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Approximation Algorithms

Minimization problem:

ALG < o OPT
b\

Cost (size) of Approximation Cost (size) of
algorithm’s solution. Ratio optimal solution.

Maximization problem:

ALG > — OPT
0



Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.




Vertex Cover

while uncovered edge exists
select both vertices from uncovered edge

Consider a set of edges, E’ C E, that do not share vertices. Is there
a relationship between the minimum vertex cover and |E’|?

|E’] < OPT

Does the size of the algorithm’s output relate to a set of edges that

do not share vertices?
ALG =2 |E’|

— ALG =2 |E’'| < 2 OPT = ALG < 2 OPT



Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

x; € {0,1} = Indicates if vertex i is selected.
Objective: min };; x;
Subject to: x; + x; = 1, for each edge e = (i, )




Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

x; € {0,1} = Indicates if vertex i is selected.
Objective: min };; x;
Subject to: x; + x; = 1, for each edge e = (i, )

Objective: minx; + x5 + x3 + x4
Subjectto:x; +x, =1

X, +x3 21

Xy + x4 =1

X3 +x4 =21

X1, X, X3,%X4 € 10,1}

Example:
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LP Relaxation: Remove all integrality constraints to turn ILP into LP.
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Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.
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Objective: min };; x;
Subject to: x; +x; = 1, for each edge e = (i, j)

Vertex
Selection




Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

x; € [0,1] = Indicates if vertex i is selected.
Objective: min };; x;
Subject to: x; +x; = 1, for each edge e = (i, j)

Vertex
Selection

If x; = 1, what should we do with vertex i?
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Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

x; € [0,1] = Indicates if vertex i is selected.
Objective: min };; x;
Subject to: x; +x; = 1, for each edge e = (i, j)

Vertex
Selection

If x; = 1, what should we do with vertex i? Add to subset S

If x; = 0, what should we do with vertex i? Don’t add to subset S

126 . .
If x; = 337 what should we do with vertex i?



Vertex Cover ILP

x; € [0,1] = Indicates if vertex i is selected.
Objective: min };; x;

+ If x; = %, add vertex i
Subject to: x; + x; > 1, for each edge e = (i, ) to our subset §.




Vertex Cover ILP

x; € [0,1] = Indicates if vertex i is selected.
Objective: min };; x;

+ If x; = %, add vertex i
Subject to: x; + x; > 1, for each edge e = (i, ) to our subset §.
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Vertex Cover ILP

x; € [0,1] = Indicates if vertex i is selected.
Objective: min );; x; +
Subject to: x; + x; > 1, for each edge e = (i, ) to our subset S.

1 :
If x; = py add vertex i

Is S a vertex cover?
Yes. For every edge, x; + x; = 1.



Vertex Cover ILP

x; € [0,1] = Indicates if vertex i is selected.
Objective: min };; x;

+ If x; = %, add vertex i
Subject to: x; + x; > 1, for each edge e = (i, ) to our subset §.
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Yes. For every edge, x; + x; = 1. Thus, at least one of x; or

1



Vertex Cover ILP

x; € [0,1] = Indicates if vertex i is selected.
Objective: min };; x;

+ If x; = %, add vertex i
Subject to: x; + x; > 1, for each edge e = (i, ) to our subset §.

Is $ a vertex cover?
Yes. For every edge, x; + x; = 1. Thus, at least one of x; or

1 . : : .
Xj = e So for every edge, at least one of its vertices will be in S.



Vertex Cover ILP

x; € [0,1] = Indicates if vertex i is selected.
Objective: min };; x;

+ If x; = %, add vertex i
Subject to: x; + x; > 1, for each edge e = (i, ) to our subset §.

What is the relationship between ALG = |S| and OPT?
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Vertex Cover ILP

x; € [0,1] = Indicates if vertex i is selected.
Objective: min );; x; +
Subject to: x; + x; > 1, for each edge e = (i, ) to our subset S.

1 :
If x; = py add vertex i
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Vertex Cover ILP

x; € [0,1] = Indicates if vertex i is selected.
Objective: min );; x; +
Subject to: x; + x; > 1, for each edge e = (i, ) to our subset S.

1 :
If x; = py add vertex i

Can we bound OPT from below?
Let x, , and x|, be the set of x values found by the ILP and LP
Claim: ), x,p < OPT.
Proof: OPT = ). x,.p, where x; € {0,1}...2



Vertex Cover ILP

x; € [0,1] = Indicates if vertex i is selected.
Objective: min };; x;

+ If x; = %, add vertex i
Subject to: x; + x; = 1, for each edge e = (i, )

to our subset S.

Can we bound OPT from below?

Let x, , and x|, be the set of x values found by the ILP and LP
Claim: ), x,p < OPT.

Proof: OPT = ). x,.p, where x; € {0,1}. When x; is relaxed so
that x; € [0,1], this gives more possibilities to further
decrease ).; x;. Thus, ), xp < OPT.



Vertex Cover ILP

€ [0,1] = Indicates if vertex i is selected.
Objective: min };; x;

+ If x; = %, add vertex i
Subjectto: x; +x; = 1, for each edge e = (i,)) to our subset §.

Can we bound OPT from below?

Law of LP Relaxations: e ILPand LP

OPTLP T OPT"-P <| *Objective values,
(minimization problem) rtnot individual

decrease ),; X;. ThUs, 2, X, < UPT. variable values.




Vertex Cover ILP

x; € [0,1] = Indicates if vertex i is selected.
Objective: min );; x; +
Subject to: x; + x; = 1, for each edge e = (i, )

1 .
If x; = py add vertex i
to our subset S.

How does ), x,, relate to ALG?

— . > . ?
2. Xip = Dixex;pXi = inExLP: iz x;, because..."
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Vertex Cover ILP

x; € [0,1] = Indicates if vertex i is selected.
Objective: min );; x; +
Subject to: x; + x; > 1, for each edge e = (i, ) to our subset S.

1 :
If x; = py add vertex i

How does ), x,, relate to ALG?

— ] ] 1 ’
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Vertex Cover ILP

€ [0,1]

Objective:

= Indicates if vertex i is selected.

min )}; X;

Subject to: x; + x; = 1, for each edge e = (i, )

How does ), x,, relate to ALG?

Z pr Zx EXLP xl 2 Zx ExLP xl—E

+

1 .
If x; = py add vertex i
to our subset S.

1X;, because it’s a subset of x

> D, .=, because each x; is at Ieast—

Xi EXLP xl_E 2
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Vertex Cover ILP

x; € [0,1] = Indicates if vertex i is selected.
Objective: min );; x; +
Subject to: x; + x; > 1, for each edge e = (i, ) to our subset S.

1 :
If x; = py add vertex i

What is the relationship between ALG and OPT?

D Xp = %ALG and ), x,p, < OPT

ALG < 2 OPT



Truck Loading Problem

Problem: Deliver n objects using the smallest number of trucks. Each object
weighs between 0 and 1 ton. Each truck has a capacity of 1 ton.

1 1 1 1 Object | Weight
Cah Cef Osn Cap o o
O—O0 O—9O O—O O—0O 2 0.4
3 0.3
| 0.4
5 0.1
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Truck Loading Problem
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Truck Loading Problem

Problem: Deliver n objects using the smallest number of trucks. Each object
weighs between 0 and 1 ton. Each truck has a capacity of 1 ton.

Algorithm: Line up trucks. For each object, place it on the first truck it fits on.

0.15 0.3 0.6 1 Object | Weight
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1 2 4 3 0.3
5 3 4 0.4
5 0.1




Truck Loading Problem

Algorithm: Line up trucks. For each object, place it on the first truck it fits on.

0.15 0.3 0.6 1 Object | Weight
E 1 il E 2 h E 3 il E 4 il 1 0.75
O—0O O—9O O—90O Oo—oO 2 0.4
1 2 4 3 0.3
5 3 4 0.4
Goal: Show this algorithm is 2-approximation algorithm. |5 0.1




Truck Loading Problem

Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Could we ever have a used truck that is less than half filled?
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Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Algorithm: Line up trucks. For each object, place it on the first truck it fits on.

0.15 0.3 0.6 1 Object | Weight
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5 3 4 0.4
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Let W = total weight of all n objects.
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Algorithm: Line up trucks. For each object, place it on the first truck it fits on.

0.15 0.3 0.6 1 Object | Weight
E 1 il E 2 h E 3 il E 4 il 1 0.75
O—0O O—9O O—90O Oo—oO 2 0.4
1 2 4 3 0.3
5 3 4 0.4
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Could we ever have multiple used trucks that are less than half filled?
No! They would have been consolidated onto one truck.
Let W = total weight of all n objects.

:>W>%(ALG —1) = ALG < 2W + 1



Truck Loading Problem

Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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What is the smallest number of trucks possibly needed for a weight of W2
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Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Truck Loading Problem

Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Truck Loading Problem

Algorithm: Line up trucks. For each object, place it on the first truck it fits on.

0.15 0.3 0.6 1 Object | Weight
E 1 il E 2 h E 3 il E 4 il 1 0.75
O—oO O—oO O—oO Oo—oO 2 0.4
1 2 4 3 0.3
5 3 4 0.4
Goal: Show this algorithm is 2-approximation algorithm. |5 0.1
ALG < 2W + 1
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Truck Loading Problem

Algorithm: Line up trucks. For each object, place it on the first truck it fits on.

0.15 0.3 0.6 1 Object | Weight
E le ZhE 3hE 4i1 1 0.75
O—0O O—9O O—90O Oo—oO 2 0.4
1 2 4 3 0.3
5 3 4 0.4
Goal: Show this algorithm is 2-approximation algorithm. |5 0.1
ALG < 2W + 1
What is the smallest number of trucks possibly needed for a weight of W?
W= OPT =W ALG is an integer less than the
y integer 2 OPT + 1, so the most

ALG < 20PT +1 = ALG < 2O0PT it could be is the integer 2 OPT.
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