Programming in Go – Concurrency Assignment
Restaurant service simulation using goroutines
In the restaurant industry, a kitchen deals with many orders at once. While the orders usually follow a first in first out system, cooks usually always work on different orders at the same time.
Suppose you are simulating dinner service at [insert favorite restaurant here]. The restaurant offers appetizers, entrees, and desserts. A table will order X number of appetizers, Y amount of entrees, and Z amount of desserts (0 <= X,Y,Z <= 20). For the “graded” portion of the assignment, you can assume that you will always have enough food to serve all customers during dinner service.
Appetizers will take 1 second to cook. Entrees take 5 seconds to cook. Desserts take 3 seconds to cook.
Part 1: Creating a concurrent kitchen
The kitchen receives all orders at once through a text file orders.txt.
https://reesep.github.io/files/orders.txt
[image:]Use the following for creating the file or download the file here. Each row in the file represent a single order followed by how many (1) appetizers, (2) entrees, and (3) desserts. For example, order 1 has 3 appetizers, 3 entrees, and 3 desserts. Order 2 has 5 appetizers, 5 entrees, and 1 dessert. The kitchen should wait two seconds before starting the next order.
https://github.com/reesep/reesep.github.io/blob/master/files/restaurant.go
Using restaurant.go as a starting point, read in orders.txt and spawn a goroutine for each row in the file that will “cook” every item for that order. Cooking the items for a single order can be done in a sequential manner (All appetizers first, followed by all entrees, then all desserts)
The goroutine that you will spawn for each order should be called cook_order which takes in an order number, # of appetizers for that order, # of entrees for that order, # of desserts for that order, and the wait group.
Please see the sample transcript to understand how the output should be formatted https://youtu.be/hrlQq-SZsdM.
Note: It is fine if the order of the output is slightly different output than mine, but the order of finishing should be the same. I care much more about if you successfully used concurrency to solve a problem
Part 2: Monitoring Dinner service using channels
You will now implement one more goroutine monitor_orders that is going to receive messages when the restaurant runs out of appetizers, entrees, or desserts. If the number of appetizers reaches 0, then “Out of Appetizers!” should be sent from cook_order to monitor_orders and printed out. This communication will be done via a channel. You will need to add one more parameter to the cook_order goroutine to pass in the channel. monitor_orders will act as a “receiver”.
Hint: It is not required to use select statements here because all the cook_order goroutines will be sending on the same channel.
To see the sample transcript after implementing Part 2, follow the link: https://youtu.be/468zG6RuSU0
image1.png
oa
PS-

oos

