Flow Networks
CSCI 532



Maximum Matching

(A) Build Flow Network:

1. Starting at the root, connect
every other generation with
edge from s.

2. Connect other generations
with edge to t.

3. Make edges go from s-
connected node to t-
connected node.

4. Make all edge capacities 1.
(B) Find Max Flow.

(C) If edge carries flow, select it.
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Does this work?

No, nothing forces edges with capacity 2 to host 2 units, so
you can make some host 1 and select neighboring edges.
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Does this work?

No, saturating a node prevents it from being used in
other edges, but does not prevent other nodes from
deploying neighboring edges.
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Maximum Matching

Does this work?

Yes, but it requires the graph to be bipartite (vertices can be partitioned into
disjoint sets so that all edges cross between the sets). Are trees bipartite?
YES (otherwise there would be a cycle). Are bipartite graphs always trees? NO.



Ford-Fulkerson
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Max-Flow(G) augment(f, P)
f(e) = 0 for all s '-——WZOtt1eneck(P,f)
while s-t path in Need to show: ach edge (u, v) in P
P =simple s-t 1—Validity " (u, v) 1s a back edge
f’= augment (f, 7P oo fClv, w) -=b
f =f’ S - |se
G = Gy 3. Finds max flow.| f(cu, v)) += b

return f return f



Optimality

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof: ...
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What can we say about the maximum flow on this network?

It’s not larger than 3.



Optima | Ity S — t cut: Segmentation of vertices
/ (a cut) such that s and t are in
different sets.

What can we say about the maximum flow on this network?

It’s not larger than 3.



Optima | Ity S — t cut: Segmentation of vertices
/ (a cut) such that s and t are in
different sets.

The capacity of a cut is the sum of the capacities leaving s’s set.



S — t cuts

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(A4, B), is the sum of capacities of all edges out of A.

c(A,B) =8
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Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(4, B), is the sum of capacities of all edges out of A.

Invalid cut! Every vertex needs
to be in exactly one of the sets!




S — t cuts

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(4, B), is the sum of capacities of all edges out of A.
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S — t cuts

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(4, B), is the sum of capacities of all edges out of A.

Invalids —tcut! sand ¢
need to be in different sets!
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Optima | Ity S — t cut: Segmentation of vertices
/ (a cut) such that s and t are in
different sets.

Game Plan:
1. Show that value of every flow is < capacity of every cut.

>



Optima | Ity S — t cut: Segmentation of vertices
/ (a cut) such that s and t are in
different sets.

Game Plan:
1. Show that value of every flow is < capacity of every cut.

— >



Optima | Ity S — t cut: Segmentation of vertices
/ (a cut) such that s and t are in
different sets.

Game Plan:
1. Show that value of every flow is < capacity of every cut.

— ——"2

—
0 fi fafs G G C G



Optima | Ity S — t cut: Segmentation of vertices
/ (a cut) such that s and t are in
different sets.
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Game Plan:
1. Show that value of every flow is < capacity of every cut.
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Optima | Ity S — t cut: Segmentation of vertices
/ (a cut) such that s and t are in
different sets.
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Game Plan:
1. Show that value of every flow is < capacity of every cut.
| Cs If we find some flow whose value
| i > equals the capacity of some cut,

fa it must be the optimal flow.



Optima | Ity S — t cut: Segmentation of vertices
/ (a cut) such that s and t are in
different sets.

Game Plan:
1. Show that value of every flow is < capacity of every cut.
2. Given a flow where there are no s — t paths left in the residual
graph, there is a specific cut whose capacity = flow value.



Optima | Ity S — t cut: Segmentation of vertices
/ (a cut) such that s and t are in
different sets.

Game Plan:
1. Show that value of every flow is < capacity of every cut.
2. Given a flow where there are no s — t paths left in the residual
graph, there is a specific cut whose capacity = flow value.

= The algorithm is optimal



Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then; |f| = ZeEOUt(A) f(e) T Zeein(A) f(e)

Proof: \

Edges that enter the set A

Edges that leave the set A



This relates arbitrary s — t flows
to arbitrary s — t cuts

Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then, |f]| = Zeeout(,q) fle) — Zeein(A) f(e).

Proof: \

Edges that enter the set A

Edges that leave the set A



Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then/ |f| — ZeEOUt(A) f(e) T Zeein(A) f(e)

Proof:

11 = 40
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Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) fle) — z:eeir\(A) f(e). |f| = 40

Proof: 2eeout(a) f(€) =50
2ecina f(€) = 10




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, [f| = Zeeout(A) fle) — Zeein(A) f(e).
Proof: Let £ () = Lecoutey /() and F7(1) = Tycine f(€)
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Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then/ |f| — ZeEOUt(A) f(e) T Zeein(A) f(e)

Proof: Let f°“*(v) = X coutw) f(€) and f(v) = 2iecinay [ (€).
Then, Vv € A,v # s, fO% (V) — f*(v) =?
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Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) fle) — Zeein(A) f(e).

Proof: Let fout(v) = Zeeout(v)f(e) and fin(v) = Zeein(v)f(e)'

Then, Vv € A, v # s, fO% (v) — f™™(v) = 0 (by conservation of flow).
By definition, |f| = f°%*(s).

= If] = f¥(s) = F"(s) (since f"(s) = 0)




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) fle) — Zeein(A) f(e).

Proof: Let f°* (v) = 2ecoutw) f () and ) = Zeein(v)f(e)'
Then, Vv € A, v # s, fO% (v) — f™™(v) = 0 (by conservation of flow).
By definition, |f| = f°%*(s).

= |f] = foUt(s) — Fin(s) (since f(s) = 0)

= |f] = Xpea( fO (V) — f™(v)) (Only # 0 when v = s).




Optimality
Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then/ |f| — ZeEOUt(A) f(e) T Zeein(A) f(e)

Proof: Let £ (V) = X coutw) f(€) and f(v) = Yecinw) £ (-
Then, |f] = Xyea( fO* (W) — f™(v)) (Only # 0 when v = s).




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) f(e) — Zeein(A) f(e).

Proof: Let f % (v) = out(v)f(e) and f"(v) = Zeein(v)f(e)'
Then, |f| = X, ea( fO (v (1)) (Only # 0 when v = s).

N\

Need to translate vertices in 4
into edges leaving A.




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) f(e) — Zeein(A) f(e).

Proof: Let f°* (V) = X coutw) f(€) and f7(v) = 2iecinay [ (€).
Then, |f| = Xpea( fO (W) — f™(v)) (Only # 0 when v = s).
Ve = (u, U) e E: 1. u € A,v € A (edge is inside A)
2. U€& A, ve&A (edge is outside A)
3. Uu€ A, v & A (edge leaves A)
4. u & A,V € A (edge enters A)




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) fle) — Zeein(A) f(e).

Proof: Let f°“' (V) = X,eoutw) f(€) and (V) = X cinw) (€)-
Then, [f] = Syea( f2% (W) — F2(2)) (Only # 0 when v = ).
Ve = (u,v) € E: u€AveEA- f(e)cancelsout. (Insomev € A

U & A v & A (edgeis outside A) and out another)
U € A, v & A (edge leaves A)
U & AV E A (edge enters A)
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Optimality
Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then, |f]| = Zeeout(A) fle) — Zeein(A) f(e).
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Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
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Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) fle) — Zeein(A) f(e).

Proof: Let £ (1) = Ty coutisy £(€) aNd F7(0) = Fpeingy F(€).
Then, |f| = Zyea(f*(v) — f()) (Only # 0 when v = s).
Ve = (u,v) EE: d—uecAvecA—F(c)eancelsout

2—u T A v A —Flerdeesnotappearatall
3. u€A,vé&A- f(e)addstothe sum.

4. u & A,v € A - f(e) subtracts from the sum.
= Yvea(fO4 (W) — f(v))
= Yecout) f(€) = Xcinca) F(e)




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) fle) — Zeein(A) f(e).

Proof: Let £ (1) = Ty coutisy £(€) aNd F7(0) = Fpeingy F(€).
Then, |f| = Zyea(f*(v) — f()) (Only # 0 when v = s).
Ve = (u,v) EE: d—uecAvecA—F(c)eancelsout

2—u T A v A —Flerdeesnotappearatall
3. u€A,vé&A- f(e)addstothe sum.

4. u & A,v € A - f(e) subtracts from the sum.
= Ypea(fOU @) = f (1))
= Zeeout(A) f(e) o Zeein(A) f(e)
= |f| = ZeeOU'E(A) f(e) o Zeein(A) f(e)




This relates arbitrary s — t flows

Optl ma | |ty to arbitrary s — t cuts

Theorem 1: Let G be a flow network, (A, B) beans —t cut,and f beans —t
flow. Then, |f]| = Zeeout(A)f(e) — Zeein(A)f(e).




This relates arbitrary s — t flows
to arbitrary s — t cuts

Optimality

Theorem 1: Let G be a flow network, (A, B) beans —t cut,and f beans —t
flow. Then, |f]| = Zeeout(A)f(e) — Zeein(A)f(e)'

Corollary: Suppose G is a flow network, f isans — t flow on G, and (4, B) is an
s —tcut. Then, |f| < c(4, B). (i.e. every flow is bounded by any s — t cut)

Proof:

?



Optimality

Theorem 1: Let G be a flow network, (A, B) beans —t cut,and f beans —t
flow. Then, |f]| = ZeEOut(A)f(e) — Zeein(A)f(e)'

Corollary: Suppose G is a flow network, f isans — t flow on G, and (4, B) is an
s —tcut. Then, |f| < c(4, B). (i.e. every flow is bounded by any s — t cut)

Proof:

|f| — ZeeOUt(A) f(e) — Zeein(A) f(e)




Optimality

Theorem 1: Let G be a flow network, (A, B) beans —t cut,and f beans —t
flow. Then, |f]| = ZeEOut(A)f(e) — Zeein(A)f(e)'

Corollary: Suppose G is a flow network, f isans — t flow on G, and (4, B) is an
s —tcut. Then, |f| < c(4, B). (i.e. every flow is bounded by any s — t cut)

Proof:
|f| — ZeeOUt(A) f(e) — Zeein(A) f(e)
< ZeEOUt(A)f(e)




Optimality

Theorem 1: Let G be a flow network, (A, B) beans —t cut,and f beans —t
flow. Then, |f]| = ZeEOut(A)f(e) — Zeein(A)f(e)'

Corollary: Suppose G is a flow network, f isans — t flow on G, and (4, B) is an
s —tcut. Then, |f| < c(4, B). (i.e. every flow is bounded by any s — t cut)

Proof:
|f| — ZeEOUt(A) f(e) _ ZeEiﬂ(A) f(e)
= ZeEOut(A)f(e)
< Lecout(a) Ce = €(4, B)




Optimality
Theorem 1: Let G be a flow network, (A, B) beans —t cut,and f beans —t

flow. Then, |f]| = ZeEOut(A)f(e) — Zeein(A)f(e)'

Corollary: Suppose G is a flow network, f isans — t flow on G, and (4, B) is an
s —tcut. Then, |f| < c(4, B). (i.e. every flow is bounded by any s — t cut)

Proof:
|f| — ZeEOUt(A) f(e) _ ZeEiﬂ(A) f(e)
Sz:eeou’((A)f(e) e fird flow f and
< Zeeout(A) Co = C(A,B) we Tind some flow f an

some cut (4, B) such that
If| = c(A,B), then fis a
maximum flow.




Optima | Ity S — t cut: Segmentation of vertices
/ (a cut) such that s and t are in
different sets.

Game Plan:
1. Show that value of every flow is < capacity of every cut.
2. Given a flow where there are no s — t paths left in the residual
graph, there is a specific cut whose capacity = flow value.
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