
Flow Networks
CSCI 532

1

Maximum Matching

b

a

d

c

e f

g h j ki

ml

s

t

1

1

1
1

1 1

1 1

1

1
1

1

1

1 1
1

(A) Build Flow Network:

1. Starting at the root, connect
every other generation with
edge from s.

2. Connect other generations
with edge to t.

3. Make edges go from s-
connected node to t-
connected node.

4. Make all edge capacities 1.

(B) Find Max Flow.

(C) If edge carries flow, select it.

1

1

1

1
1

1

1 1

ce

cf

fj

fi

fk

c

e f

j ki

c

e

f

j

k

i

s t

1

2

2

2

2

2

1
1

1

1

1

1

1 1

1

1

1
1

1

1

1

Maximum Matching

Does this work?

ce

cf

fj

fi

fk

c

e f

j ki

c

e

f

j

k

i

s t

1

2

2

2

2

2

1
1

1

1

1

1

1 1

1

1

1
1

1

1

1

Maximum Matching

Does this work?

No, nothing forces edges with capacity 2 to host 2 units, so
you can make some host 1 and select neighboring edges.

c

e f

j ki

c

e

f

j

k

i

s t

1

1

1

1

1

1

1

Maximum Matching ce

cf

fj

fi

fk

1

1

1

1

1

1

1

1

1

1

1

1

1

Does this work?

c

e f

j ki

c

e

f

j

k

i

s t

1

1

1

1

1

1

1

Maximum Matching ce

cf

fj

fi

fk

1

1

1

1

1

1

1

1

1

1

1

1

1

Does this work?

No, saturating a node prevents it from being used in
other edges, but does not prevent other nodes from
deploying neighboring edges.

c

e f

j ki

c

e

fj

k

i
s t

1

1

1

Maximum Matching

1

1

1 1

1

Does this work?

1

1

1

c

e f

j ki

c

e

fj

k

i
s t

1

1

1

Maximum Matching

1

1

1 1

1

Does this work?

Yes, but it requires the graph to be bipartite (vertices can be partitioned into
disjoint sets so that all edges cross between the sets).

1

1

1

c

e f

j ki

c

e

fj

k

i
s t

1

1

1

Maximum Matching

1

1

1 1

1

Does this work?

Yes, but it requires the graph to be bipartite (vertices can be partitioned into
disjoint sets so that all edges cross between the sets). Are trees bipartite?

1

1

1

c

e f

j ki

c

e

fj

k

i
s t

1

1

1

Maximum Matching

1

1

1 1

1

Does this work?

Yes, but it requires the graph to be bipartite (vertices can be partitioned into
disjoint sets so that all edges cross between the sets). Are trees bipartite?
YES (otherwise there would be a cycle).

1

1

1

c

e f

j ki

c

e

fj

k

i
s t

1

1

1

Maximum Matching

1

1

1 1

1

Does this work?

Yes, but it requires the graph to be bipartite (vertices can be partitioned into
disjoint sets so that all edges cross between the sets). Are trees bipartite?
YES (otherwise there would be a cycle). Are bipartite graphs always trees?

1

1

1

c

e f

j ki

c

e

fj

k

i
s t

1

1

1

Maximum Matching

1

1

1 1

1

Does this work?

Yes, but it requires the graph to be bipartite (vertices can be partitioned into
disjoint sets so that all edges cross between the sets). Are trees bipartite?
YES (otherwise there would be a cycle). Are bipartite graphs always trees? NO.

1

1

1

Ford-Fulkerson

20

1020

20 10
10

10

s t

a

b
20

10
30

10

𝐺:

c
20

30 10

s t

a

b

𝑓:

c

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Need to show:
1. Validity.
2. Running time.
3. Finds max flow.

s t

a

b

20

𝐺𝑓:

c

10

20

10 20

20

10

10

10

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof: ...

Optimality

Optimality

s

a

c

edb t

10

10

10

What can we say about the maximum flow on this network?

5

Optimality

s

a

c

edb t

10

10

10

What can we say about the maximum flow on this network?

 It’s not larger than 5.

5

Optimality

s

a

c

edb t

10

10

10

What can we say about the maximum flow on this network?

 It’s not larger than 5.

5

Optimality

s

a

c

edb t

1

1

1

What can we say about the maximum flow on this network?

5

Optimality

s

a

c

edb t

1

1

1

What can we say about the maximum flow on this network?

 It’s not larger than 3.

5

Optimality

s

a

c

edb t

1

1

1

What can we say about the maximum flow on this network?

 It’s not larger than 3.

5

𝒔 − 𝒕 cut: Segmentation of vertices
(a cut) such that 𝒔 and 𝒕 are in
different sets.

Optimality

s

a

c

edb t

1

1

1

The capacity of a cut is the sum of the capacities leaving 𝑠’s set.

5

𝒔 − 𝒕 cut: Segmentation of vertices
(a cut) such that 𝒔 and 𝒕 are in
different sets.

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑐 𝐴, 𝐵 = 8

𝑨
𝑩

𝑠 − 𝑡 cuts

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑐 𝐴, 𝐵 = 8

𝑨

𝑩

𝑠 − 𝑡 cuts

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑐 𝐴, 𝐵 = 10

𝑨
𝑩

𝑠 − 𝑡 cuts

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑐 𝐴, 𝐵 = 7

𝑨
𝑩

𝑠 − 𝑡 cuts

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑨 𝑩

𝑠 − 𝑡 cuts

𝑐 𝐴, 𝐵 = ??

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑨 𝑩

𝑠 − 𝑡 cuts

Invalid cut! Every vertex needs
to be is in one of the sets!

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑨

𝑩

𝑠 − 𝑡 cuts

𝑐 𝐴, 𝐵 = ??

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑨

𝑩

𝑠 − 𝑡 cuts

Invalid cut! Every vertex needs
to be in exactly one of the sets!

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑨

𝑩

𝑠 − 𝑡 cuts

𝑐 𝐴, 𝐵 = ??

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑨

𝑩

𝑠 − 𝑡 cuts

Invalid 𝒔 − 𝒕 cut! 𝒔 and 𝒕
need to be in different sets!

Optimality

s

a

c

edb t

1

1

1

5

𝒔 − 𝒕 cut: Segmentation of vertices
(a cut) such that 𝒔 and 𝒕 are in
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.

Optimality

s

a

c

edb t

1

1

1

5

𝒔 − 𝒕 cut: Segmentation of vertices
(a cut) such that 𝒔 and 𝒕 are in
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.

0

Optimality

s

a

c

edb t

1

1

1

5

𝒔 − 𝒕 cut: Segmentation of vertices
(a cut) such that 𝒔 and 𝒕 are in
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.

0 𝑓1 𝑓2 𝑓3

Optimality

s

a

c

edb t

1

1

1

5

𝒔 − 𝒕 cut: Segmentation of vertices
(a cut) such that 𝒔 and 𝒕 are in
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.

0 𝑓1 𝑓2 𝑓3 𝐶2 𝐶4 𝐶1 𝐶3

Optimality

s

a

c

edb t

1

1

1

5

𝒔 − 𝒕 cut: Segmentation of vertices
(a cut) such that 𝒔 and 𝒕 are in
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.

0 𝑓1 𝑓2 𝑓3 𝐶2 𝐶4 𝐶1 𝐶3𝒇𝟒

𝑪𝟓

Optimality

s

a

c

edb t

1

1

1

5

𝒔 − 𝒕 cut: Segmentation of vertices
(a cut) such that 𝒔 and 𝒕 are in
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.

0 𝒇𝟒

𝑪𝟓 If we find some flow whose value
equals the capacity of some cut,
it must be the optimal flow.

Optimality

s

a

c

edb t

1

1

1

5

𝒔 − 𝒕 cut: Segmentation of vertices
(a cut) such that 𝒔 and 𝒕 are in
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.
2. Given a flow where there are no 𝑠 − 𝑡 paths left in the residual

graph, there is a specific cut whose capacity = flow value.

Optimality

s

a

c

edb t

1

1

1

5

𝒔 − 𝒕 cut: Segmentation of vertices
(a cut) such that 𝒔 and 𝒕 are in
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.
2. Given a flow where there are no 𝑠 − 𝑡 paths left in the residual

graph, there is a specific cut whose capacity = flow value.

⇒ The algorithm is optimal

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof:

Optimality

Edges that leave the set A

Edges that enter the set A

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof:

Optimality

Edges that leave the set A

Edges that enter the set A

This relates arbitrary 𝒔 − 𝒕 flows
to arbitrary 𝒔 − 𝒕 cuts

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof:

Optimality

s t

a

b
20

10

𝑓:

c
20

20 10
10

10

s t

a

b
20

10
20

10

𝐺𝑓:

c
20

10 10

10

20
s t

a

b
20

10
30

10

𝐺:

c
20

30 10

𝑓 = 40

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof:

Optimality

s t

a

b
20

10

𝑓:

c
20

20 10
10

10

s t

a

b
20

10
20

10

𝐺𝑓:

c
20

10 10

10

20
s t

a

b
20

10
30

10

𝐺:

c
20

30 10

𝑨

𝑩

𝑓 = 40
σ𝑒∈out 𝐴 𝑓 𝑒 = 50

σ
𝑒∈in 𝐴 𝑓 𝑒 = 10

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, ∀𝑣 ∈ 𝐴, 𝑣 ≠ 𝑠, 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 = ?

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, ∀𝑣 ∈ 𝐴, 𝑣 ≠ 𝑠, 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 = 0 (by conservation of flow).

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, ∀𝑣 ∈ 𝐴, 𝑣 ≠ 𝑠, 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 = 0 (by conservation of flow).
By definition, |𝑓| = 𝑓𝑜𝑢𝑡 𝑠 .

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, ∀𝑣 ∈ 𝐴, 𝑣 ≠ 𝑠, 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 = 0 (by conservation of flow).
By definition, |𝑓| = 𝑓𝑜𝑢𝑡 𝑠 .
 ⟹ |𝑓| = 𝑓𝑜𝑢𝑡 𝑠 − 𝑓𝑖𝑛 𝑠 (since 𝑓𝑖𝑛 𝑠 = 0)

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, ∀𝑣 ∈ 𝐴, 𝑣 ≠ 𝑠, 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 = 0 (by conservation of flow).
By definition, |𝑓| = 𝑓𝑜𝑢𝑡 𝑠 .
 ⟹ |𝑓| = 𝑓𝑜𝑢𝑡 𝑠 − 𝑓𝑖𝑛 𝑠 (since 𝑓𝑖𝑛 𝑠 = 0)
 ⟹ |𝑓| = σ𝑣∈𝐴(𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣) (Only ≠ 0 when 𝑣 = 𝑠).

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴(𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣) (Only ≠ 0 when 𝑣 = 𝑠).

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴(𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣) (Only ≠ 0 when 𝑣 = 𝑠).

Need to translate vertices in 𝑨
into edges leaving 𝑨.

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴(𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴

2. 𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴
3. 𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴
4. 𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴

(edge is inside 𝑨)

(edge is outside 𝑨)

(edge leaves 𝑨)

(edge enters 𝑨)

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴(𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2. 𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴
3. 𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴
4. 𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴

(edge is outside 𝑨)

(edge leaves 𝑨)

(edge enters 𝑨)

Optimality

(In some 𝑣 ∈ 𝐴
and out another)

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴(𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2. 𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴
3. 𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴
4. 𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴

(edge is outside 𝑨)

(edge leaves 𝑨)

(edge enters 𝑨)

Optimality

(In some 𝑣 ∈ 𝐴
and out another)

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴(𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2. 𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3. 𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴
4. 𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴

(edge leaves 𝑨)

(edge enters 𝑨)

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴(𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2. 𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3. 𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) adds to the sum.
4. 𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴 (edge enters 𝑨)

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴(𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2. 𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3. 𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) adds to the sum.
4. 𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴 (edge enters 𝑨)

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴(𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2. 𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3. 𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) adds to the sum.
4. 𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) subtracts from the sum.

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴(𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2. 𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3. 𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) adds to the sum.
4. 𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) subtracts from the sum.

 ⟹ σ𝑣∈𝐴(𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣)
 = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow.
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴(𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2. 𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3. 𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) adds to the sum.
4. 𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) subtracts from the sum.

 ⟹ σ𝑣∈𝐴(𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣)
 = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒

 ⟹ |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ
𝑒∈in 𝐴 𝑓 𝑒

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Optimality
This relates arbitrary 𝒔 − 𝒕 flows
to arbitrary 𝒔 − 𝒕 cuts

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof:
 ?

Optimality
This relates arbitrary 𝒔 − 𝒕 flows
to arbitrary 𝒔 − 𝒕 cuts

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof:
 |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof:
 |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒

≤ σ𝑒∈out 𝐴 𝑓 𝑒

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof:
 |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒

≤ σ𝑒∈out 𝐴 𝑓 𝑒

≤ σ𝑒∈out 𝐴 𝑐𝑒 = 𝑐(𝐴, 𝐵)

Optimality

Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵 be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof:
 |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒

≤ σ𝑒∈out 𝐴 𝑓 𝑒

≤ σ𝑒∈out 𝐴 𝑐𝑒 = 𝑐(𝐴, 𝐵) If we find some flow 𝒇 and
some cut (𝑨, 𝑩) such that
|𝒇| = 𝒄(𝑨, 𝑩), then 𝒇 is a
maximum flow.

Optimality

Optimality

s

a

c

edb t

1

1

1

5

𝒔 − 𝒕 cut: Segmentation of vertices
(a cut) such that 𝒔 and 𝒕 are in
different sets.

Game Plan:
1. Show that value of every flow is ≤ capacity of every cut.
2. Given a flow where there are no 𝑠 − 𝑡 paths left in the residual

graph, there is a specific cut whose capacity = flow value.

	Slide 1: Flow Networks CSCI 532
	Slide 2: Maximum Matching
	Slide 3: Maximum Matching
	Slide 4: Maximum Matching
	Slide 5: Maximum Matching
	Slide 6: Maximum Matching
	Slide 7: Maximum Matching
	Slide 8: Maximum Matching
	Slide 9: Maximum Matching
	Slide 10: Maximum Matching
	Slide 11: Maximum Matching
	Slide 12: Maximum Matching
	Slide 13: Ford-Fulkerson
	Slide 14: Optimality
	Slide 15: Optimality
	Slide 16: Optimality
	Slide 17: Optimality
	Slide 18: Optimality
	Slide 19: Optimality
	Slide 20: Optimality
	Slide 21: Optimality
	Slide 22: s minus t cuts
	Slide 23: s minus t cuts
	Slide 24: s minus t cuts
	Slide 25: s minus t cuts
	Slide 26: s minus t cuts
	Slide 27: s minus t cuts
	Slide 28: s minus t cuts
	Slide 29: s minus t cuts
	Slide 30: s minus t cuts
	Slide 31: s minus t cuts
	Slide 32: Optimality
	Slide 33: Optimality
	Slide 34: Optimality
	Slide 35: Optimality
	Slide 36: Optimality
	Slide 37: Optimality
	Slide 38: Optimality
	Slide 39: Optimality
	Slide 40: Optimality
	Slide 41: Optimality
	Slide 42: Optimality
	Slide 43: Optimality
	Slide 44: Optimality
	Slide 45: Optimality
	Slide 46: Optimality
	Slide 47: Optimality
	Slide 48: Optimality
	Slide 49: Optimality
	Slide 50: Optimality
	Slide 51: Optimality
	Slide 52: Optimality
	Slide 53: Optimality
	Slide 54: Optimality
	Slide 55: Optimality
	Slide 56: Optimality
	Slide 57: Optimality
	Slide 58: Optimality
	Slide 59: Optimality
	Slide 60: Optimality
	Slide 61: Optimality
	Slide 62: Optimality
	Slide 63: Optimality
	Slide 64: Optimality
	Slide 65: Optimality
	Slide 66: Optimality
	Slide 67: Optimality

