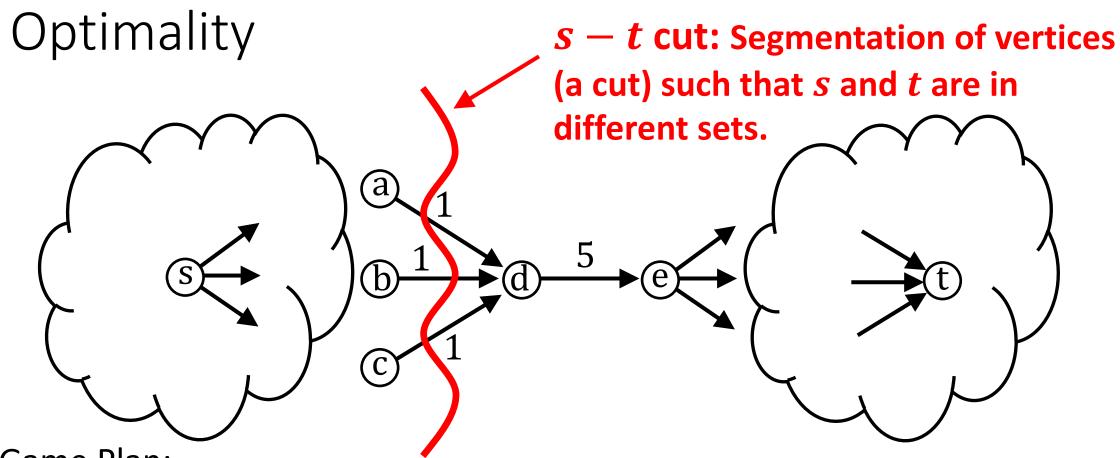
Flow Networks CSCI 532



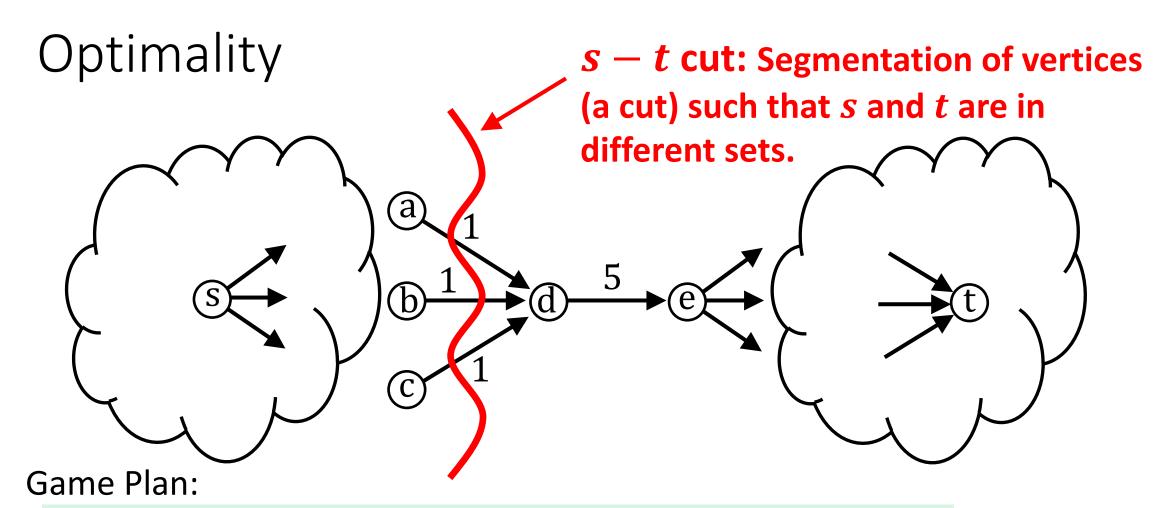
Game Plan:

- 1. Show that value of every flow is \leq capacity of every cut.
- 2. Given a flow where there are no s-t paths left in the residual graph, there is a specific cut whose capacity = flow value.

⇒ The algorithm is optimal

Theorem 1: Let G be a flow network, (A,B) be an s-t cut, and f be an s-t flow. Then, $|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

Corollary: Suppose G is a flow network, f is an S-t flow on G, and (A,B) is an S-t cut. Then, $|f| \le c(A,B)$. (i.e. every flow is bounded by any S-t cut)



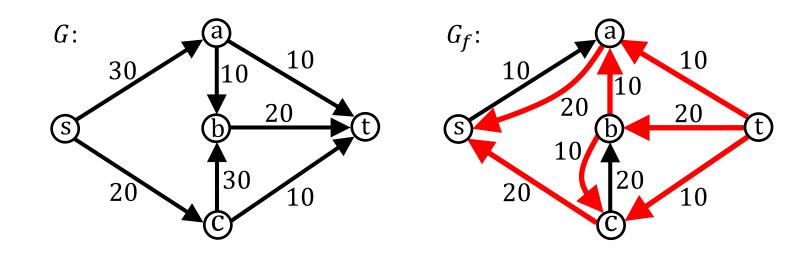
- 1. Show that value of every flow is \leq capacity of every cut.
- 2. Given a flow where there are no s-t paths left in the residual graph, there is a specific cut whose capacity = flow value.

Theorem 2: if f is an s-t flow such that no s-t path exists in residual graph G_f , then there is an s-t cut (A,B) in G=(V,E) for which |f|=c(A,B).

Proof:

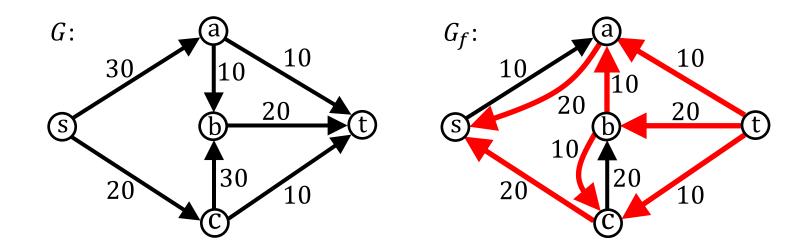
Theorem 2: if f is an s-t flow such that no s-t path exists in residual graph G_f , then there is an s-t cut (A,B) in G=(V,E) for which |f|=c(A,B).

Proof:



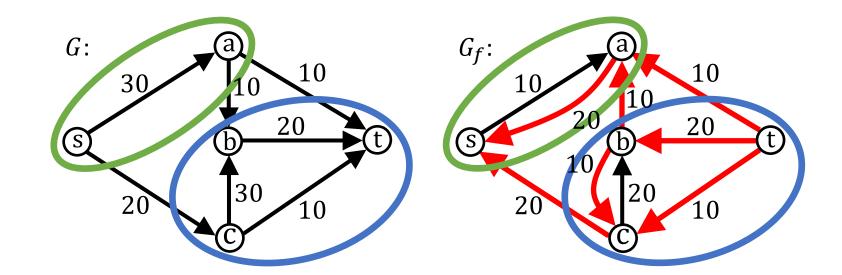
Theorem 2: if f is an s-t flow such that no s-t path exists in residual graph G_f , then there is an s-t cut (A,B) in G=(V,E) for which |f|=c(A,B).

<u>Proof:</u> Let $A = \{v \in V : \exists s - v \text{ path in } G_f\}$ and $B = V \setminus A$.



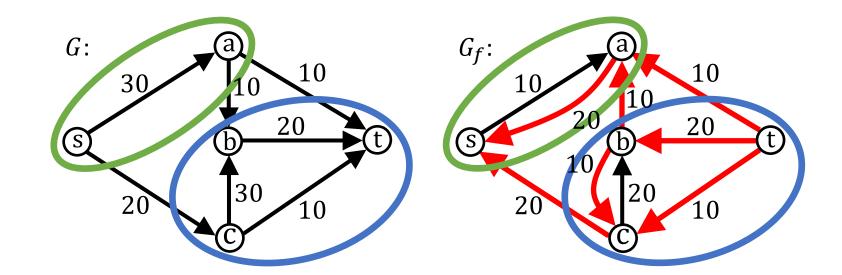
Theorem 2: if f is an s-t flow such that no s-t path exists in residual graph G_f , then there is an s-t cut (A,B) in G=(V,E) for which |f|=c(A,B).

<u>Proof:</u> Let $A = \{v \in V : \exists s - v \text{ path in } G_f\}$ and $B = V \setminus A$.



Theorem 2: if f is an s-t flow such that no s-t path exists in residual graph G_f , then there is an s-t cut (A,B) in G=(V,E) for which |f|=c(A,B).

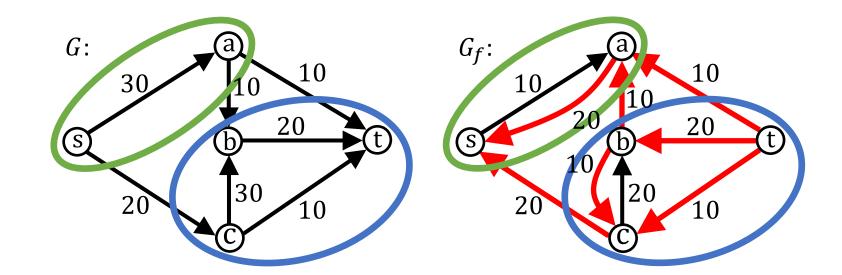
Proof: Let $A = \{v \in V : \exists s - v \text{ path in } G_f\}$ and $B = V \setminus A$. (A, B) is an s - t cut (because it partitions $V, s \in A$, and $t \in B$)



Theorem 2: if f is an s-t flow such that no s-t path exists in residual graph G_f , then there is an s-t cut (A,B) in G=(V,E) for which |f|=c(A,B).

Proof: Let $A = \{v \in V : \exists s - v \text{ path in } G_f\}$ and $B = V \setminus A$. (A, B) is an s - t cut (because it partitions $V, s \in A$, and $t \in B$)

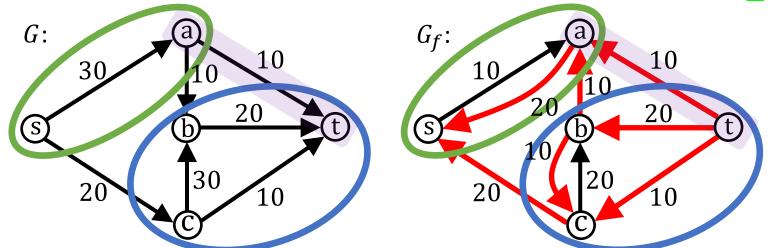
Need to compare flow across cut to capacity of cut.



Theorem 2: if f is an s-t flow such that no s-t path exists in residual graph G_f , then there is an s-t cut (A,B) in G=(V,E) for which |f|=c(A,B).

Proof: Let $A = \{v \in V : \exists s - v \text{ path in } G_f\}$ and $B = V \setminus A$. (A, B) is an s - t cut (because it partitions $V, s \in A$, and $t \in B$)

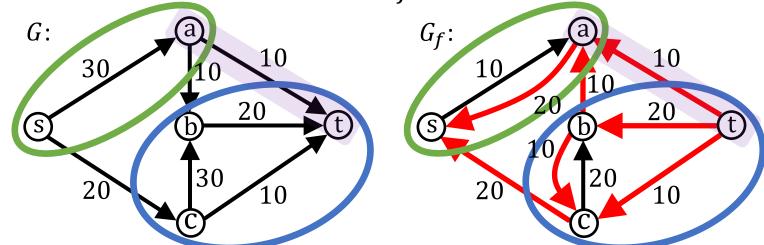
Let $e = (u, v) \in E$ (directed edge) such that $u \in A$ and $v \in B$. What can we say about f(e) related to its capacity?



Theorem 2: if f is an s-t flow such that no s-t path exists in residual graph G_f , then there is an s-t cut (A,B) in G=(V,E) for which |f|=c(A,B).

Proof: Let $A = \{v \in V : \exists s - v \text{ path in } G_f\}$ and $B = V \setminus A$. (A, B) is an s - t cut (because it partitions $V, s \in A$, and $t \in B$)

Let $e = (u, v) \in E$ (directed edge) such that $u \in A$ and $v \in B$. $f(e) = c_e$ (since $(u, v) \notin G_f$, otherwise v would be in A)

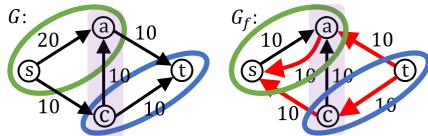


Theorem 2: if f is an s-t flow such that no s-t path exists in residual graph G_f , then there is an s-t cut (A,B) in G=(V,E) for which |f|=c(A,B).

Proof: Let $A = \{v \in V : \exists s - v \text{ path in } G_f\}$ and $B = V \setminus A$. (A, B) is an s - t cut (because it partitions $V, s \in A$, and $t \in B$)

Let $e = (u, v) \in E$ (directed edge) such that $u \in A$ and $v \in B$. $f(e) = c_e$ (since $(u, v) \notin G_f$, otherwise v would be in A)

Let $e' = (u', v') \in E$ (directed edge) such that $u' \in B$ and $v' \in A$. What can we say about f(e')?

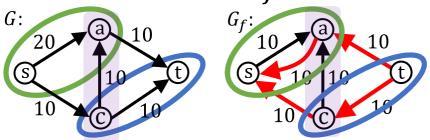


Theorem 2: if f is an s-t flow such that no s-t path exists in residual graph G_f , then there is an s-t cut (A,B) in G=(V,E) for which |f|=c(A,B).

Proof: Let $A = \{v \in V : \exists s - v \text{ path in } G_f\}$ and $B = V \setminus A$. (A, B) is an s - t cut (because it partitions $V, s \in A$, and $t \in B$)

Let $e = (u, v) \in E$ (directed edge) such that $u \in A$ and $v \in B$. $f(e) = c_e$ (since $(u, v) \notin G_f$, otherwise v would be in A)

Let $e' = (u', v') \in E$ (directed edge) such that $u' \in B$ and $v' \in A$. f(e') = 0 (since $(v', u') \notin G_f$, otherwise u' would be in A)



Theorem 2: if f is an s-t flow such that no s-t path exists in residual graph G_f , then there is an s-t cut (A,B) in G=(V,E) for which |f|=c(A,B).

Proof: Let $A = \{v \in V : \exists s - v \text{ path in } G_f\}$ and $B = V \setminus A$. (A, B) is an s - t cut (because it partitions $V, s \in A$, and $t \in B$)

Let $e = (u, v) \in E$ (directed edge) such that $u \in A$ and $v \in B$. $f(e) = c_e$ (since $(u, v) \notin G_f$, otherwise v would be in A)

Let $e' = (u', v') \in E$ (directed edge) such that $u' \in B$ and $v' \in A$. f(e') = 0 (since $(v', u') \notin G_f$, otherwise u' would be in A)

Therefore, $|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$ (Theorem 1)

Theorem 2: if f is an s-t flow such that no s-t path exists in residual graph G_f , then there is an s-t cut (A,B) in G=(V,E) for which |f|=c(A,B).

Proof: Let $A = \{v \in V : \exists s - v \text{ path in } G_f\}$ and $B = V \setminus A$. (A, B) is an s - t cut (because it partitions $V, s \in A$, and $t \in B$)

Let $e = (u, v) \in E$ (directed edge) such that $u \in A$ and $v \in B$. $f(e) = c_e$ (since $(u, v) \notin G_f$, otherwise v would be in A)

Let $e' = (u', v') \in E$ (directed edge) such that $u' \in B$ and $v' \in A$. f(e') = 0 (since $(v', u') \notin G_f$, otherwise u' would be in A)

Therefore,
$$|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$$
 (Theorem 1)
= $\sum_{e \in \text{Out}(A)} c_e - 0 = c(A, B)$

Theorem: The flow returned by the Ford-Fulkerson algorithm is a maximum flow.

Proof:

??

Corollary: Suppose G is a flow network, f is an s-t flow on G, and (A,B) is an s-t cut. Then, $|f| \le c(A,B)$. (i.e. every flow is bounded by any s-t cut)

Theorem: The flow returned by the Ford-Fulkerson algorithm is a maximum flow.

<u>Proof:</u> Since the Ford-Fulkerson algorithm finishes when no s-t paths remain in G_f , Theorem 2 says there must be an s-t cut such that the value of flow found equals the capacity of the cut.

Corollary: Suppose G is a flow network, f is an s-t flow on G, and (A,B) is an s-t cut. Then, $|f| \le c(A,B)$. (i.e. every flow is bounded by any s-t cut)

Theorem: The flow returned by the Ford-Fulkerson algorithm is a maximum flow.

<u>Proof:</u> Since the Ford-Fulkerson algorithm finishes when no s-t paths remain in G_f , Theorem 2 says there must be an s-t cut such that the value of flow found equals the capacity of the cut.

By the Corollary, there cannot be a flow with a larger value.

Corollary: Suppose G is a flow network, f is an s-t flow on G, and (A,B) is an s-t cut. Then, $|f| \le c(A,B)$. (i.e. every flow is bounded by any s-t cut)

Theorem: The flow returned by the Ford-Fulkerson algorithm is a maximum flow.

<u>Proof:</u> Since the Ford-Fulkerson algorithm finishes when no s-t paths remain in G_f , Theorem 2 says there must be an s-t cut such that the value of flow found equals the capacity of the cut.

By the Corollary, there cannot be a flow with a larger value.

Therefore, the flow found by the Ford-Fulkerson algorithm is the maximum flow.

Corollary: Suppose G is a flow network, f is an s-t flow on G, and (A,B) is an s-t cut. Then, $|f| \le c(A,B)$. (i.e. every flow is bounded by any s-t cut)

Linear Programming CSCI 532

A very structured (details to follow) way to optimize a goal by turning knobs and following certain rules.

A very structured (details to follow) way to optimize a goal by turning knobs and following certain rules.

Goal: Become as rich as possible

Knobs: Job Hunting, Education, Risk

Rules: Don't rob a bank, get enough sleep to feel human, see your kids more than once a month

A very structured (details to follow) way to optimize a goal by turning knobs and following certain rules.

Constraints

Objective

Decision Variables

Goal: Become as rich as possible

Knobs: Job Hunting, Education, Risk

Rules: Don't rob a bank, get enough sleep to feel human, see your kids more than once a month

A very structured (details to follow) way to optimize a goal by turning knobs and following certain rules.

Constraints

Objective

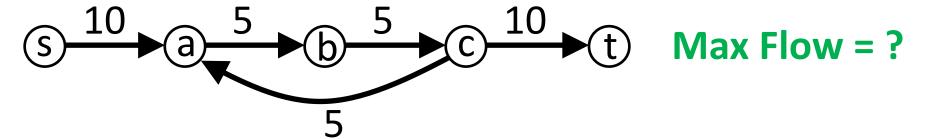
Decision Variables

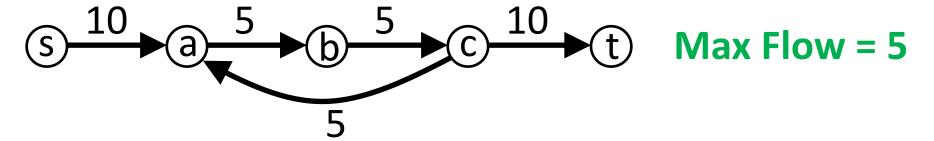
Vertex Cover:

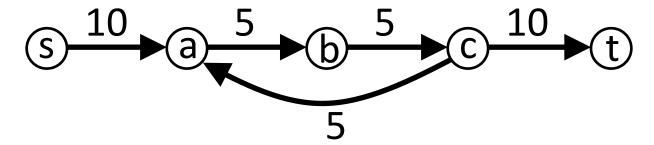
Goal: Select the smallest subset of vertices

Knobs: Select vertex 1? Select vertex 2?...

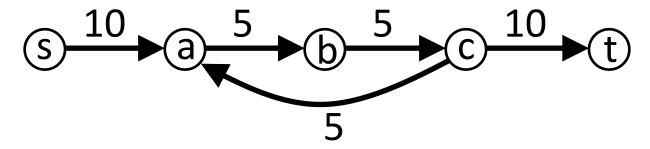
Rules: Every edge needs a selected vertex.





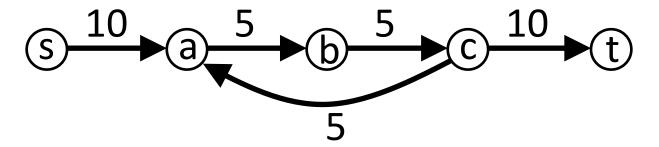


Decision Variable ("knob"). The LP solver can change these values to better optimize the goal.



 $x_{sa} = \text{Amount of flow on edge (s,a)}$

Decision Variable ("knob"). The LP solver can change these values to better optimize the goal.



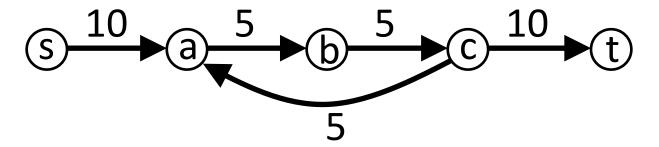
```
x_{sa} = \text{Amount of flow on edge (s,a)} \quad x_{ct} =
```

$$x_{ab}$$
 = Amount of flow on edge (a,b)

$$x_{bc}$$
 = Amount of flow on edge (b,c)

$$x_{ct}$$
 = Amount of flow on edge (c,t)

$$x_{ca}$$
 = Amount of flow on edge (c,a)



$$x_{sa} = \text{Amount of flow on edge (s,a)}$$

$$x_{ab} = \text{Amount of flow on edge (a,b)}$$

$$x_{bc}$$
 = Amount of flow on edge (b,c)

$$c_{sa}$$
 = Capacity of edge (s,a)

$$c_{ab}$$
 = Capacity of edge (a,b)

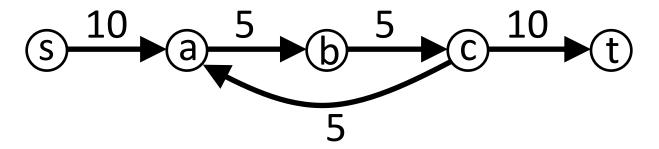
$$c_{bc}$$
 = Capacity of edge (b,c)

$$x_{ct}$$
 = Amount of flow on edge (c,t)

$$x_{ca} = \text{Amount of flow on edge (c,a)}$$

$$c_{ct}$$
 = Capacity of edge (c,t)

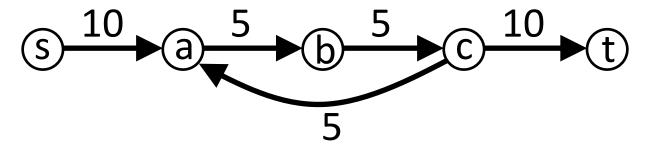
$$c_{ca}$$
 = Capacity of edge (c,a)



```
x_{sa} = Amount of flow on edge (s,a) x_{ct} = Amount of flow on edge (c,t) x_{ab} = Amount of flow on edge (a,b) x_{ca} = Amount of flow on edge (c,a) x_{bc} = Amount of flow on edge (b,c) x_{ca} = Capacity of edge (s,a) x_{ct} = Capacity of edge (c,t) x_{ca} = Capacity of edge (a,b) x_{ca} = Capacity of edge (c,a) x_{ca} = Capacity of edge (b,c)
```

Not decision variables!!

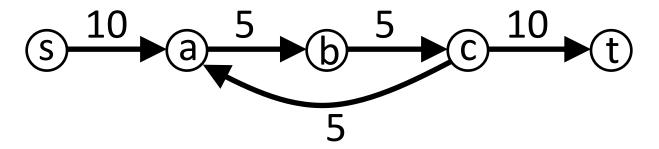
The solver is not allowed to modify capacities to influence the solution



```
x_{sa} = Amount of flow on edge (s,a) x_{ct} = Amount of flow on edge (c,t) x_{ab} = Amount of flow on edge (a,b) x_{ca} = Amount of flow on edge (c,a) x_{bc} = Amount of flow on edge (b,c)
```

Objective: ???

Objective ("goal"). The LP solver will do whatever it can to make this as good as possible.



 $x_{sa} = \text{Amount of flow on edge (s,a)}$

 x_{ct} = Amount of flow on edge (c,t)

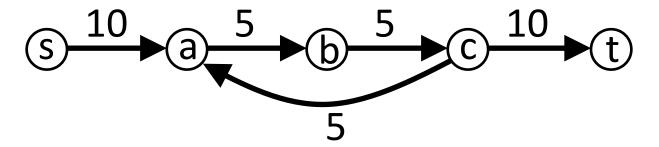
 x_{ab} = Amount of flow on edge (a,b)

 $x_{ca} =$ Amount of flow on edge (c,a)

 x_{bc} = Amount of flow on edge (b,c)

Objective: $\max x_{ct}$

Objective ("goal"). The LP solver will do whatever it can to make this as good as possible.



```
x_{sa} = \text{Amount of flow on edge (s,a)}
```

$$x_{ab}$$
 = Amount of flow on edge (a,b)

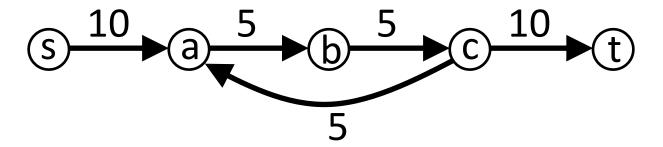
$$x_{bc}$$
 = Amount of flow on edge (b,c)

Objective: $\max x_{ct}$

Good to go?

 x_{ct} = Amount of flow on edge (c,t)

 x_{ca} = Amount of flow on edge (c,a)



```
x_{sa} = \text{Amount of flow on edge (s,a)} \quad x_{ct}
```

$$x_{ct}$$
 = Amount of flow on edge (c,t)

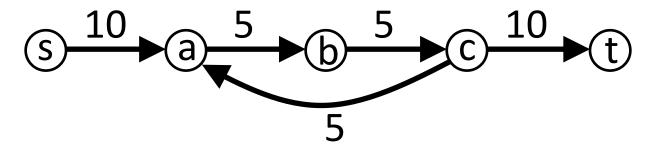
$$x_{ab}$$
 = Amount of flow on edge (a,b)

$$x_{ca}$$
 = Amount of flow on edge (c,a)

 x_{bc} = Amount of flow on edge (b,c)

Objective: $\max x_{ct}$

Good to go? No! We need rules or else the solver is going to become not helpful



```
x_{sa} = \text{Amount of flow on edge (s,a)}
```

$$x_{ab}$$
 = Amount of flow on edge (a,b)

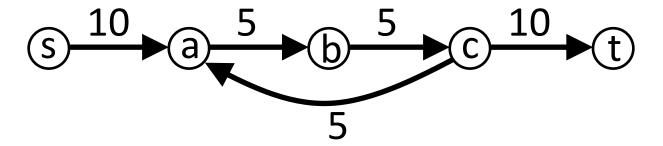
$$x_{bc}$$
 = Amount of flow on edge (b,c)

Objective: $\max x_{ct}$

Subject to:

 x_{ct} = Amount of flow on edge (c,t)

 x_{ca} = Amount of flow on edge (c,a)



$$x_{sa} = \text{Amount of flow on edge (s,a)}$$

$$x_{ct} = \text{Amount of flow on edge (c,t)}$$

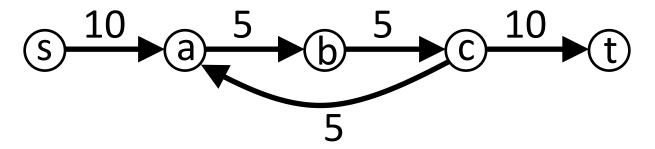
$$x_{ab}$$
 = Amount of flow on edge (a,b)

$$x_{ca} = \text{Amount of flow on edge (c,a)}$$

 x_{bc} = Amount of flow on edge (b,c)

Objective: $\max x_{ct}$

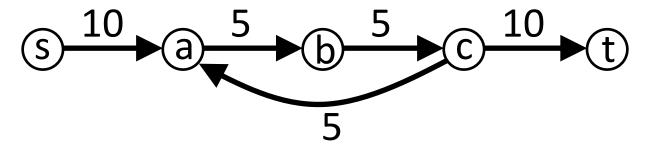
Subject to: $x_{sa} \le 10$



```
x_{sa} = Amount of flow on edge (s,a) x_{ct} = Amount of flow on edge (c,t) x_{ab} = Amount of flow on edge (a,b) x_{ca} = Amount of flow on edge (c,a) x_{bc} = Amount of flow on edge (b,c)
```

Objective: $\max x_{ct}$

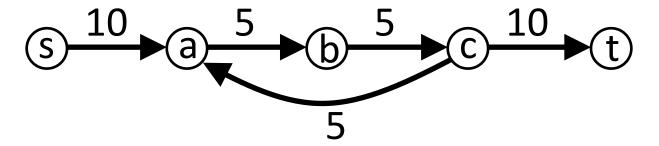
Subject to: $x_{sa} \le 10$, $x_{ab} \le 5$, $x_{bc} \le 5$, $x_{ct} \le 10$, $x_{ca} \le 5$



$$x_{sa} =$$
 Amount of flow on edge (s,a) $x_{ct} =$ Amount of flow on edge (c,t) $x_{ab} =$ Amount of flow on edge (a,b) $x_{ca} =$ Amount of flow on edge (c,a) $x_{bc} =$ Amount of flow on edge (b,c)

Objective:
$$\max x_{ct}$$

Subject to:
$$x_{sa} \le 10$$
, $x_{ab} \le 5$, $x_{bc} \le 5$, $x_{ct} \le 10$, $x_{ca} \le 5$ $x_{sa} + x_{ca} - x_{ab} = 0$

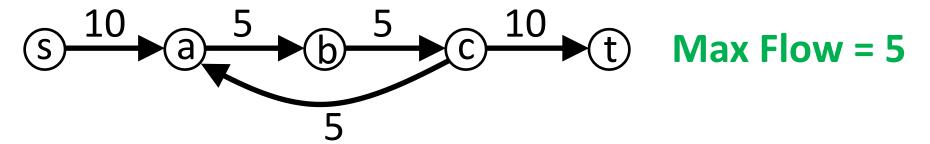


$$x_{sa} =$$
 Amount of flow on edge (s,a) $x_{ct} =$ Amount of flow on edge (c,t) $x_{ab} =$ Amount of flow on edge (a,b) $x_{ca} =$ Amount of flow on edge (c,a)

 x_{bc} = Amount of flow on edge (b,c)

Objective: $\max x_{ct}$

Subject to:
$$x_{sa} \le 10$$
, $x_{ab} \le 5$, $x_{bc} \le 5$, $x_{ct} \le 10$, $x_{ca} \le 5$ $x_{sa} + x_{ca} - x_{ab} = 0$, $x_{ab} - x_{bc} = 0$, $x_{bc} - x_{ca} - x_{ct} = 0$



$$x_{sa} = \text{Amount of flow on edge (s,a)}$$

$$x_{ct}$$
 = Amount of flow on edge (c,t)

$$x_{ab} = \text{Amount of flow on edge (a,b)}$$

$$x_{ca} =$$
 Amount of flow on edge (c,a)

 x_{bc} = Amount of flow on edge (b,c)

Objective: $\max x_{ct}$

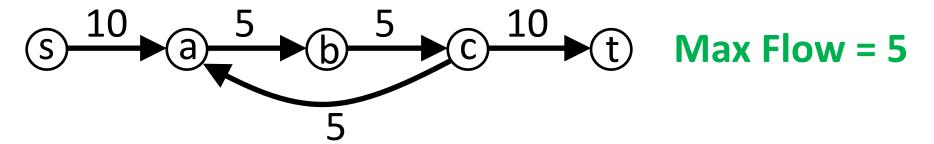
Subject to:
$$x_{-}$$

Subject to:
$$x_{sa} \le 10$$
, $x_{ab} \le 5$, $x_{bc} \le 5$, $x_{ct} \le 10$, $x_{ca} \le 5$ $x_{sa} + x_{ca} - x_{ab} = 0$, $x_{ab} - x_{bc} = 0$, $x_{bc} - x_{ca} - x_{ct} = 0$

$$x_{sa} + x_{ca} - x_{ab} = 0,$$

$$x_{ab} - x_{bc} = 0$$
, $x_{bc} - x_{ca} - x_{ct} = 0$

Any problems with this?



$$x_{sa} = \text{Amount of flow on edge (s,a)}$$

$$x_{ct}$$
 = Amount of flow on edge (c,t)

$$x_{ab}$$
 = Amount of flow on edge (a,b)

 x_{ca} = Amount of flow on edge (c,a)

 x_{bc} = Amount of flow on edge (b,c)

Objective: $\max x_{ct}$

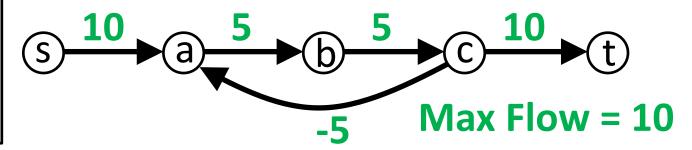
Subject to:
$$x_{sa} \le 10$$
, $x_{ab} \le 5$, $x_{bc} \le 5$, $x_{ct} \le 10$, $x_{ca} \le 5$

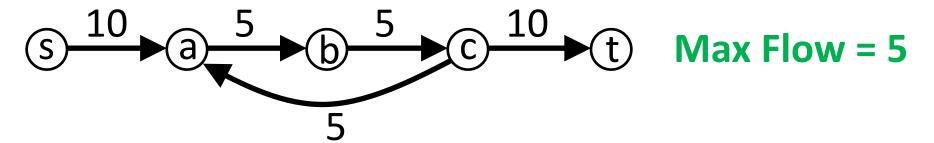
$$x_{bc} \le 5$$
, $x_{ct} \le 10$, $x_{ca} \le 5$

$$x_{sa} + x_{ca} - x_{ab} = 0,$$

$$x_{sa} + x_{ca} - x_{ab} = 0$$
, $x_{ab} - x_{bc} = 0$, $x_{bc} - x_{ca} - x_{ct} = 0$

Any problems with this? Yes! The solver will make some flow values negative to increase the max flow.





Objective:

 $x_{sa} = Am$ $x_{ab} = Am$ $x_{bc} = Am$ Our responsibility is to model the problem well enough that the solver has no choice but to give us the correct answer to the problem.

dge (c,a)

 $x_{ab} \le 5$, $x_{bc} \le 5$, $x_{ct} \le 10$, $x_{ca} \le 5$ Subject to:

Unknown **Problem**

Linear **Program**



LP Solver

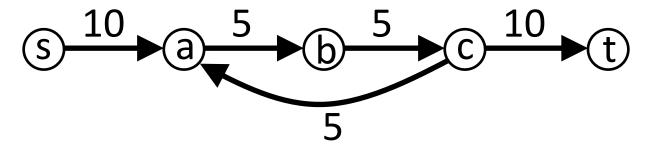


Optimal LP Var Values

Optimal Problem

Solution

|dge (c,t)



$$x_{sa} =$$
 Amount of flow on edge (s,a) $x_{ct} =$ Amount of flow on edge (c,t) $x_{ab} =$ Amount of flow on edge (a,b) $x_{ca} =$ Amount of flow on edge (c,a) $x_{bc} =$ Amount of flow on edge (b,c)

Objective: $\max x_{ct}$

Subject to:
$$x_{sa} \le 10$$
, $x_{ab} \le 5$, $x_{bc} \le 5$, $x_{ct} \le 10$, $x_{ca} \le 5$ $x_{sa} + x_{ca} - x_{ab} = 0$, $x_{ab} - x_{bc} = 0$, $x_{bc} - x_{ca} - x_{ct} = 0$ $x_{sa}, x_{ab}, x_{bc}, x_{ct}, x_{ca} \ge 0$

 $x_e = \text{Amount of flow on edge } e$.

Objective: $\max \sum_{e \in \text{out}(s)} x_e$

Subject to: $x_e \leq \text{capacity}_e, \forall e \in E$

 $\sum_{e \in \mathsf{in}(v)} x_e - \sum_{e \in \mathsf{out}(v)} x_e = 0, \forall v \in V \setminus \{s, t\}$

 $x_e \ge 0$, $\forall e \in E$

Decision Variables:

- Real numbers = solvable in polynomial time (called LP).
- Integers = not (yet?) solvable in polynomial time
 (called integer linear program ILP).

 $x_e =$ Amount of flow on edge e.

Objective: $\max \sum_{e \in \text{out}(s)} x_e$

Subject to: $x_e \leq \text{capacity}_e, \forall e \in E$

$$\sum_{e \in \mathsf{in}(v)} x_e - \sum_{e \in \mathsf{out}(v)} x_e = 0, \forall v \in V \setminus \{s, t\}$$

 $x_e \ge 0, \forall e \in E$

Decision Variables:

- Real numbers = solvable in polynomial time (called LP).
- Integers = not (yet?) solvable in polynomial time (called integer linear program ILP).

$$x_e =$$
 Amount of flow on edge e .

Objective: $\max \sum_{e \in \text{out}(s)} x_e$

Subject to: $x_e \leq \text{capacity}_e, \forall e \in E$

$$\sum_{e \in \mathsf{in}(v)} x_e - \sum_{e \in \mathsf{out}(v)} x_e = 0, \forall v \in V \setminus \{s, t\}$$

$$x_e \ge 0$$
, $\forall e \in E$

Objective:

- Can be minimization or maximization.
- Must be linear combinations of variables x_i (e.g. $a_1x_1 + \cdots + a_nx_n$ for constants a_i , not $a_ix_1x_2$).

Decision Variables:

- Real numbers = solvable in polynomial time (called LP).
- Integers = not (yet?) solvable in polynomial time (called integer linear program – ILP).

$$x_e =$$
Amount of flow on edge e .

Objective:
$$\max \sum_{e \in \mathsf{out}(s)} x_e$$

Subject to:
$$x_e \leq \text{capacity}_e, \forall e \in E$$

$$x_e \ge 0, \forall e \in E$$

Objective:

- Can be minimization or maximization.
- Must be linear combinations of variables x_i (e.g. $a_1x_1 + \cdots + a_nx_n$ for constants a_i , not $a_i x_1 x_2$).

$$\sum_{e \in \text{in}(v)}^{\infty} x_e - \sum_{e \in \text{out}(v)}^{\infty} x_e = 0, \forall v \in V \setminus \{s, t\}$$
$$x_e \ge 0, \forall e \in E$$

Constraints:

- Can be \leq , \geq , =.
- Must be linear combinations of variables.