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𝒔 − 𝒕 cut: Segmentation of vertices 
(a cut) such that 𝒔 and 𝒕 are in 
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.
2. Given a flow where there are no 𝑠 − 𝑡 paths left in the residual 

graph, there is a specific cut whose capacity = flow value.
⇒ The algorithm is optimal



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡
flow. Then, |𝑓| = ∑!∈out # 𝑓 𝑒 − ∑!∈in # 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an 
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)
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𝒔 − 𝒕 cut: Segmentation of vertices 
(a cut) such that 𝒔 and 𝒕 are in 
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.
2. Given a flow where there are no 𝑠 − 𝑡 paths left in the residual 

graph, there is a specific cut whose capacity = flow value.



Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof:
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

Need to compare flow across cut to capacity of cut.
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵. 
What can we say about 𝑓(𝑒) related to its capacity?
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵. 
𝑓(𝑒) = 𝑐! (since (𝑢, 𝑣) ∉ 𝐺$, otherwise 𝑣 would be in 𝐴)
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵. 
𝑓(𝑒) = 𝑐! (since (𝑢, 𝑣) ∉ 𝐺$, otherwise 𝑣 would be in 𝐴)

Let 𝑒’ = (𝑢’, 𝑣’) ∈ 𝐸 (directed edge) such that 𝑢’ ∈ 𝐵 and 𝑣’ ∈ 𝐴.
What can we say about 𝑓(𝑒’)?
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵. 
𝑓(𝑒) = 𝑐! (since (𝑢, 𝑣) ∉ 𝐺$, otherwise 𝑣 would be in 𝐴)

Let 𝑒’ = (𝑢’, 𝑣’) ∈ 𝐸 (directed edge) such that 𝑢’ ∈ 𝐵 and 𝑣’ ∈ 𝐴.
𝑓(𝑒’) = 0 (since (𝑣’, 𝑢’) ∉ 𝐺$, otherwise 𝑢’ would be in 𝐴)
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵. 
𝑓(𝑒) = 𝑐! (since (𝑢, 𝑣) ∉ 𝐺$, otherwise 𝑣 would be in 𝐴)

Let 𝑒’ = (𝑢’, 𝑣’) ∈ 𝐸 (directed edge) such that 𝑢’ ∈ 𝐵 and 𝑣’ ∈ 𝐴.
𝑓(𝑒’) = 0 (since (𝑣’, 𝑢’) ∉ 𝐺$, otherwise 𝑢’ would be in 𝐴)

Therefore, |𝑓| = ∑!∈out # 𝑓 𝑒 − ∑!∈in # 𝑓 𝑒 (Theorem 1)
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺$, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺$} and 𝐵 = 𝑉\𝐴.
(𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵. 
𝑓(𝑒) = 𝑐! (since (𝑢, 𝑣) ∉ 𝐺$, otherwise 𝑣 would be in 𝐴)

Let 𝑒’ = (𝑢’, 𝑣’) ∈ 𝐸 (directed edge) such that 𝑢’ ∈ 𝐵 and 𝑣’ ∈ 𝐴.
𝑓(𝑒’) = 0 (since (𝑣’, 𝑢’) ∉ 𝐺$, otherwise 𝑢’ would be in 𝐴)

Therefore, |𝑓| = ∑!∈out # 𝑓 𝑒 − ∑!∈in # 𝑓 𝑒 (Theorem 1)
= ∑!∈out # 𝑐! − 0 = 𝑐(𝐴, 𝐵)
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Theorem: The flow returned by the Ford-Fulkerson algorithm is a 
maximum flow.

Proof:

??

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡
flow on 𝐺, and (𝐴, 𝐵) is an 𝑠 − 𝑡 cut. Then, |𝑓| ≤
𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡
path exists in residual graph 𝐺!, then there is an 𝑠 − 𝑡
cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).
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Theorem: The flow returned by the Ford-Fulkerson algorithm is a 
maximum flow.

Proof: Since the Ford-Fulkerson algorithm finishes when no 𝑠 − 𝑡 paths 
remain in 𝐺$, Theorem 2 says there must be an 𝑠 − 𝑡 cut such that the 
value of flow found equals the capacity of the cut. 

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡
flow on 𝐺, and (𝐴, 𝐵) is an 𝑠 − 𝑡 cut. Then, |𝑓| ≤
𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)
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path exists in residual graph 𝐺!, then there is an 𝑠 − 𝑡
cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Optimality



Theorem: The flow returned by the Ford-Fulkerson algorithm is a 
maximum flow.

Proof: Since the Ford-Fulkerson algorithm finishes when no 𝑠 − 𝑡 paths 
remain in 𝐺$, Theorem 2 says there must be an 𝑠 − 𝑡 cut such that the 
value of flow found equals the capacity of the cut. 

By the Corollary, there cannot be a flow with a larger value.

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡
flow on 𝐺, and (𝐴, 𝐵) is an 𝑠 − 𝑡 cut. Then, |𝑓| ≤
𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)
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path exists in residual graph 𝐺!, then there is an 𝑠 − 𝑡
cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).
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Theorem: The flow returned by the Ford-Fulkerson algorithm is a 
maximum flow.

Proof: Since the Ford-Fulkerson algorithm finishes when no 𝑠 − 𝑡 paths 
remain in 𝐺$, Theorem 2 says there must be an 𝑠 − 𝑡 cut such that the 
value of flow found equals the capacity of the cut. 

By the Corollary, there cannot be a flow with a larger value.

Therefore, the flow found by the Ford-Fulkerson algorithm is the 
maximum flow.

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡
flow on 𝐺, and (𝐴, 𝐵) is an 𝑠 − 𝑡 cut. Then, |𝑓| ≤
𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡
path exists in residual graph 𝐺!, then there is an 𝑠 − 𝑡
cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).
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Knobs: Job Hunting, Education, Risk

Rules: Don’t rob a bank, get enough sleep to feel human, see your kids 
more than once a month



Linear Programming

A very structured (details to follow) way to optimize a goal by turning knobs 
and following certain rules.

Objective Decision 
VariablesConstraints

Goal: Become as rich as possible

Knobs: Job Hunting, Education, Risk

Rules: Don’t rob a bank, get enough sleep to feel human, see your kids 
more than once a month



Linear Programming

A very structured (details to follow) way to optimize a goal by turning knobs 
and following certain rules.

Objective Decision 
VariablesConstraints

Vertex Cover:
Goal: Select the smallest subset of vertices

Knobs: Select vertex 1? Select vertex 2?...

Rules: Every edge needs a selected vertex.
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Decision Variable (“knob”). The LP solver can 
change these values to better optimize the goal. 
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𝑥A? = Amount of flow on edge (b,c)
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𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

𝑐=> = Capacity of edge (s,a) 𝑐?@ = Capacity of edge (c,t)
𝑐>A = Capacity of edge (a,b) 𝑐?> = Capacity of edge (c,a)
𝑐A? = Capacity of edge (b,c)



Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

𝑐=> = Capacity of edge (s,a) 𝑐?@ = Capacity of edge (c,t)
𝑐>A = Capacity of edge (a,b) 𝑐?> = Capacity of edge (c,a)
𝑐A? = Capacity of edge (b,c)

Not decision variables!!
The solver is not allowed to modify 
capacities to influence the solution



Max Flow
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5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: ???

Objective (“goal”). The LP solver will do whatever 
it can to make this as good as possible.



Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: max 𝑥?@

Objective (“goal”). The LP solver will do whatever 
it can to make this as good as possible.
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Objective: max 𝑥?@

Good to go? 



Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: max 𝑥?@

Good to go? No! We need rules or else 
the solver is going to become not helpful
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𝑥>A = Amount of flow on edge (a,b) 𝑥?> = Amount of flow on edge (c,a)
𝑥A? = Amount of flow on edge (b,c)

Objective: max 𝑥?@
Subject to:

Constraints (“rules”). The solver is not 
allowed to break these rules.



Max Flow
s 10 a b c t105 5

5
𝑥=> = Amount of flow on edge (s,a) 𝑥?@ = Amount of flow on edge (c,t)
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Our responsibility is to model the problem 
well enough that the solver has no choice but 
to give us the correct answer to the problem.
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