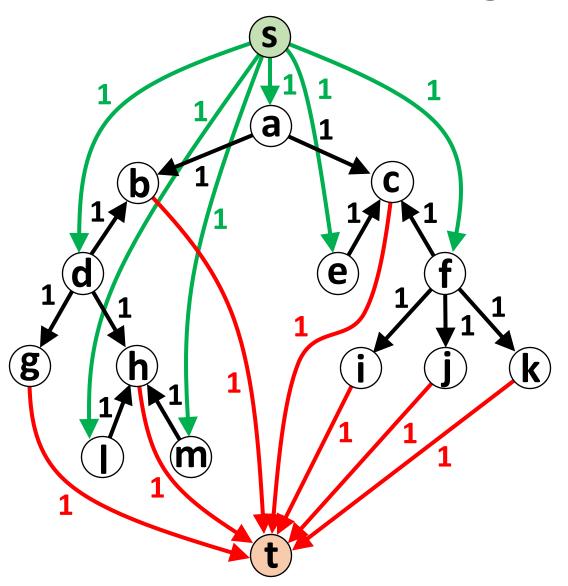
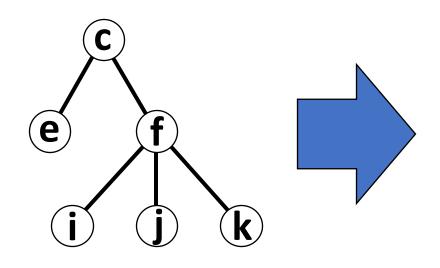
Flow Networks CSCI 532



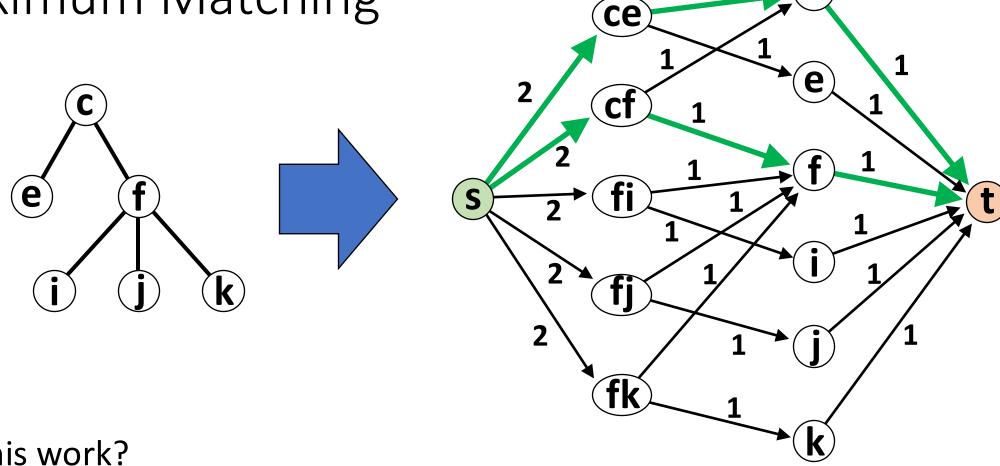
(A) Build Flow Network:

- 1. Starting at the root, connect every other generation with edge from **s**.
- 2. Connect other generations with edge to **t**.
- 3. Make edges go from **s**-connected node to **t**-connected node.
- 4. Make all edge capacities 1.
- (B) Find Max Flow.
- (C) If edge carries flow, select it.



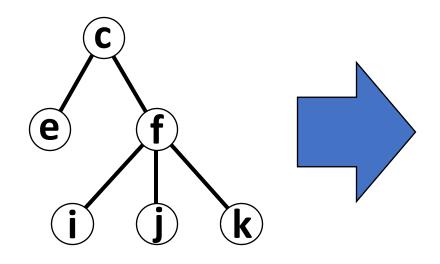
(ce)

Does this work?

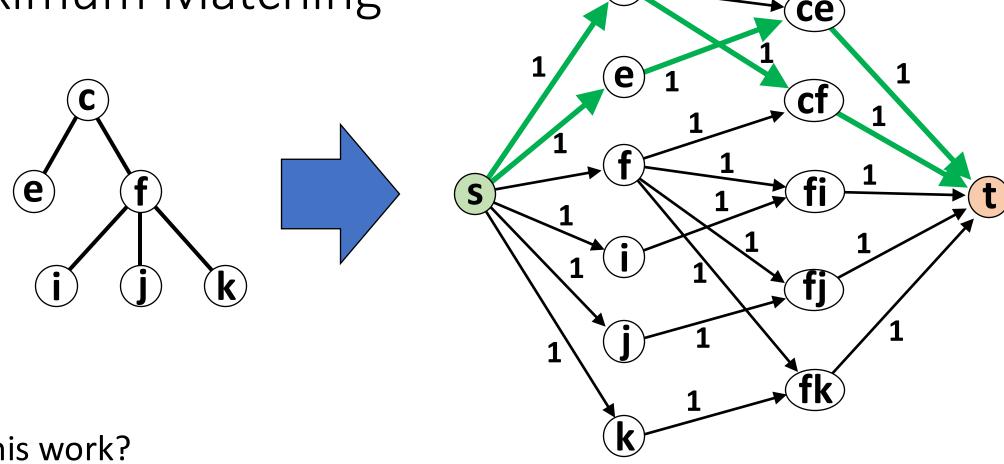


Does this work?

No, nothing forces edges with capacity 2 to host 2 units, so you can make some host 1 and select neighboring edges.

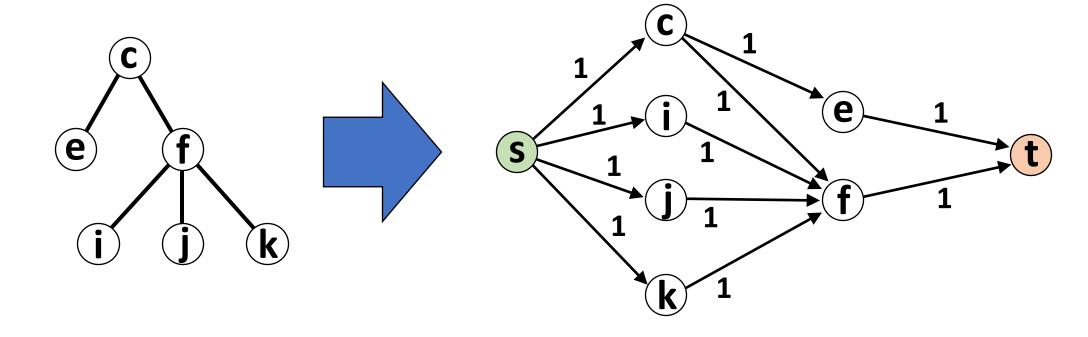


Does this work?

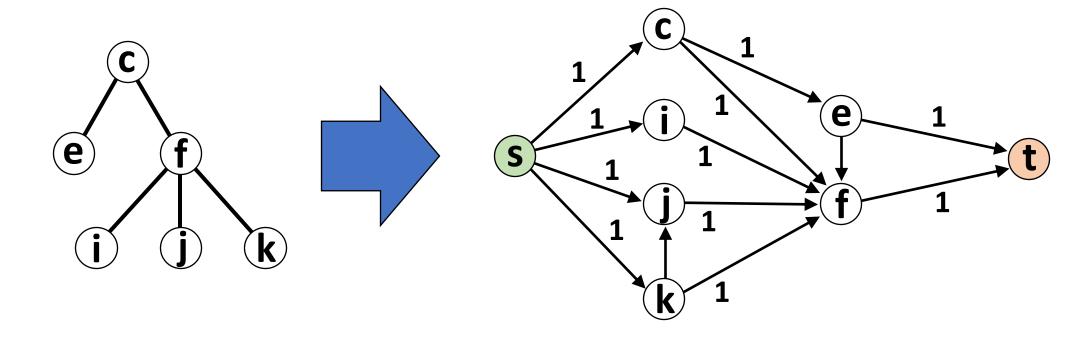


Does this work?

No, saturating a node prevents it from being used in other edges, but does not prevent other nodes from deploying neighboring edges.

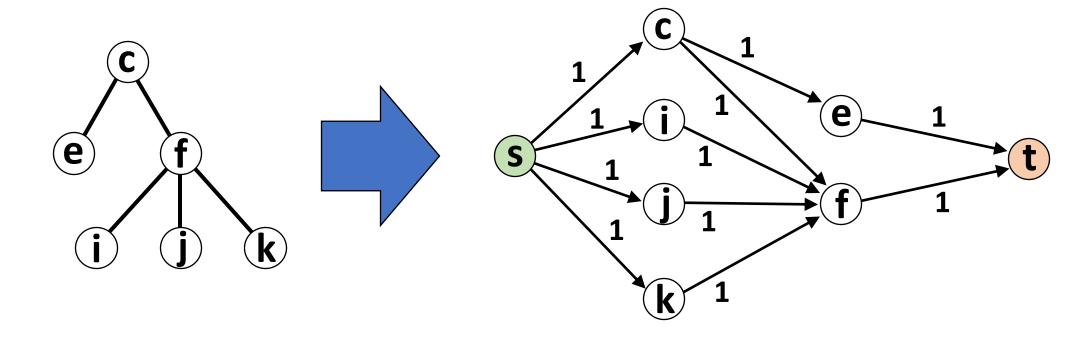


Does this work?



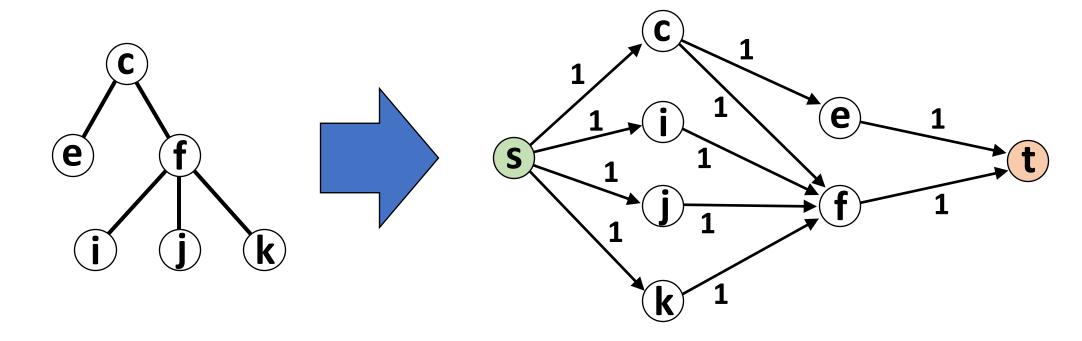
Does this work?

Yes, but it requires the graph to be bipartite (vertices can be partitioned into disjoint sets so that all edges cross between the sets).



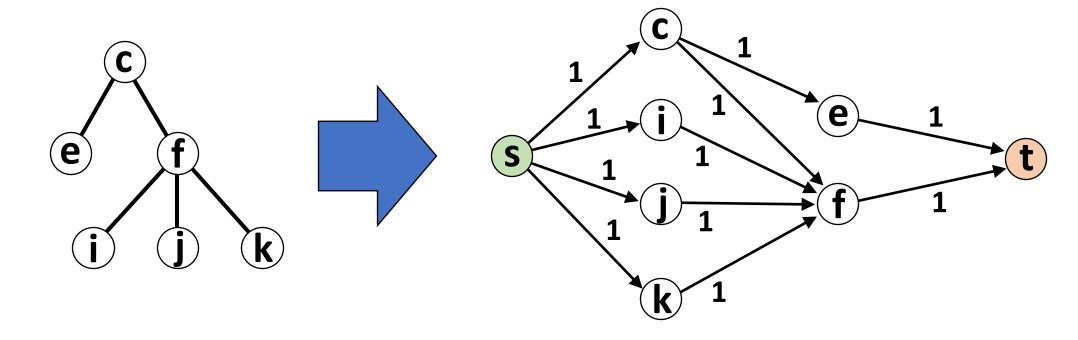
Does this work?

Yes, but it requires the graph to be bipartite (vertices can be partitioned into disjoint sets so that all edges cross between the sets). Are trees bipartite?



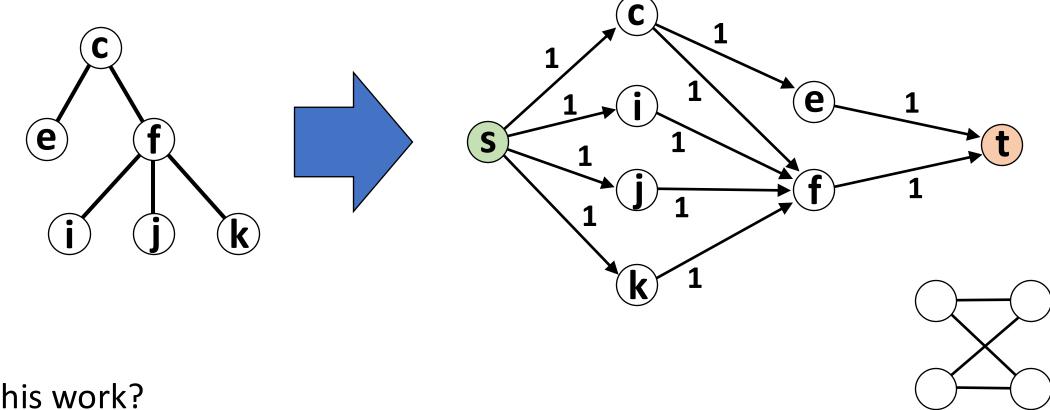
Does this work?

Yes, but it requires the graph to be bipartite (vertices can be partitioned into disjoint sets so that all edges cross between the sets). Are trees bipartite? YES (otherwise there would be a cycle).



Does this work?

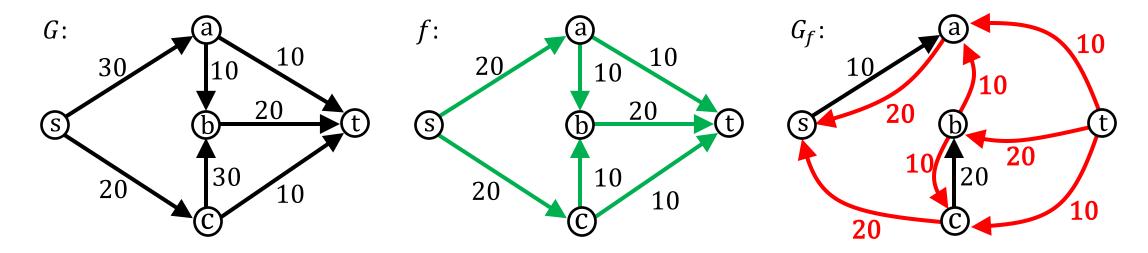
Yes, but it requires the graph to be bipartite (vertices can be partitioned into disjoint sets so that all edges cross between the sets). Are trees bipartite? YES (otherwise there would be a cycle). Are bipartite graphs always trees?



Does this work?

Yes, but it requires the graph to be bipartite (vertices can be partitioned into disjoint sets so that all edges cross between the sets). Are trees bipartite? YES (otherwise there would be a cycle). Are bipartite graphs always trees? NO.

Ford-Fulkerson



Max-Flow(G) f(e) = 0 for all while s-t path in Need to show: P = simple s-tf'= augment(f, f = f' $G_f = G_f$ return f

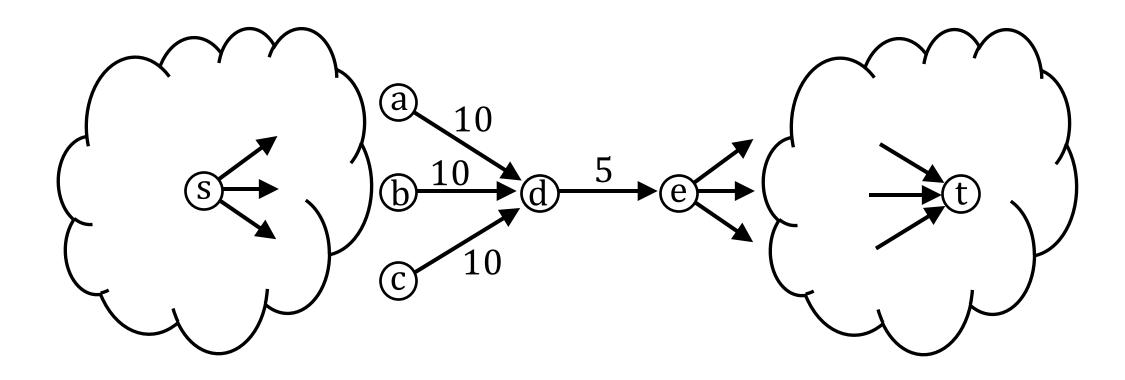
3. Finds max flow.

bottleneck(P,f) each edge (u, v) in P (u, v) is a back edge f((v, u)) = bse f((u, v)) += b

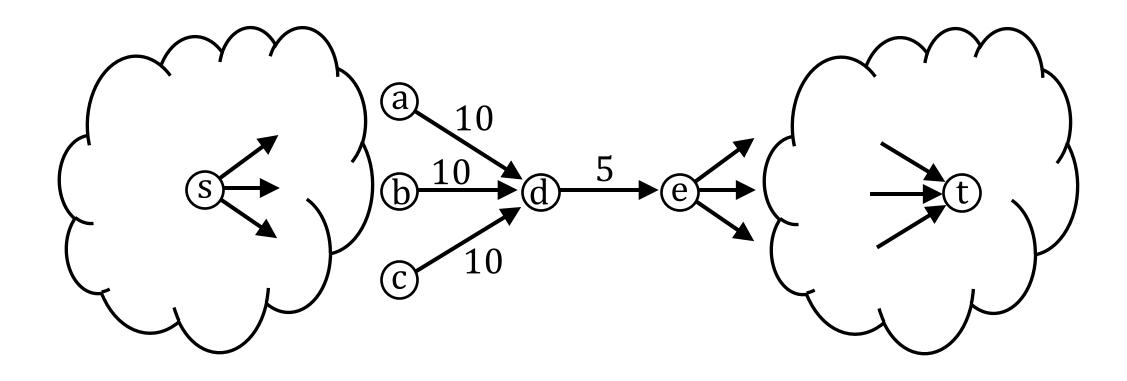
augment(f, P)

<u>Theorem:</u> The flow returned by the Ford-Fulkerson algorithm is a maximum flow.

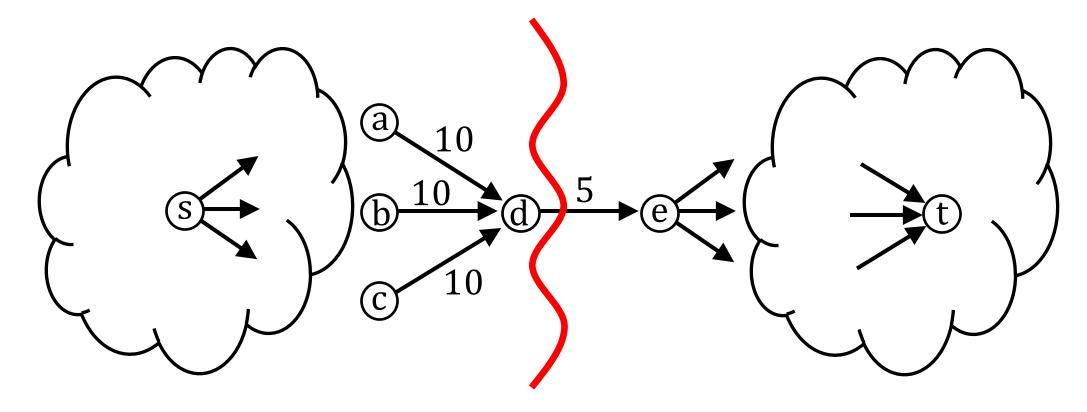
Proof: ...



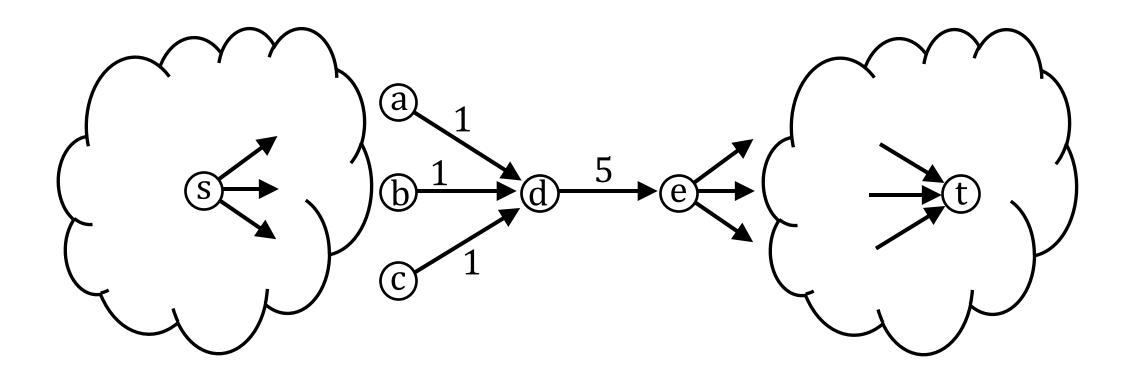
What can we say about the maximum flow on this network?



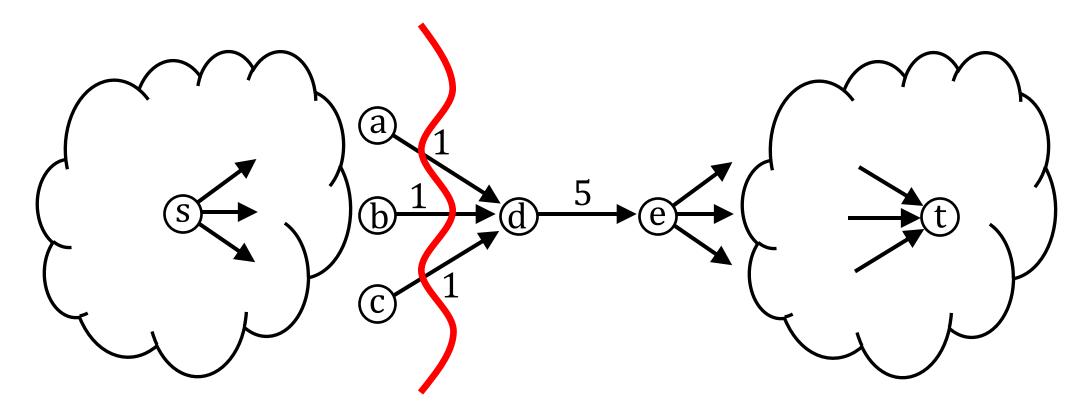
What can we say about the maximum flow on this network? It's not larger than 5.



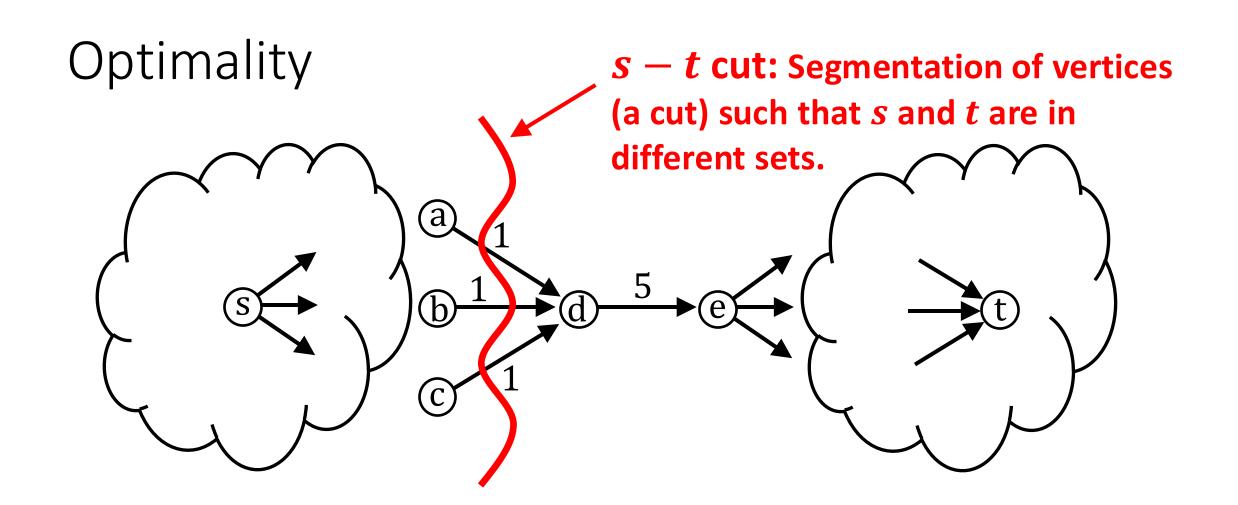
What can we say about the maximum flow on this network? It's not larger than 5.



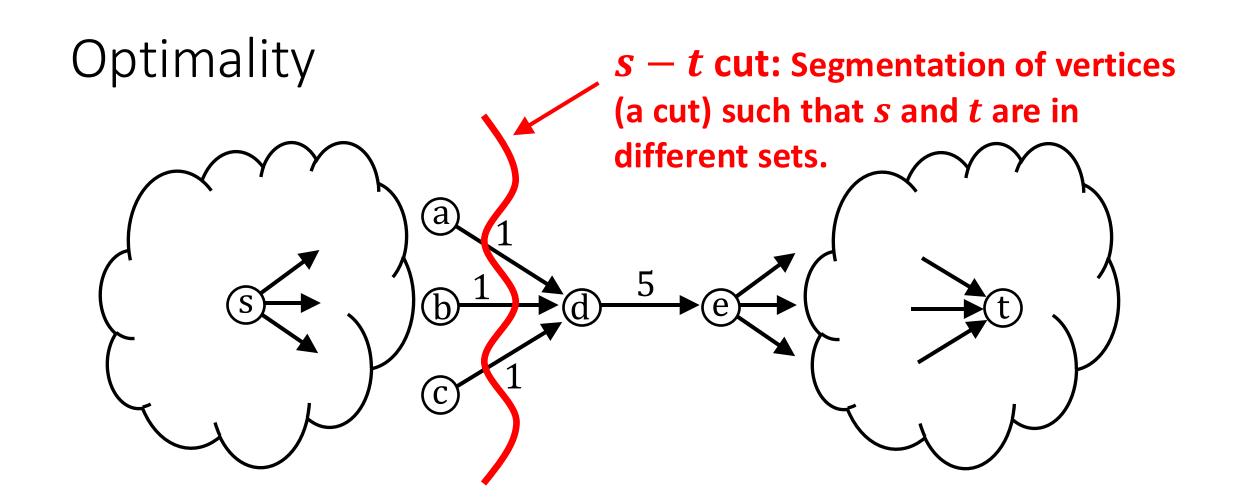
What can we say about the maximum flow on this network?



What can we say about the maximum flow on this network? It's not larger than 3.

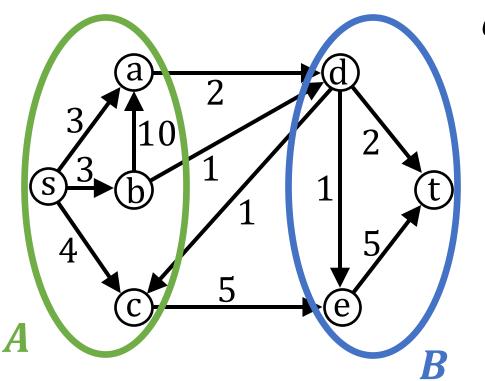


What can we say about the maximum flow on this network? It's not larger than 3.



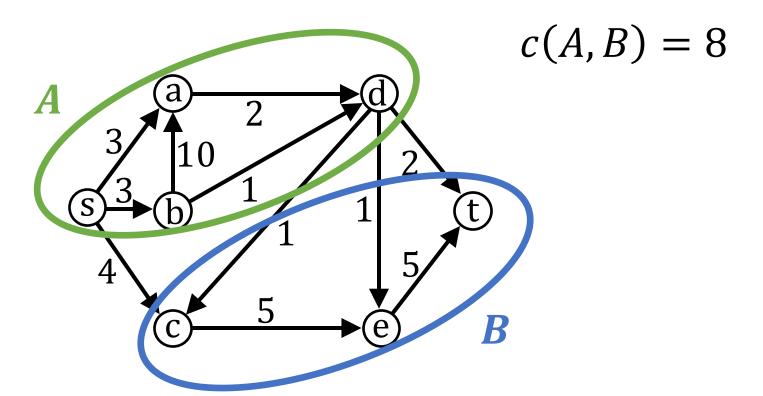
The capacity of a cut is the sum of the capacities leaving s's set.

<u>Definitions:</u> Suppose G is a flow network and nodes in G are divided into two sets, A and B, such that $s \in A$ and $t \in B$. We call (A, B) an s - t cut. The capacity of the cut, c(A, B), is the sum of capacities of all edges out of A.

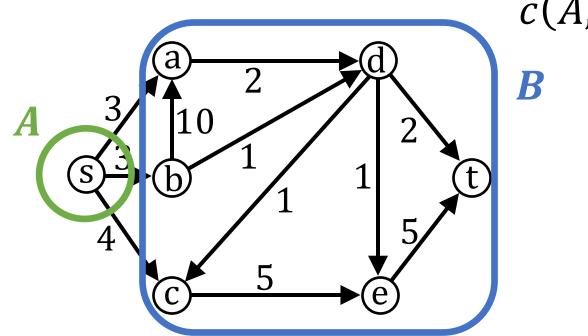


$$c(A,B)=8$$

<u>Definitions:</u> Suppose G is a flow network and nodes in G are divided into two sets, A and B, such that $s \in A$ and $t \in B$. We call (A, B) an s - t cut. The capacity of the cut, c(A, B), is the sum of capacities of all edges out of A.

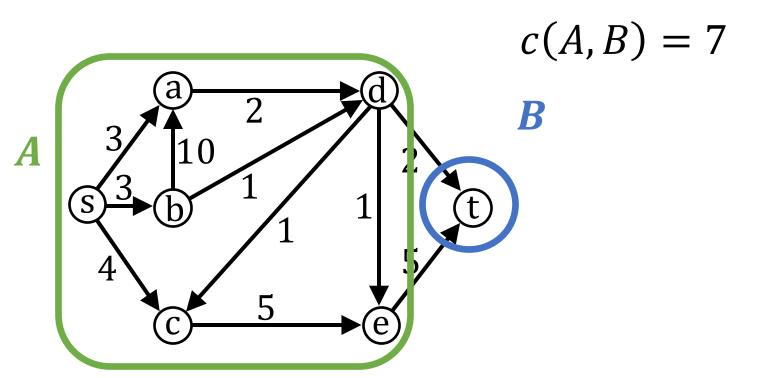


<u>Definitions:</u> Suppose G is a flow network and nodes in G are divided into two sets, A and B, such that $s \in A$ and $t \in B$. We call (A, B) an s - t cut. The capacity of the cut, c(A, B), is the sum of capacities of all edges out of A.

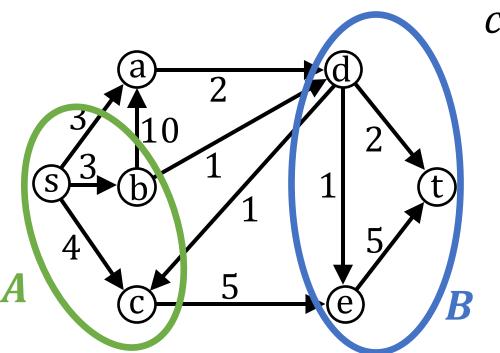


c(A,B)=10

<u>Definitions:</u> Suppose G is a flow network and nodes in G are divided into two sets, A and B, such that $s \in A$ and $t \in B$. We call (A, B) an s - t cut. The capacity of the cut, c(A, B), is the sum of capacities of all edges out of A.

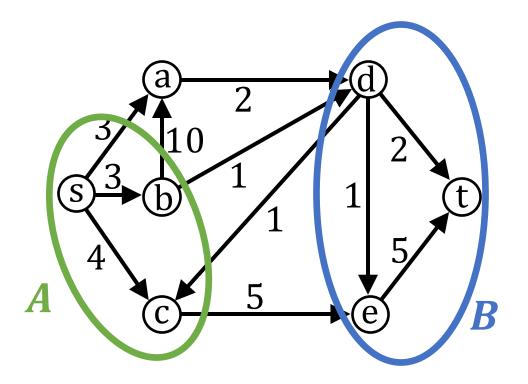


<u>Definitions:</u> Suppose G is a flow network and nodes in G are divided into two sets, A and B, such that $s \in A$ and $t \in B$. We call (A, B) an s - t cut. The capacity of the cut, c(A, B), is the sum of capacities of all edges out of A.



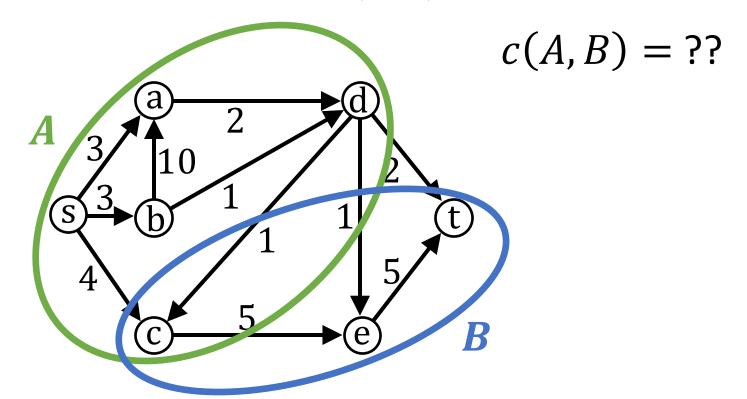
$$c(A, B) = ??$$

<u>Definitions:</u> Suppose G is a flow network and nodes in G are divided into two sets, A and B, such that $s \in A$ and $t \in B$. We call (A, B) an s - t cut. The capacity of the cut, c(A, B), is the sum of capacities of all edges out of A.

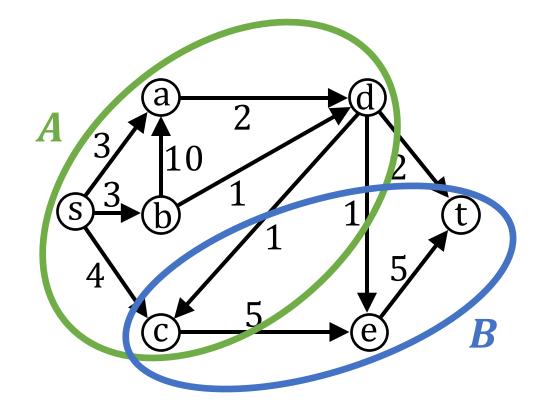


Invalid cut! Every vertex needs to be is in one of the sets!

<u>Definitions:</u> Suppose G is a flow network and nodes in G are divided into two sets, A and B, such that $s \in A$ and $t \in B$. We call (A, B) an s - t cut. The capacity of the cut, c(A, B), is the sum of capacities of all edges out of A.

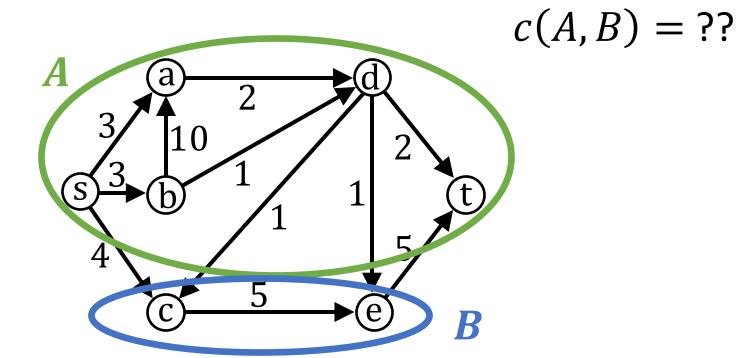


<u>Definitions:</u> Suppose G is a flow network and nodes in G are divided into two sets, A and B, such that $s \in A$ and $t \in B$. We call (A, B) an s - t cut. The capacity of the cut, c(A, B), is the sum of capacities of all edges out of A.

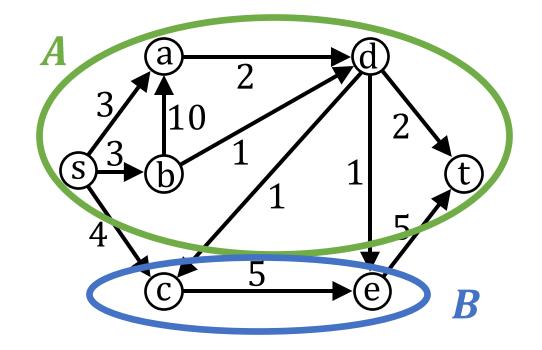


Invalid cut! Every vertex needs to be in <u>exactly</u> one of the sets!

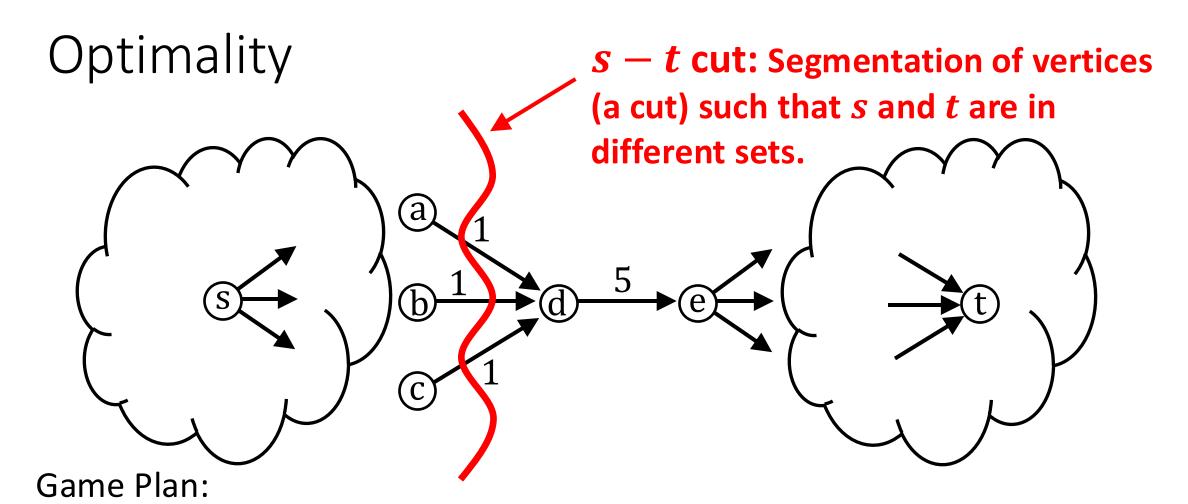
<u>Definitions:</u> Suppose G is a flow network and nodes in G are divided into two sets, A and B, such that $s \in A$ and $t \in B$. We call (A, B) an s - t cut. The capacity of the cut, c(A, B), is the sum of capacities of all edges out of A.

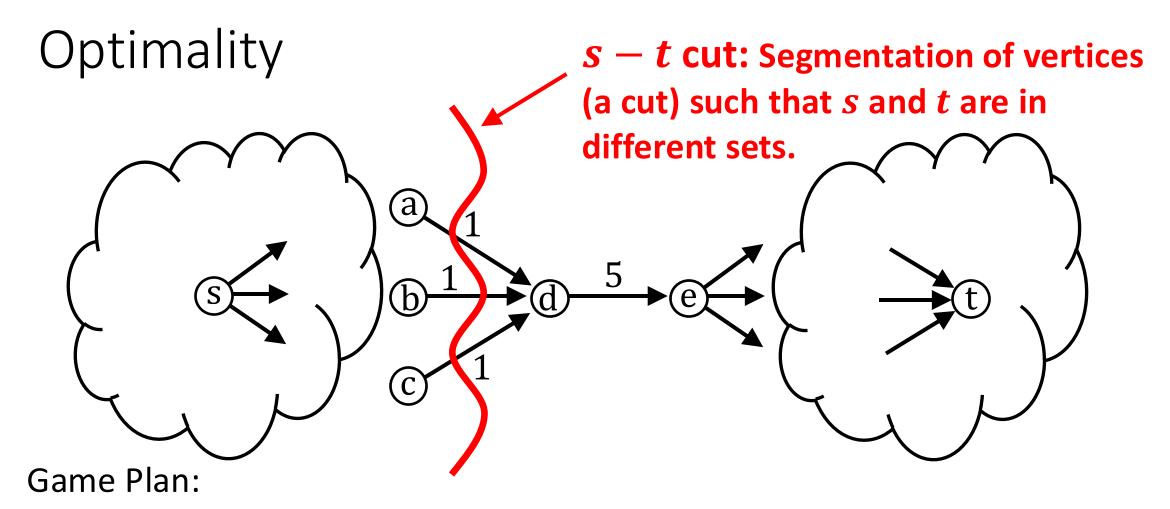


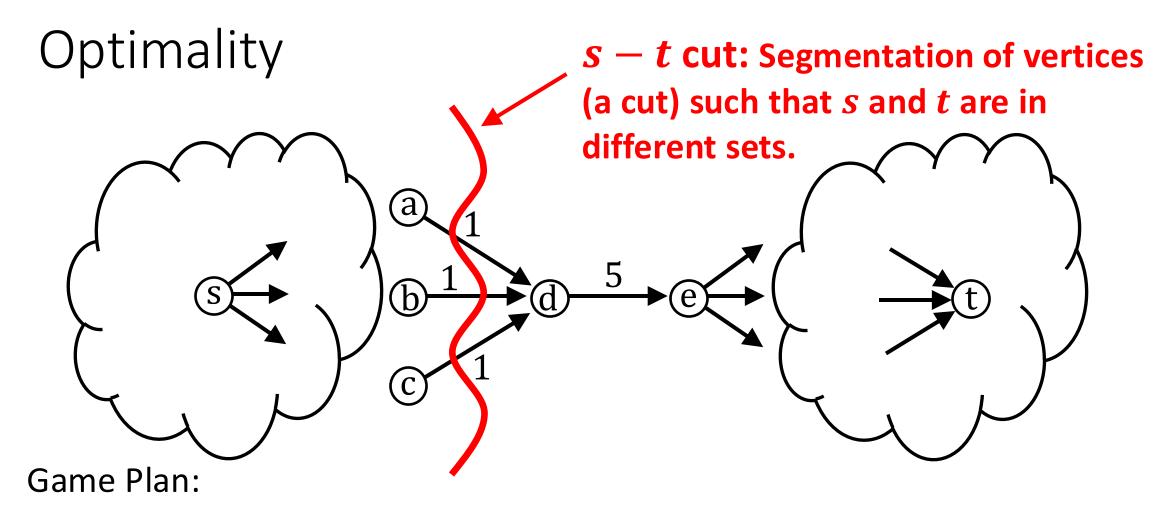
<u>Definitions:</u> Suppose G is a flow network and nodes in G are divided into two sets, A and B, such that $s \in A$ and $t \in B$. We call (A, B) an s - t cut. The capacity of the cut, c(A, B), is the sum of capacities of all edges out of A.

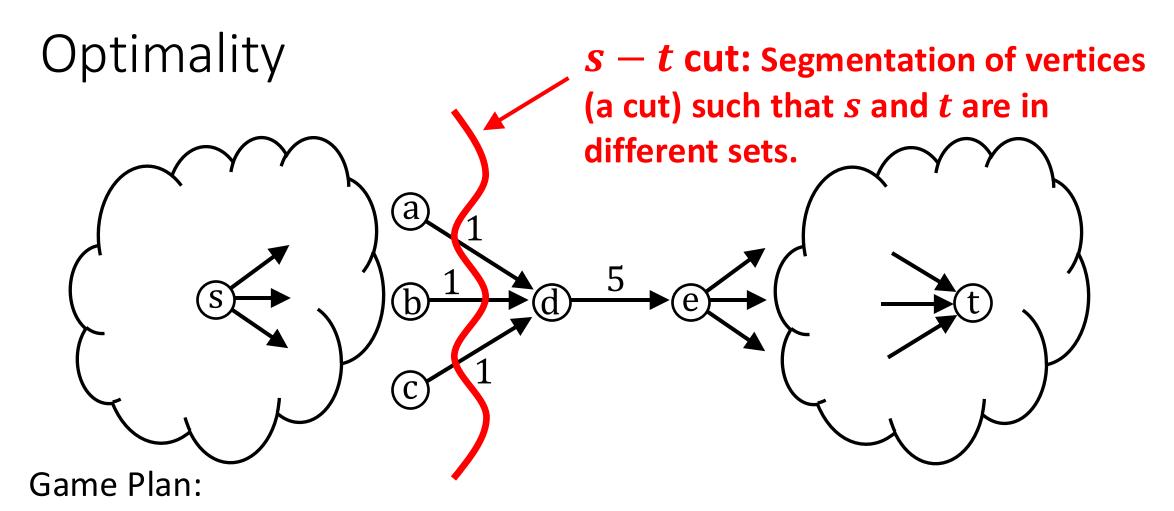


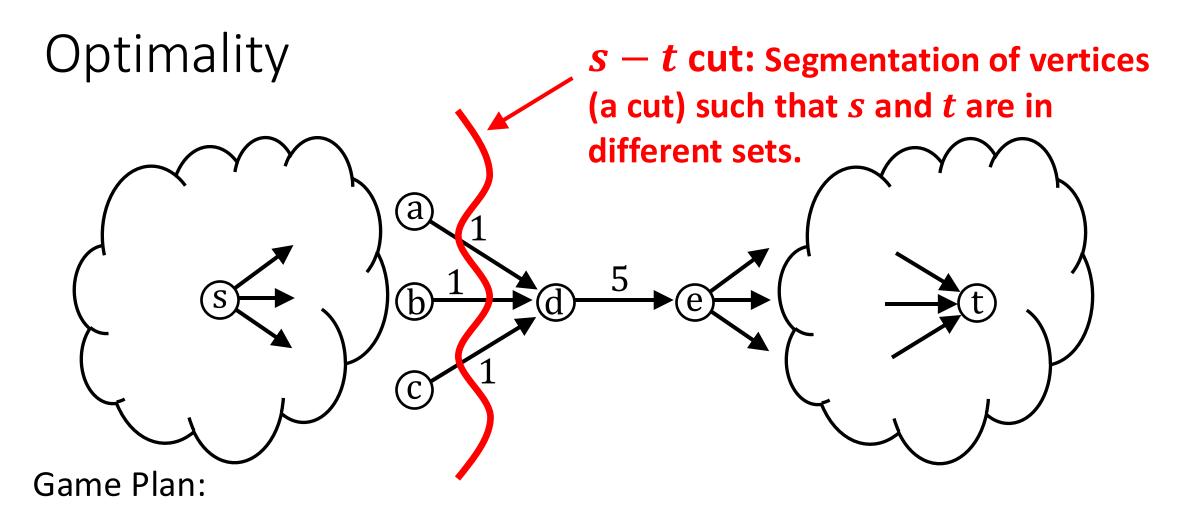
Invalid s - t cut! s and t need to be in different sets!

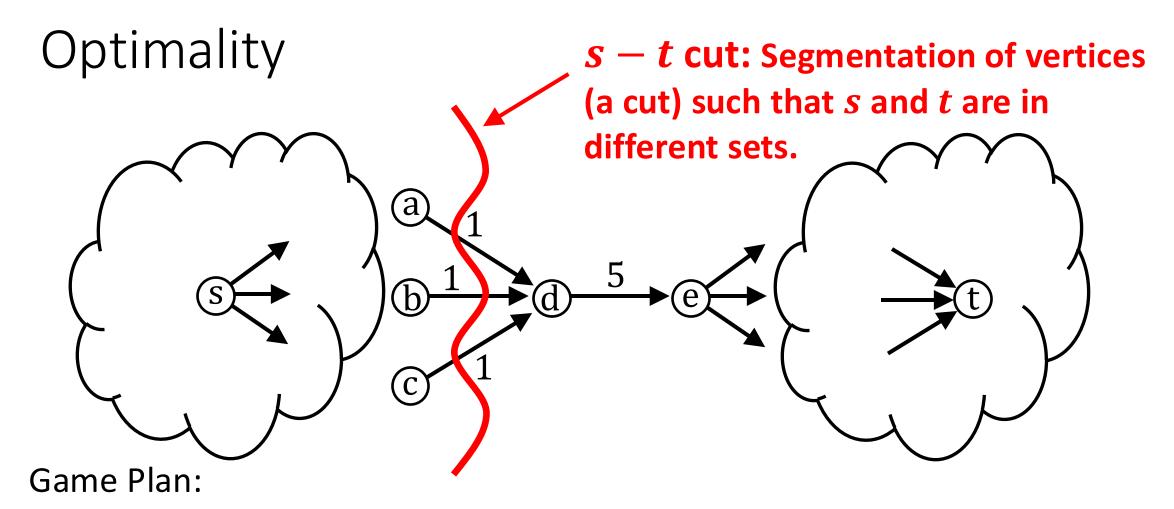




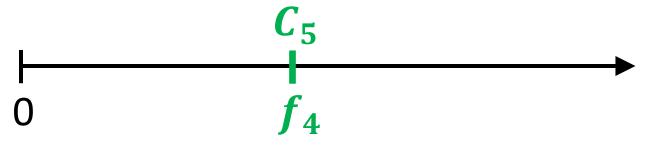




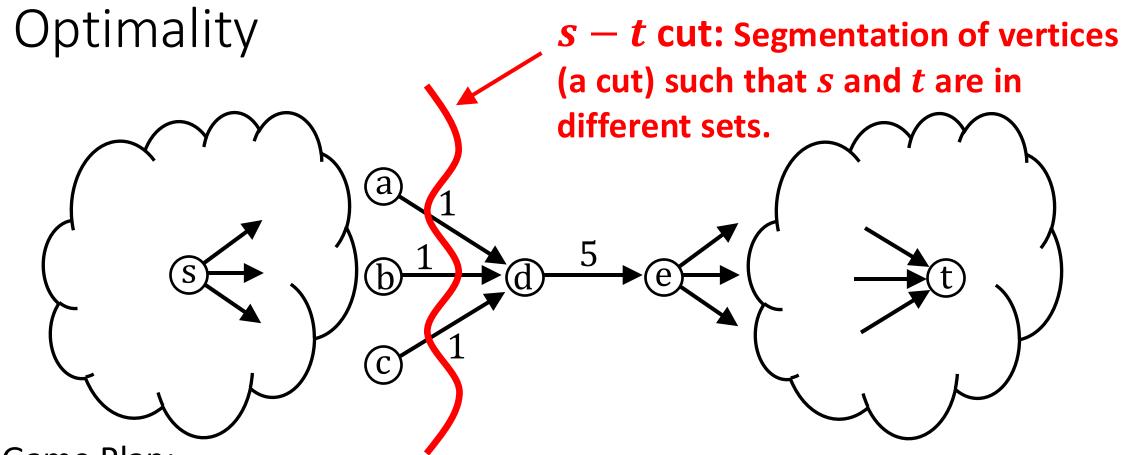




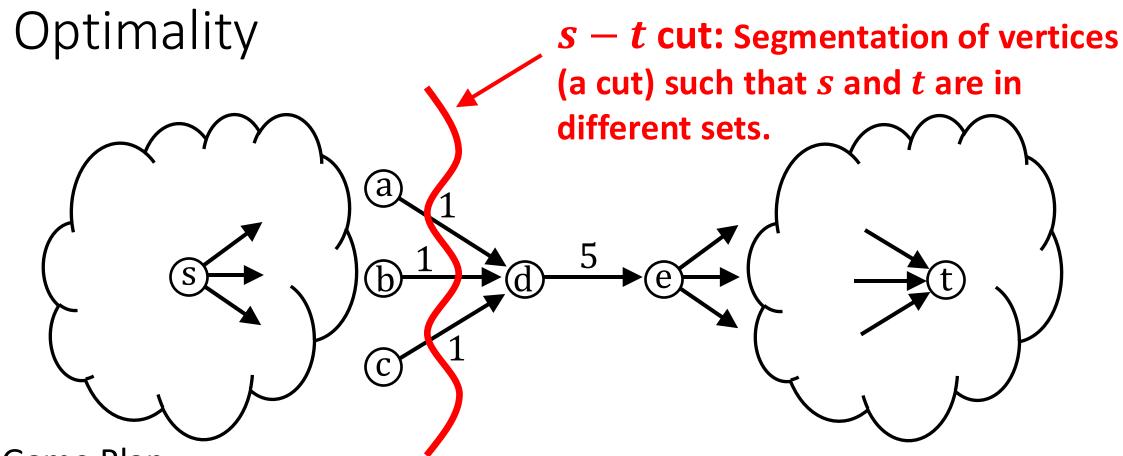
1. Show that value of every flow is \leq capacity of every cut.



If we find some flow whose value equals the capacity of some cut, it must be the optimal flow.



- Game Plan:
 - 1. Show that value of every flow is \leq capacity of every cut.
 - 2. Given a flow where there are no s-t paths left in the residual graph, there is a specific cut whose capacity = flow value.



Game Plan:

- 1. Show that value of every flow is \leq capacity of every cut.
- 2. Given a flow where there are no s-t paths left in the residual graph, there is a specific cut whose capacity = flow value.

⇒ The algorithm is optimal

Theorem 1: Let G be a flow network, (A, B) be an s - t cut, and f be an s - t flow.

Then,
$$|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$$
.

Proof:

Edges that enter the set A

Edges that leave the set A

This relates arbitrary s - t flows to arbitrary s - t cuts

Theorem 1: Let G be a flow network, (A, B) be an S - t cut, and f be an S - t flow.

Then,
$$|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$$
.

Proof:

Edges that enter the set A

Edges that leave the set A

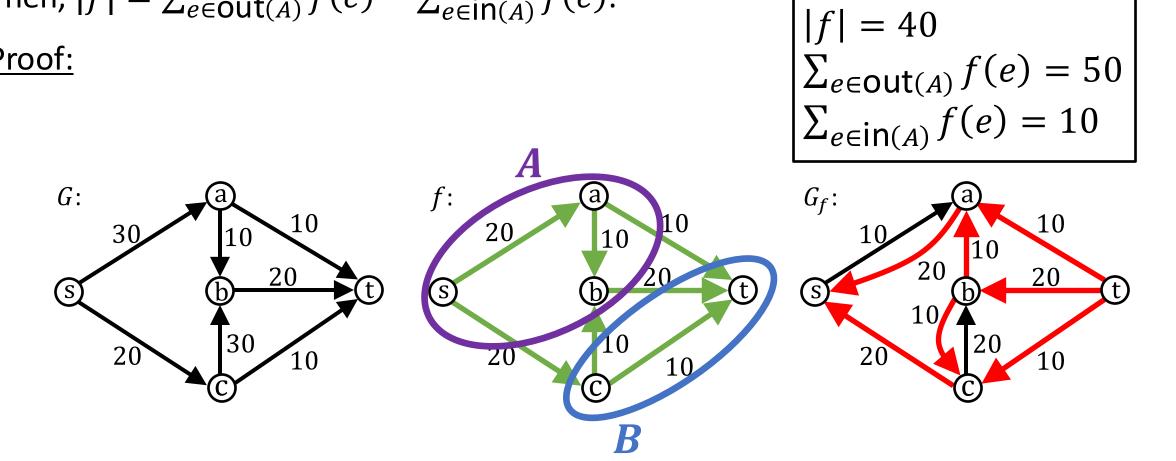
Theorem 1: Let G be a flow network, (A, B) be an s - t cut, and f be an s - t flow.

Then, $|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.



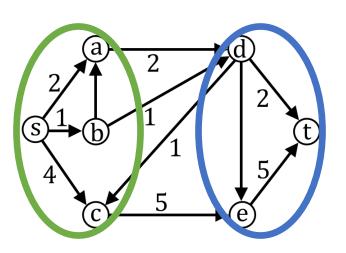
Theorem 1: Let G be a flow network, (A, B) be an s - t cut, and f be an s - t flow.

Then, $|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.



Theorem 1: Let G be a flow network, (A,B) be an s-t cut, and f be an s-t flow. Then, $|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

Proof: Let $f^{out}(v) = \sum_{e \in \mathsf{Out}(v)} f(e)$ and $f^{in}(v) = \sum_{e \in \mathsf{in}(v)} f(e)$.

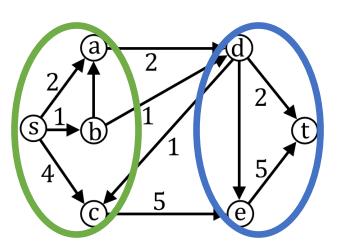


Theorem 1: Let G be a flow network, (A,B) be an S-t cut, and f be an S-t flow.

Then, $|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

Proof: Let $f^{out}(v) = \sum_{e \in \mathsf{Out}(v)} f(e)$ and $f^{in}(v) = \sum_{e \in \mathsf{in}(v)} f(e)$.

Then, $\forall v \in A, v \neq s, f^{out}(v) - f^{in}(v) = ?$

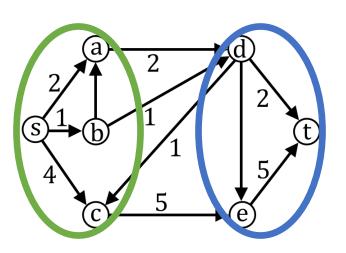


Theorem 1: Let G be a flow network, (A,B) be an S-t cut, and f be an S-t flow.

Then, $|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

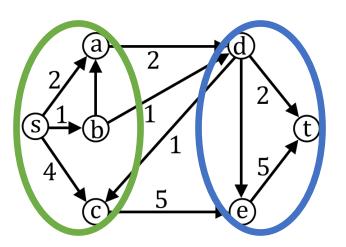
<u>Proof:</u> Let $f^{out}(v) = \sum_{e \in \mathsf{out}(v)} f(e)$ and $f^{in}(v) = \sum_{e \in \mathsf{in}(v)} f(e)$.

Then, $\forall v \in A, v \neq s, f^{out}(v) - f^{in}(v) = 0$ (by conservation of flow).



Theorem 1: Let G be a flow network, (A,B) be an s-t cut, and f be an s-t flow. Then, $|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

Proof: Let $f^{out}(v) = \sum_{e \in \text{Out}(v)} f(e)$ and $f^{in}(v) = \sum_{e \in \text{In}(v)} f(e)$. Then, $\forall v \in A, v \neq s, f^{out}(v) - f^{in}(v) = 0$ (by conservation of flow). By definition, $|f| = f^{out}(s)$.



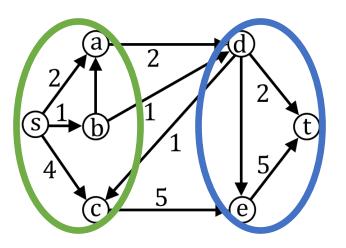
Theorem 1: Let G be a flow network, (A,B) be an s-t cut, and f be an s-t flow. Then, $|f| = \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

Proof: Let
$$f^{out}(v) = \sum_{e \in \mathsf{out}(v)} f(e)$$
 and $f^{in}(v) = \sum_{e \in \mathsf{in}(v)} f(e)$.

Then, $\forall v \in A, v \neq s, f^{out}(v) - f^{in}(v) = 0$ (by conservation of flow).

By definition, $|f| = f^{out}(s)$.

$$\Rightarrow |f| = f^{out}(s) - f^{in}(s) \text{ (since } f^{in}(s) = 0)$$



Theorem 1: Let G be a flow network, (A,B) be an s-t cut, and f be an s-t flow. Then, $|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

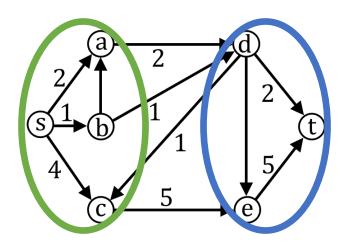
Proof: Let
$$f^{out}(v) = \sum_{e \in \mathsf{out}(v)} f(e)$$
 and $f^{in}(v) = \sum_{e \in \mathsf{in}(v)} f(e)$.

Then, $\forall v \in A, v \neq s, f^{out}(v) - f^{in}(v) = 0$ (by conservation of flow).

By definition, $|f| = f^{out}(s)$.

$$\Rightarrow |f| = f^{out}(s) - f^{in}(s)$$
 (since $f^{in}(s) = 0$)

$$\Rightarrow |f| = \sum_{v \in A} (f^{out}(v) - f^{in}(v)) \text{ (Only } \neq 0 \text{ when } v = s).$$

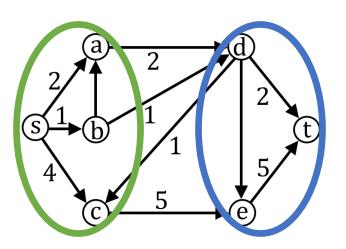


Theorem 1: Let G be a flow network, (A, B) be an s - t cut, and f be an s - t flow.

Then, $|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

Proof: Let $f^{out}(v) = \sum_{e \in \text{Out}(v)} f(e)$ and $f^{in}(v) = \sum_{e \in \text{in}(v)} f(e)$.

Then, $|f| = \sum_{v \in A} (f^{out}(v) - f^{in}(v))$ (Only $\neq 0$ when v = s).



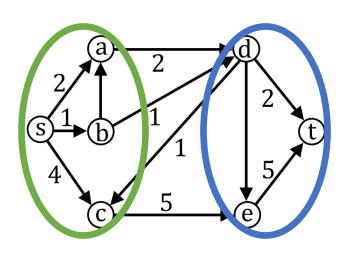
Theorem 1: Let G be a flow network, (A, B) be an s - t cut, and f be an s - t flow.

Then, $|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

<u>Proof:</u> Let $f^{out}(v) = \sum_{e \in \mathsf{out}(v)} f(e)$ and $f^{in}(v) = \sum_{e \in \mathsf{in}(v)} f(e)$.

Then, $|f| = \sum_{v \in A} (f^{out}(v) - f^{in}(v))$ (Only $\neq 0$ when v = s).

Need to translate vertices in A into edges leaving A.



Theorem 1: Let G be a flow network, (A, B) be an s - t cut, and f be an s - t flow. Then, $|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

Proof: Let
$$f^{out}(v) = \sum_{e \in \mathsf{out}(v)} f(e)$$
 and $f^{in}(v) = \sum_{e \in \mathsf{in}(v)} f(e)$.

Then,
$$|f| = \sum_{v \in A} (f^{out}(v) - f^{in}(v))$$
 (Only $\neq 0$ when $v = s$).

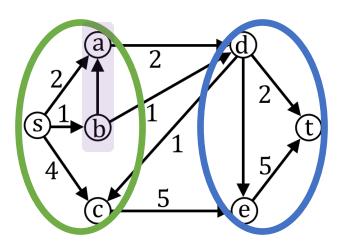
$$\forall e = (u, v) \in E$$
:

$$\forall e = (u, v) \in E$$
: 1. $u \in A, v \in A \text{ (edge is inside } A)$

2.
$$u \notin A, v \notin A$$
 (edge is outside A)

3.
$$u \in A, v \notin A$$
 (edge leaves A)

4.
$$u \notin A, v \in A$$
 (edge enters A)



Theorem 1: Let G be a flow network, (A, B) be an s - t cut, and f be an s - t flow.

Then,
$$|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$$
.

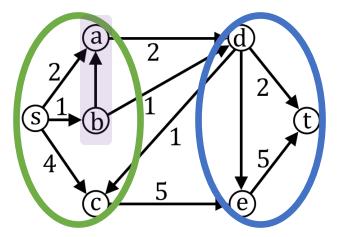
Proof: Let
$$f^{out}(v) = \sum_{e \in \mathsf{out}(v)} f(e)$$
 and $f^{in}(v) = \sum_{e \in \mathsf{in}(v)} f(e)$.

Then,
$$|f| = \sum_{v \in A} (f^{out}(v) - f^{in}(v))$$
 (Only $\neq 0$ when $v = s$).

$$\forall e = (u, v) \in E$$
:

- $\forall e = (u, v) \in E$: 1. $u \in A, v \in A \rightarrow f(e)$ cancels out.
 - 2. $u \notin A, v \notin A$ (edge is outside A)
 - 3. $u \in A, v \notin A$ (edge leaves A)
 - 4. $u \notin A, v \in A$ (edge enters A)

(In some $v \in A$ and out another)



Theorem 1: Let G be a flow network, (A, B) be an s - t cut, and f be an s - t flow.

Then,
$$|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$$
.

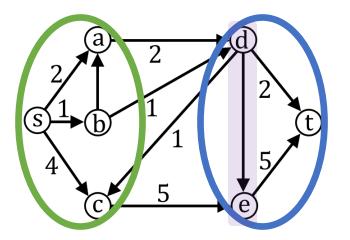
Proof: Let
$$f^{out}(v) = \sum_{e \in \mathsf{out}(v)} f(e)$$
 and $f^{in}(v) = \sum_{e \in \mathsf{in}(v)} f(e)$.

Then,
$$|f| = \sum_{v \in A} (f^{out}(v) - f^{in}(v))$$
 (Only $\neq 0$ when $v = s$).

$$\forall e = (u, v) \in E$$
: 1. $u \in A, v \in A \rightarrow f(e)$ cancels out.

- 2. $u \notin A, v \notin A$ (edge is outside A)
- 3. $u \in A, v \notin A$ (edge leaves A)
- 4. $u \notin A, v \in A$ (edge enters A)

(In some $v \in A$ and out another)



Theorem 1: Let G be a flow network, (A,B) be an s-t cut, and f be an s-t flow. Then, $|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

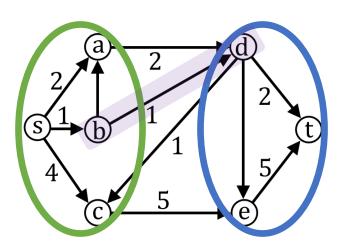
Proof: Let
$$f^{out}(v) = \sum_{e \in \mathsf{out}(v)} f(e)$$
 and $f^{in}(v) = \sum_{e \in \mathsf{in}(v)} f(e)$.

Then,
$$|f| = \sum_{v \in A} (f^{out}(v) - f^{in}(v))$$
 (Only $\neq 0$ when $v = s$).

$$\forall e = (u, v) \in E$$
: 1. $u \in A, v \in A \rightarrow f(e)$ cancels out.

2.
$$u \not\subset A$$
, $v \not\subset A \rightarrow f(c)$ does not appear at all.

- 3. $u \in A, v \notin A$ (edge leaves A)
- 4. $u \notin A, v \in A$ (edge enters A)



Theorem 1: Let G be a flow network, (A,B) be an s-t cut, and f be an s-t flow. Then, $|f| = \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

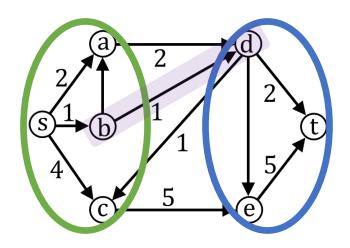
Proof: Let
$$f^{out}(v) = \sum_{e \in \mathsf{out}(v)} f(e)$$
 and $f^{in}(v) = \sum_{e \in \mathsf{in}(v)} f(e)$.

Then,
$$|f| = \sum_{v \in A} (f^{out}(v) - f^{in}(v))$$
 (Only $\neq 0$ when $v = s$).

$$\forall e = (u, v) \in E$$
: 1. $u \in A, v \in A \rightarrow f(e)$ cancels out.

2.
$$u \not\subset A$$
, $v \not\subset A \rightarrow f(c)$ does not appear at all.

- 3. $u \in A, v \notin A \rightarrow f(e)$ adds to the sum.
- 4. $u \notin A, v \in A$ (edge enters A)



Theorem 1: Let G be a flow network, (A,B) be an s-t cut, and f be an s-t flow. Then, $|f| = \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

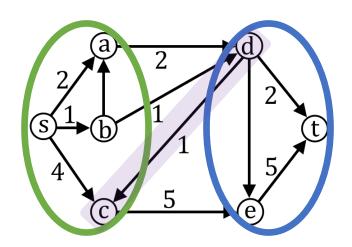
Proof: Let
$$f^{out}(v) = \sum_{e \in \mathsf{out}(v)} f(e)$$
 and $f^{in}(v) = \sum_{e \in \mathsf{in}(v)} f(e)$.

Then,
$$|f| = \sum_{v \in A} (f^{out}(v) - f^{in}(v))$$
 (Only $\neq 0$ when $v = s$).

$$\forall e = (u, v) \in E$$
: 1. $u \in A, v \in A \rightarrow f(e)$ cancels out.

2.
$$u \not\in A, v \not\in A \rightarrow f(c)$$
 does not appear at all.

- 3. $u \in A, v \notin A \rightarrow f(e)$ adds to the sum.
- 4. $u \notin A, v \in A$ (edge enters A)



Theorem 1: Let G be a flow network, (A,B) be an s-t cut, and f be an s-t flow. Then, $|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

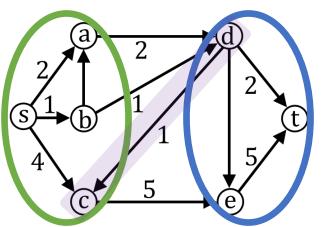
Proof: Let
$$f^{out}(v) = \sum_{e \in \mathsf{out}(v)} f(e)$$
 and $f^{in}(v) = \sum_{e \in \mathsf{in}(v)} f(e)$.

Then,
$$|f| = \sum_{v \in A} (f^{out}(v) - f^{in}(v))$$
 (Only $\neq 0$ when $v = s$).

$$\forall e = (u, v) \in E$$
: 1. $u \in A, v \in A \rightarrow f(e)$ cancels out.

2.
$$u \not\in A, v \not\in A \rightarrow f(c)$$
 does not appear at all.

- 3. $u \in A, v \notin A \rightarrow f(e)$ adds to the sum.
- 4. $u \notin A, v \in A \rightarrow f(e)$ subtracts from the sum.



Theorem 1: Let G be a flow network, (A, B) be an s - t cut, and f be an s - t flow.

Then,
$$|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$$
.

Proof: Let
$$f^{out}(v) = \sum_{e \in \mathsf{out}(v)} f(e)$$
 and $f^{in}(v) = \sum_{e \in \mathsf{in}(v)} f(e)$.

Then,
$$|f| = \sum_{v \in A} (f^{out}(v) - f^{in}(v))$$
 (Only $\neq 0$ when $v = s$).

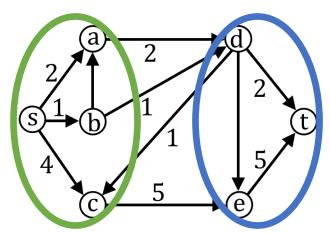
$$\forall e = (u, v) \in E$$
: 1. $u \in A, v \in A \rightarrow f(e)$ cancels out.

2.
$$u \not\subset A, v \not\subset A \rightarrow f(c)$$
 does not appear at all.

- 3. $u \in A, v \notin A \rightarrow f(e)$ adds to the sum.
- 4. $u \notin A, v \in A \rightarrow f(e)$ subtracts from the sum.

$$\Rightarrow \sum_{v \in A} (f^{out}(v) - f^{in}(v))$$

$$= \sum_{e \in \mathsf{out}(A)} f(e) - \sum_{e \in \mathsf{in}(A)} f(e)$$



Theorem 1: Let G be a flow network, (A, B) be an s - t cut, and f be an s - t flow.

Then,
$$|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$$
.

Proof: Let
$$f^{out}(v) = \sum_{e \in \mathsf{out}(v)} f(e)$$
 and $f^{in}(v) = \sum_{e \in \mathsf{in}(v)} f(e)$.

Then,
$$|f| = \sum_{v \in A} (f^{out}(v) - f^{in}(v))$$
 (Only $\neq 0$ when $v = s$).

$$\forall e = (u, v) \in E$$
: 1. $u \in A, v \in A \rightarrow f(e)$ cancels out.

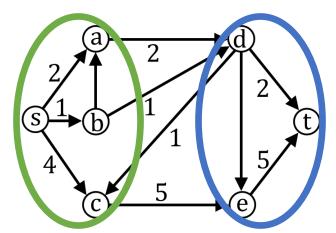
2.
$$u \not\subset A$$
, $v \not\subset A \rightarrow f(c)$ does not appear at all.

- 3. $u \in A, v \notin A \rightarrow f(e)$ adds to the sum.
- 4. $u \notin A, v \in A \rightarrow f(e)$ subtracts from the sum.

$$\Rightarrow \sum_{v \in A} (f^{out}(v) - f^{in}(v))$$

$$= \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$$

$$\Rightarrow |f| = \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$$



This relates arbitrary s - t flows to arbitrary s - t cuts

Theorem 1: Let G be a flow network, (A,B) be an s-t cut, and f be an s-t flow. Then, $|f| = \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

This relates arbitrary s - t flows to arbitrary s - t cuts

Theorem 1: Let G be a flow network, (A,B) be an s-t cut, and f be an s-t flow. Then, $|f| = \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

Corollary: Suppose G is a flow network, f is an S-t flow on G, and (A,B) is an S-t cut. Then, $|f| \le c(A,B)$. (i.e. every flow is bounded by any S-t cut)

Theorem 1: Let G be a flow network, (A,B) be an s-t cut, and f be an s-t flow. Then, $|f| = \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

Corollary: Suppose G is a flow network, f is an S-t flow on G, and (A,B) is an S-t cut. Then, $|f| \le c(A,B)$. (i.e. every flow is bounded by any S-t cut)

$$|f| = \sum_{e \in \mathsf{out}(A)} f(e) - \sum_{e \in \mathsf{in}(A)} f(e)$$

Theorem 1: Let G be a flow network, (A,B) be an s-t cut, and f be an s-t flow. Then, $|f| = \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

Corollary: Suppose G is a flow network, f is an S-t flow on G, and (A,B) is an S-t cut. Then, $|f| \le c(A,B)$. (i.e. every flow is bounded by any S-t cut)

$$|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$$

$$\leq \sum_{e \in \text{Out}(A)} f(e)$$

Theorem 1: Let G be a flow network, (A,B) be an s-t cut, and f be an s-t flow. Then, $|f| = \sum_{e \in \text{Out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

Corollary: Suppose G is a flow network, f is an S-t flow on G, and (A,B) is an S-t cut. Then, $|f| \le c(A,B)$. (i.e. every flow is bounded by any S-t cut)

$$|f| = \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$$

$$\leq \sum_{e \in \text{out}(A)} f(e)$$

$$\leq \sum_{e \in \text{out}(A)} c_e = c(A, B)$$

Theorem 1: Let G be a flow network, (A,B) be an s-t cut, and f be an s-t flow. Then, $|f| = \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$.

Corollary: Suppose G is a flow network, f is an S-t flow on G, and (A,B) is an S-t cut. Then, $|f| \le c(A,B)$. (i.e. every flow is bounded by any S-t cut)

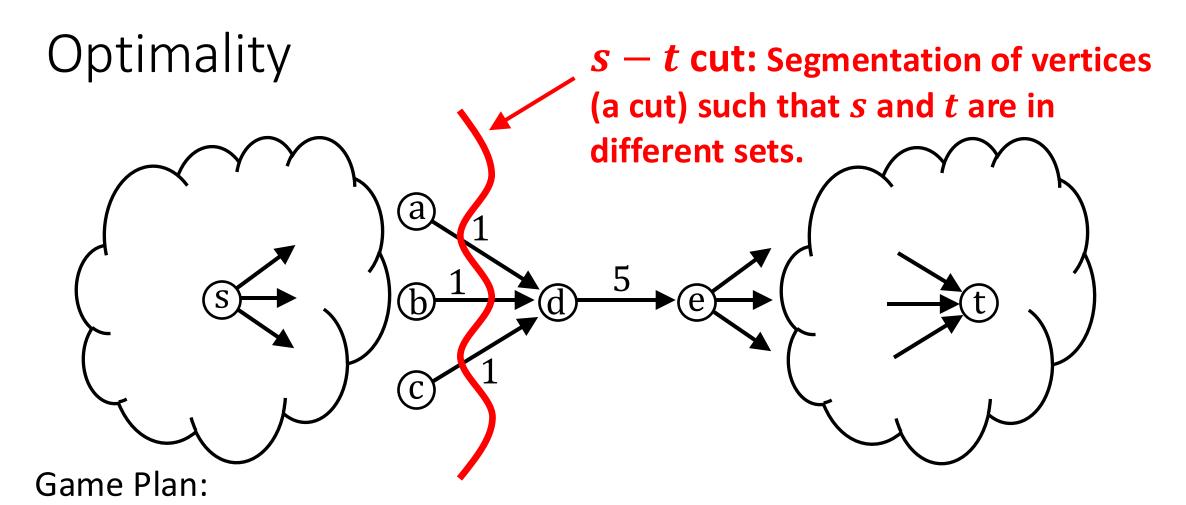
Proof:

$$|f| = \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$$

$$\leq \sum_{e \in \text{out}(A)} f(e)$$

$$\leq \sum_{e \in \text{out}(A)} c_e = c(A, B)$$

If we find some flow f and some cut (A,B) such that |f|=c(A,B), then f is a maximum flow.



- 1. Show that value of every flow is \leq capacity of every cut.
- 2. Given a flow where there are no s-t paths left in the residual graph, there is a specific cut whose capacity = flow value.