in
different sets.

Game Plan:
1. Show that value of every flow is < capacity of every cut.
2. Given a flow where there are no s — t paths left in the residual
graph, there is a specific cut whose capacity = flow value.

= The algorithm is optimal

Optimality

Theorem 1: Let G be a flow network, (4,B) beans —tcut,and f beans —t
flow. Then, || = Zeeout(A)f(e) — Zeein(A)f(e)'

Corollary: Suppose G is a flow network, f isans —t flow on G, and (4, B) is an
s — t cut. Then, |f| < c(4, B). (i.e. every flow is bounded by any s — t cut)

Optima | Ity S — t cut: Segmentation of vertices

/ (a cut) such that s and t are in
different sets.

Game Plan:
1. Show that value of every flow is < capacity of every cut.
2. Given a flow where there are no s — t paths left in the residual
graph, there is a specific cut whose capacity = flow value.

Optimality

Theorem 2: if f isan s — t flow such that no s — t path exists in residual graph
Gf, then thereisans — t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof:

Optimality

Theorem 2: if f isan s — t flow such that no s — t path exists in residual graph
Gf, then thereisans — t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof:

Optimality

Theorem 2: if f isan s — t flow such that no s — t path exists in residual graph
Gf, then thereisans — t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Llet A ={v € V:3s —vpathinGr}and B = V\A.

Optimality

Theorem 2: if f isan s — t flow such that no s — t path exists in residual graph
Gf, then thereisans — t cut (4,B) in G = (V, E) for which |f| = c(4, B).

proof:Let A = (v € V:3 s — vpathin Gy} and B = \A.

Optimality

Theorem 2: if f isan s — t flow such that no s — t path exists in residual graph
Gf, then thereisans — t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Llet A ={v € V:3s —vpathinGr}and B = V\A.
(A,B) isan s — t cut (because it partitions I/, s € A,and t € B)

Optimality

Theorem 2: if f isan s — t flow such that no s — t path exists in residual graph
Gf, then thereisans — t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Llet A ={v € V:3s —vpathinGr}and B = V\A.
(A,B) isan s — t cut (because it partitions I/, s € A,and t € B)

Need to compare flow across cut to capacity of cut.

Optimality

Theorem 2: if f isan s — t flow such that no s — t path exists in residual graph
Gf, then thereisans — t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Llet A ={v € V:3s —vpathinGr}and B = V\A.
(A,B) isan s — t cut (because it partitions I/, s € A,and t € B)

Let e = (u,v) € E (directed edge) such thatu € Aand v € B.
What can we say about f(e) related to its capacity?

Optimality

Theorem 2: if f isan s — t flow such that no s — t path exists in residual graph
Gf, then thereisans — t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Llet A ={v € V:3s —vpathinGr}and B = V\A.
(A,B) isan s — t cut (because it partitions I/, s € A,and t € B)

Let e = (u,v) € E (directed edge) such thatu € Aand v € B.
f(e) = c. (since (u,v) & G¢, otherwise v would be in 4)

Optimality

Theorem 2: if f isan s — t flow such that no s — t path exists in residual graph
Gf, then thereisans — t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Llet A ={v € V:3s —vpathinGr}and B = V\A.
(A,B) isan s — t cut (because it partitions I/, s € A,and t € B)

Let e = (u,v) € E (directed edge) such thatu € Aand v € B.
f(e) = c. (since (u,v) & G¢, otherwise v would be in 4)

Let e’ = (u',v’) € E (directed edge) such that u’ € B and v’ € A.
What can we say about f(e')?
c. .
20 WL
(8] ?,0

10

Optimality

Theorem 2: if f isan s — t flow such that no s — t path exists in residual graph
Gf, then thereisans — t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Llet A ={v € V:3s —vpathinGr}and B = V\A.
(A,B) isan s — t cut (because it partitions I/, s € A,and t € B)

Let e = (u,v) € E (directed edge) such thatu € Aand v € B.
f(e) = c. (since (u,v) & G¢, otherwise v would be in 4)

Let e’ = (u',v’) € E (directed edge) such that u’ € B and v’ € A.
fe)=0 (smce (v, u') & Gf, otherwise u’ would be in A)

Optimality
Theorem 2: if f isan s — t flow such that no s — t path exists in residual graph
Gf, then thereisans — t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Llet A ={v € V:3s —vpathinGr}and B = V\A.
(A,B) isan s — t cut (because it partitions I/, s € A,and t € B)

Let e = (u,v) € E (directed edge) such thatu € Aand v € B.
f(e) = c. (since (u,v) & G¢, otherwise v would be in 4)

Let e’ = (u',v’) € E (directed edge) such that u’ € B and v’ € A.
f(e") = 0(since (v',u’) & Gy, otherwise u’ would be in 4)

Therefore, |f| = X.cout) f(€) — Zeein(A)f(e) (Theorem 1)

Optimality
Theorem 2: if f isan s — t flow such that no s — t path exists in residual graph
Gf, then thereisans — t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Llet A ={v € V:3s —vpathinGr}and B = V\A.
(A,B) isan s — t cut (because it partitions I/, s € A,and t € B)

Let e = (u,v) € E (directed edge) such thatu € Aand v € B.
f(e) = c. (since (u,v) & G¢, otherwise v would be in 4)

Let e’ = (u',v’) € E (directed edge) such that u’ € B and v’ € A.
f(e") = 0(since (v',u’) & Gy, otherwise u’ would be in 4)

Therefore, |f| = ZeEOut(A)f(e) — Zeein(A)f(e) (Theorem 1)
= ZeEOut(A) ce —0=c(4,B)

Optimality

Theorem: The flow returned by the Ford-Fulkerson algorithm is a

maximum flow.

Proof:

27

Corollary: Suppose G is a flow network, f isans —t
flowon G, and (A4, B) isan s — t cut. Then, |f| <
c(4, B). (i.e. every flow is bounded by any s — t cut)

Theorem 2:if f isan s — t flow such thatnos — t
path exists in residual graph G, then thereisans —t

cut (4,B) in G = (V, E) for which |f| = c(4, B).

Optimality

Theorem: The flow returned by the Ford-Fulkerson algorithm is a

maximum flow.

Proof: Since the Ford-Fulkerson algorithm finishes when no s — t paths
remain in G¢, Theorem 2 says there must be an s — t cut such that the
value of flow found equals the capacity of the cut.

Corollary: Suppose G is a flow network, f isans —t
flowon G, and (A4, B) isan s — t cut. Then, |f| <
c(4, B). (i.e. every flow is bounded by any s — t cut)

Theorem 2:if f isan s — t flow such thatnos — t
path exists in residual graph G, then thereisans —t

cut (4,B) in G = (V, E) for which |f| = c(4, B).

Optimality

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof: Since the Ford-Fulkerson algorithm finishes when no s — t paths
remain in G¢, Theorem 2 says there must be an s — t cut such that the
value of flow found equals the capacity of the cut.

By the Corollary, there cannot be a flow with a larger value.

Corollary: Suppose G is a flow network, f isans —t Theorem 2:if f isan s — t flow such thatnos — ¢t
flowon G, and (4,B) isan s — t cut. Then, |f] < path exists in residual graph G¢, then thereisans — ¢
c(4, B). (i.e. every flow is bounded by any s — t cut) cut (4,B) in G = (V,E) for which |f| = c(4, B).

Optimality

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof: Since the Ford-Fulkerson algorithm finishes when no s — t paths
remain in G¢, Theorem 2 says there must be an s — t cut such that the
value of flow found equals the capacity of the cut.

By the Corollary, there cannot be a flow with a larger value.

Therefore, the flow found by the Ford-Fulkerson algorithm is the
maximum flow.

Corollary: Suppose G is a flow network, f isans —t Theorem 2:if f isan s — t flow such thatnos — ¢t
flowon G, and (4,B) isan s — t cut. Then, |f] < path exists in residual graph G¢, then thereisans — ¢
c(4, B). (i.e. every flow is bounded by any s — t cut) cut (4,B) in G = (V,E) for which |f| = c(4, B).

Linear Programming
CSCI 532

Linear Programming

A very structured (details to follow) way to optimize a goal by turning knobs
and following certain rules.

Linear Programming

A very structured (details to follow) way to optimize a goal by turning knobs
and following certain rules.

Goal: Become as rich as possible

Knobs: Job Hunting, Education, Risk

Rules: Don’t rob a bank, get enough sleep to feel human, see your kids
more than once a month

Linear Programming

A very structured (details to follow) way to optimize a goal by turning knobs

and following certain rules. / T

: iecti Decision
Constraints Objective .

Variables
Goal: Become as rich as possible

Knobs: Job Hunting, Education, Risk

Rules: Don’t rob a bank, get enough sleep to feel human, see your kids
more than once a month

Linear Programming

A very structured (details to follow) way to optimize a goal by turning knobs

and following certain rules. / T

' jecti Decision
Constraints Objective

Variables
Vertex Cover:

Goal: Select the smallest subset of vertices

Knobs: Select vertex 1? Select vertex 27...

Rules: Every edge needs a selected vertex.

Max Flow
10
@O O—»D Max Flow = ?

Max Flow
10 5
(S) (@) (b > 10 (t) Max Flow =5

Max Flow

o1

Decision Variable (“knob”). The LP solver can
change these values to better optimize the goal.

Max Flow

X;q = Amount of flow on edge (s,a)

Decision Variable (“knob”). The LP solver can
change these values to better optimize the goal.

Max Flow

o1

Xsq = Amount of flow on edge (s,a) x.; = Amount of flow on edge (c,t)
X,p = Amount of flow on edge (a,b) x., = Amount of flow on edge (c,a)
Xy = Amount of flow on edge (b,c)

Max Flow

o1

Xsq = Amount of flow on edge (s,a) x.; = Amount of flow on edge (c,t)
X,p = Amount of flow on edge (a,b) x., = Amount of flow on edge (c,a)
Xy = Amount of flow on edge (b,c)

c,, = Capacity of edge (s,a) c.; = Capacity of edge (c,t)
c,p = Capacity of edge (a,b) c., = Capacity of edge (c,a)
cp. = Capacity of edge (b,c)

Max Flow

Xsq = Amount of f
X,p = Amount of f

o1

ow on edge (s,a) x.+ = Amount of flow on edge (c,t)
ow on edge (a,b) x., = Amount of flow on edge (c,a)

Xp. = Amount of f

ow on edge (b,c)

Cs—Capacity-ofedge{s;a)——¢;—FCapacity-ofedge{est)
cgp—=-Capacity-ef-edgetabr————c;=-Capacity-ofedgetea)
~Crr—=FCapacity-ef-cdge-thye)-

Not decision variables!!

The solver is not allowed to modify
capacities to influence the solution

Max Flow

o1

Xsq = Amount of flow on edge (s,a) x.; = Amount of flow on edge (c,t)
X,p = Amount of flow on edge (a,b) x., = Amount of flow on edge (c,a)
Xy = Amount of flow on edge (b,c)

Objective: ???

Objective (“goal”). The LP solver will do whatever
it can to make this as good as possible.

Max Flow

o1

Xsq = Amount of flow on edge (s,a) x.; = Amount of flow on edge (c,t)
X,p = Amount of flow on edge (a,b) x., = Amount of flow on edge (c,a)
Xy = Amount of flow on edge (b,c)

Objective: maxx,;

Objective (“goal”). The LP solver will do whatever
it can to make this as good as possible.

Max Flow

o1

Xsq = Amount of flow on edge (s,a) x.; = Amount of flow on edge (c,t)
X,p = Amount of flow on edge (a,b) x., = Amount of flow on edge (c,a)
Xy = Amount of flow on edge (b,c)

Objective: maxx,;

Good to go?

Max Flow

o1

Xsq = Amount of flow on edge (s,a) x.; = Amount of flow on edge (c,t)
X,p = Amount of flow on edge (a,b) x., = Amount of flow on edge (c,a)
Xy = Amount of flow on edge (b,c)

Objective: maxx,;

Good to go? No! We need rules or else
the solver is going to become not helpful

Max Flow

o1

Xsq = Amount of flow on edge (s,a) x.; = Amount of flow on edge (c,t)

X,p = Amount of flow on edge (a,b) x., = Amount of flow on edge (c,a)
Xy = Amount of flow on edge (b,c)

Objective: maxx,;

Subject to:

Constraints (“rules”). The solver is not
allowed to break these rules.

Max Flow

o1

Xsq = Amount of flow on edge (s,a) x.; = Amount of flow on edge (c,t)

X,p = Amount of flow on edge (a,b) x., = Amount of flow on edge (c,a)
Xy = Amount of flow on edge (b,c)

Objective: maxx,;

Subject to: x,, < 10

Constraints (“rules”). The solver is not
allowed to break these rules.

Max Flow

o1

Xsq = Amount of flow on edge (s,a) x.; = Amount of flow on edge (c,t)

X,p = Amount of flow on edge (a,b) x., = Amount of flow on edge (c,a)
Xy = Amount of flow on edge (b,c)

Objective: maxx,;

Subjectto: x;, <10, x4 <5, x5, x,=<10, x,, <5

Constraints (“rules”). The solver is not
allowed to break these rules.

Max Flow

o1

Xsq = Amount of flow on edge (s,a) x.; = Amount of flow on edge (c,t)

X,p = Amount of flow on edge (a,b) x., = Amount of flow on edge (c,a)
Xy = Amount of flow on edge (b,c)

Objective: maxx,;

Subjectto: x;, <10, x4 <5, x5, x,=<10, x,, <5
Xsqg + Xcqg — Xqp = 0

Constraints (“rules”). The solver is not
allowed to break these rules.

Max Flow

o1

Xsq = Amount of flow on edge (s,a) x.; = Amount of flow on edge (c,t)

X,p = Amount of flow on edge (a,b) x., = Amount of flow on edge (c,a)
Xy = Amount of flow on edge (b,c)

Objective: maxx,;

Subjectto: x;, <10, x4 <5, x5, x,=<10, x,, <5
Xsa t Xca —Xap =0, Xgp = Xpc =0, Xpe—Xeqg — Xt =0

Constraints (“rules”). The solver is not
allowed to break these rules.

Max Flow
10 5 5 10

(& (@ O (C (® MaxFlow=5

5

Xsq = Amount of flow on edge (s,a) x.; = Amount of flow on edge (c,t)

X,p = Amount of flow on edge (a,b) x., = Amount of flow on edge (c,a)
Xy = Amount of flow on edge (b,c)

Objective: maxx,;

Subjectto: x;, <10, x4 <5, x5, x,=<10, x,, <5
Xsa t Xca —Xap =0, Xgp = Xpc =0, Xpe—Xeqg — Xt =0

Any problems with this/?

Max Flow
10 5 5 10

(& (@ O (C (® MaxFlow=5

5

Xsq = Amount of flow on edge (s,a) x.; = Amount of flow on edge (c,t)

X,p = Amount of flow on edge (a,b) x., = Amount of flow on edge (c,a)
Xy = Amount of flow on edge (b,c)

Objective: maxx,;

Subjectto: x;, <10, x4 <5, x5, x,=<10, x,, <5
Xsa t Xca —Xap =0, Xgp = Xpc =0, Xpe—Xeqg — Xt =0

Any problems with this? Yes! The 10 5 5 10
solver will make some flow values S QWG (U

negative to increase the max flow. -5 Max Flow = 10

Max Flow

1 1
& - > (C = () Max Flow =5
5
_ m|Our respon5|b|I|ty is to model the problem \dge &)
xab = A dge (c,a)
Xy = Am well enough that the solver has no choice but

to give us the correct answer to the problem.

Objective: -
Subject to: ; < 10, xab < 5 xbc < 5 xct < 10, xca <5

Unknown Linear Optimal LP Optlmal
LP Solver Problem

Problem Program Var Values
Solutlon

II\.—BULIV\.— CO ITICTCUOJOC CITC TTTON TTOU VYV,

Max Flow

o1

Xsq = Amount of flow on edge (s,a) x.; = Amount of flow on edge (c,t)

X,p = Amount of flow on edge (a,b) x., = Amount of flow on edge (c,a)
Xy = Amount of flow on edge (b,c)

Objective: maxx,;

Subjectto: x;, <10, x4 <5, x5, x,=<10, x,, <5
Xsa T Xca = Xap = 0, Xgp = Xpc =0, Xpc —Xeq — Xt =0
XsarXab» Xpcr Xct» Xeq = 0

Max Flow

X, = Amount of flow on edge e.
Objective: max X,cout(s) Xe

Subject to: x, < capacity,, Ve € E
Zeein(v) Xe — Zeeout(v) Xe = 0,Vvv eV \ {S: t}
x, =0,Ve € E

M dX F | oW Decision Variables:

 Real numbers = solvable in polynomial time (called LP).
* Integers = not (yet?) solvable in polynomial time

(called integer linear program — ILP).

A
ge = Amount of flow on edge 2

Objective: max X,cout(s) Xe

Subject to: x, < capacity,, Ve € E
Zeein(v) Xe — Zeeout(v) Xe = 0,Vvv eV \ {S: t}
x, =0,Ve € E

Max Flow

Decision Variables:
 Real numbers = solvable in polynomial time (called LP).
* Integers = not (yet?) solvable in polynomial time
(called integer linear program — ILP).

N

(. A Objective:
X, = Amount of flow on edge e./ j A o o
* an be minimization or maximization.

Objective: max Zeeout(s) X, * Must be linear combinations of
variables x; (e.g. a;x; + -+ + a,x, for

Subject to: x, < capacity,, Ve € E constants a;, not a;x; X).
Zeein(v) Xe — Zeeout(v) Xe = 0,Vvv eV \ {S: t}
x, =0,Ve € E

Max Flow

Decision Variables:
 Real numbers = solvable in polynomial time (called LP).
* Integers = not (yet?) solvable in polynomial time
(called integer linear program — ILP).

N

(. N Objective:
X, = Amount of flow on edge e. : L o
¢ Can be minimization or maximization.

Objective: max Zeeout(s) X, * Must be linear combinations of
variables x; (e.g. a1 x; + -+ + a,x, for

Subject to:{xe < capacity,, Ve € E constants a;, not a;x; X).

/ Zeein(v) Xe — Zeeout(v) Xe = O' Vv eV \ {S' t}

x, =0,Ve€E
Constraints:

e Canbe<, > =.
* Must be linear combinations of variables.

