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(A) Build Flow Network:

1. Starting at the root, connect 
every other generation with 
edge from s. 

2. Connect other generations 
with edge to t. 

3. Make edges go from s-
connected node to t-
connected node. 

4. Make all edge capacities 1.

(B) Find Max Flow.

(C) If edge carries flow, select it.
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Maximum Matching

Does this work?
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Maximum Matching

Does this work?

No, nothing forces edges with capacity 2 to host 2 units, so 
you can make some host 1 and select neighboring edges.



c

e f

j ki

c

e

f

j

k

i

s t

1

1

1

1

1

1

1

Maximum Matching ce

cf

fj

fi

fk

1

1

1

1

1

1

1

1

1

1

1

1

1

Does this work?



c

e f

j ki

c

e

f

j

k

i

s t

1

1

1

1

1

1

1

Maximum Matching ce

cf

fj

fi

fk

1

1

1

1

1

1

1

1

1

1

1

1

1

Does this work?

No, saturating a node prevents it from being used in 
other edges, but does not prevent other nodes from 
deploying neighboring edges.
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Does this work?

Yes, but it requires the graph to be bipartite (vertices can be partitioned into 
disjoint sets so that all edges cross between the sets). 
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Does this work?

Yes, but it requires the graph to be bipartite (vertices can be partitioned into 
disjoint sets so that all edges cross between the sets). Are trees bipartite? 
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Does this work?

Yes, but it requires the graph to be bipartite (vertices can be partitioned into 
disjoint sets so that all edges cross between the sets). Are trees bipartite? 
YES (otherwise there would be a cycle). 

1

1

1



c

e f

j ki

c

e

fj

k

i
s t

1

1

1

Maximum Matching

1

1

1 1

1

Does this work?

Yes, but it requires the graph to be bipartite (vertices can be partitioned into 
disjoint sets so that all edges cross between the sets). Are trees bipartite? 
YES (otherwise there would be a cycle). Are bipartite graphs always trees? 
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Does this work?

Yes, but it requires the graph to be bipartite (vertices can be partitioned into 
disjoint sets so that all edges cross between the sets). Are trees bipartite? 
YES (otherwise there would be a cycle). Are bipartite graphs always trees? NO.
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Ford-Fulkerson
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Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
  P = simple s-t path in Gf
  f’= augment(f, P)
  f = f’
  Gf = Gf’ 
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
  if (u, v) is a back edge
   f((v, u)) -= b
  else
   f((u, v)) += b
 return f

Need to show:
1. Validity.
2. Running time.
3. Finds max flow.
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Theorem: The flow returned by the Ford-Fulkerson algorithm is a 
maximum flow.

Proof: ...

Optimality



Optimality

s

a

c

edb t

10

10

10

What can we say about the maximum flow on this network?
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What can we say about the maximum flow on this network?

 It’s not larger than 5.
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What can we say about the maximum flow on this network?

 It’s not larger than 3.
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What can we say about the maximum flow on this network?

 It’s not larger than 3.
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𝒔 − 𝒕 cut: Segmentation of vertices 
(a cut) such that 𝒔 and 𝒕 are in 
different sets.
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The capacity of a cut is the sum of the capacities leaving 𝑠’s set.

5

𝒔 − 𝒕 cut: Segmentation of vertices 
(a cut) such that 𝒔 and 𝒕 are in 
different sets.



Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
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𝑠 − 𝑡 cuts

Invalid cut! Every vertex needs 
to be is in one of the sets!



Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
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𝑩

𝑠 − 𝑡 cuts

Invalid cut! Every vertex needs 
to be in exactly one of the sets!



Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑨

𝑩

𝑠 − 𝑡 cuts

Invalid 𝒔 − 𝒕 cut! 𝒔 and 𝒕 
need to be in different sets!
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𝒔 − 𝒕 cut: Segmentation of vertices 
(a cut) such that 𝒔 and 𝒕 are in 
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.
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𝒔 − 𝒕 cut: Segmentation of vertices 
(a cut) such that 𝒔 and 𝒕 are in 
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.
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𝒔 − 𝒕 cut: Segmentation of vertices 
(a cut) such that 𝒔 and 𝒕 are in 
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.

0 𝑓1 𝑓2 𝑓3
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𝒔 − 𝒕 cut: Segmentation of vertices 
(a cut) such that 𝒔 and 𝒕 are in 
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.

0 𝑓1 𝑓2 𝑓3 𝐶2 𝐶4 𝐶1 𝐶3
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𝒔 − 𝒕 cut: Segmentation of vertices 
(a cut) such that 𝒔 and 𝒕 are in 
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.

0 𝑓1 𝑓2 𝑓3 𝐶2 𝐶4 𝐶1 𝐶3𝒇𝟒

𝑪𝟓
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𝒔 − 𝒕 cut: Segmentation of vertices 
(a cut) such that 𝒔 and 𝒕 are in 
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.

0 𝒇𝟒

𝑪𝟓 If we find some flow whose value 
equals the capacity of some cut, 
it must be the optimal flow.
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𝒔 − 𝒕 cut: Segmentation of vertices 
(a cut) such that 𝒔 and 𝒕 are in 
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.
2. Given a flow where there are no 𝑠 − 𝑡 paths left in the residual 

graph, there is a specific cut whose capacity = flow value.
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𝒔 − 𝒕 cut: Segmentation of vertices 
(a cut) such that 𝒔 and 𝒕 are in 
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.
2. Given a flow where there are no 𝑠 − 𝑡 paths left in the residual 

graph, there is a specific cut whose capacity = flow value.

⇒ The algorithm is optimal



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof:

  

Optimality

Edges that leave the set A

Edges that enter the set A



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof:

  

Optimality

Edges that leave the set A

Edges that enter the set A

This relates arbitrary 𝒔 − 𝒕 flows 
to arbitrary 𝒔 − 𝒕 cuts
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Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
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Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Optimality
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Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
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Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, ∀𝑣 ∈ 𝐴, 𝑣 ≠ 𝑠, 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 = 0 (by conservation of flow). 
By definition, |𝑓| = 𝑓𝑜𝑢𝑡 𝑠 . 
 ⟹ |𝑓| = 𝑓𝑜𝑢𝑡 𝑠 − 𝑓𝑖𝑛 𝑠  (since 𝑓𝑖𝑛 𝑠 = 0)

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, ∀𝑣 ∈ 𝐴, 𝑣 ≠ 𝑠, 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 = 0 (by conservation of flow). 
By definition, |𝑓| = 𝑓𝑜𝑢𝑡 𝑠 . 
 ⟹ |𝑓| = 𝑓𝑜𝑢𝑡 𝑠 − 𝑓𝑖𝑛 𝑠  (since 𝑓𝑖𝑛 𝑠 = 0)
 ⟹ |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠). 

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠). 

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠). 

Need to translate vertices in 𝑨 
into edges leaving 𝑨.

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴

(edge is inside 𝑨)

(edge is outside 𝑨)

(edge leaves 𝑨)

(edge enters 𝑨)

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴

(edge is outside 𝑨)

(edge leaves 𝑨)

(edge enters 𝑨)

Optimality

(In some 𝑣 ∈ 𝐴 
and out another)



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴

(edge is outside 𝑨)

(edge leaves 𝑨)

(edge enters 𝑨)

Optimality

(In some 𝑣 ∈ 𝐴 
and out another)



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴

(edge leaves 𝑨)

(edge enters 𝑨)

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) adds to the sum.
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴 (edge enters 𝑨)

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) adds to the sum.
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴 (edge enters 𝑨)

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) adds to the sum.
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) subtracts from the sum.

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) adds to the sum.
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) subtracts from the sum.

  ⟹ σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 )
   = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) adds to the sum.
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) subtracts from the sum.

  ⟹ σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 )
   = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒

  ⟹ |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ
𝑒∈in 𝐴 𝑓 𝑒

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Optimality
This relates arbitrary 𝒔 − 𝒕 flows 
to arbitrary 𝒔 − 𝒕 cuts



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an 
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof: 
 ?

Optimality
This relates arbitrary 𝒔 − 𝒕 flows 
to arbitrary 𝒔 − 𝒕 cuts



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an 
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof: 
 |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒  

  

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an 
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof: 
 |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒  

≤ σ𝑒∈out 𝐴 𝑓 𝑒

  

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an 
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof: 
 |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒  

≤ σ𝑒∈out 𝐴 𝑓 𝑒

≤ σ𝑒∈out 𝐴 𝑐𝑒  = 𝑐(𝐴, 𝐵)

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an 
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof: 
 |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒  

≤ σ𝑒∈out 𝐴 𝑓 𝑒

≤ σ𝑒∈out 𝐴 𝑐𝑒  = 𝑐(𝐴, 𝐵) If we find some flow 𝒇 and 
some cut (𝑨, 𝑩) such that 
|𝒇| = 𝒄(𝑨, 𝑩), then 𝒇 is a 
maximum flow.

Optimality



Optimality

s

a

c

edb t

1

1

1

5

𝒔 − 𝒕 cut: Segmentation of vertices 
(a cut) such that 𝒔 and 𝒕 are in 
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.
2. Given a flow where there are no 𝑠 − 𝑡 paths left in the residual 

graph, there is a specific cut whose capacity = flow value.
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